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Traditional contact tracing for COVID-19 tests the direct contacts of those who test positive6

even if the contacts do not show any symptom. But, why should the testing stop at direct con-7

tacts, and not test secondary, tertiary contacts or even contacts further down? The question8

arises because by the time an infected individual is tested the infection starting from him may9

have infected a chain of individuals. One deterrent in testing long chains of individuals right10

away may be that it substantially increases the testing load, or does it? We investigate the11

costs and benefits of testing the contact chain of an individual who tests positive and discover12

that it can both substantially reduce the cumulative infection count over time and reduce13

the testing load over time. We also discover a phenomenon of diminishing return beyond a14

threshold value on the depth of the chain to be tested in one go, the threshold then provides15

the most desirable tradeoff between benefit in terms of reducing the cumulative infection16

count and cost in terms of increasing the testing load.17

To slow down the spread of COVID-19, public health authorities like the US Center for18

Disease Control and Prevention (CDC) have recommended to test those who have in the recent19

past been in physical proximity with a patient who has tested positive, even when the contacts20

1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 2, 2020. ; https://doi.org/10.1101/2020.10.01.20205047doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.10.01.20205047
http://creativecommons.org/licenses/by-nc-nd/4.0/


do not exhibit any symptom [23]. This preemptive action, commonly known as contact tracing,21

is deployed because given how contagious the disease is, a patient is likely to have passed on22

the contagion to his contacts, and the infected contacts have the potential to infect others even23

before they show symptoms [10]. Moreover, the CDC estimates that up to 70% percent of the24

infected individuals are asymptomatic, showing no symptom throughout the entire course of the25

disease [21], and clinical research has revealed that the asymptomatic individuals can infect others26

[13, 22]. Testing and isolating the infected can stop these infected individuals from spreading the27

disease early on, that is, while they do not show symptoms, as compared to the strategy that tests28

only those who show symptoms and seek medical help. Slowing down the spread by testing the29

contacts comes at the cost of an increase in the testing load as compared to the latter policy, yet,30

the cost-benefit tradeoff for contact tracing is understood to be substantially favorable (cost is the31

testing load, benefit is the ability to contain the outbreak).32

A question that naturally arises is if cost-benefit tradeoffs may be enhanced through general-33

izations of the core concept of contact tracing - this is what we seek to answer in this paper. In the34

time that elapses between when an individual is infected and until he is tested, the disease spreads35

from him through a chain of several hops - he infects those he is in contact with, those he infects36

infect their contacts, the infected contacts infect their contacts, and so on. Fewer people are likely37

to be infected if we preemptively test not only the direct contacts of an individual who tests posi-38

tive, but contacts of the contacts and so on. Such testing will enable us to identify and isolate the39

individuals further down the chain who have imbibed the disease, earlier than if we had tested only40

the direct contacts of those who have tested positive and reached down the chain progressively.41
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Figure 1: Illustration of multi-hop contact tracing. Illustration of 1-hop contact tracing (i.e.,

testing only the direct contacts of those who test positive) and 3-hop contact tracing (i.e., testing

the direct, secondary and tertiary contacts of those who test positive). The time at which a health

authority tests the patient-0 (red) was after the infection has propagated 2 hops. By t+3 time units,

both testing policies test 4 individuals (black) other than the patient-0; the 3-hop policy tests and

isolates the positive ones in a shorter time, while 1-hop tests and isolates them progressively and

therefore over longer times. Accordingly, only 3 individuals are infected under the 3-hop policy,

while 10 individuals are infected under the 1-hop policy.
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Earlier isolation of the infected reduces the number they infect. Does such aggressive preemptive42

testing schemes necessarily increase the overall number of tests? The answer is not apriori clear43

as reduction in overall infection spread through such a testing strategy may eventually reduce the44

number of tests required, as illustrated in Figure 1.45

We formalize this aggressive preemptive testing scheme as k-hop contact tracing (k), where46

k = 0 does not trace contacts and tests only those who show symptoms and seek medical help,47

k = 1 is the traditional contact tracing that tests the direct contacts of an individual who tests48

positive, k = 2 additionally tests the contacts of the contacts, k = 3 tests yet another hop of49

contacts, and so on. Our investigation will quantify the 1) benefits i.e., reduction in the number50

of individuals infected over time, 2) costs, i.e., increase in total number of tests, with increase in51

k, for a wide variety of disease parameters, contact patterns, extent of willingness of individuals52

to cooperate with the health officials on testing. We investigate for a wide variety of the above53

parameters because values of the parameters that arise in practice are not definitively known at54

this nascent stage of research on the novel disease, and will in general be different for different55

ambiences. The goal of our investigation is to reveal if this natural generalization has any merit and56

provide specific policy recommendations with respect to testing strategies. We will also examine57

whether there arises the principle of diminishing return, that is, increasing the number of hops58

beyond a certain threshold only marginally decreases the infection count but noticeably increases59

the testing load - if so, such threshold, which we seek to identify, provides the optimum cost-benefit60

tradeoff.61
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Figure 2: Virus transmission model illustration. The Compartmental model consists of the

following compartments: Susceptible (S), Presymptomatic-Latent (Ip-L), Presymptomatic (Ip),

Symptomatic (Is), Ready-to-Test (RT ), Asymptomatic-Latent (Ia-L), Asymptomatic (Ia), Recov-

ered (R), and Dead (D).

The significance of our investigation also draws from the fact that the testing recommen-62

dations by the regulating authorities have not been finalized yet, and recommendations are being63

continually adapted as new facets are being discovered. For example, in the last few months the64

CDC has changed its recommendation about testing the asymptomatic individuals multiple times65

[22].66

We consider a discrete time stochastic evolution of COVID-19 in a population that initially67

consists of susceptible and a few contagious individuals. We model the progression of the disease68

using a compartmental model (Figure 2). The disease spreads from the contagious to the suscepti-69

ble individuals through mutual interaction. In any given interaction with a contagious individual,70

a susceptible is infected with a probability. After a latency period (the presymptomatic-latent71

and asymptomatic-latent are in this latency period), the newly infected individuals become conta-72

gious. Specifically, at the end of the latency period, the individuals either become presymptomatic73
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(the stage before exhibiting symptoms), or asymptomatic (that is, they never show symptoms).74

Presymptomatics proceed to become symptomatics in the next stage. Presymptomatics, asymp-75

tomatics, symptomatics all however are contagious.76

We assume that test results are obtained in the same day, owing to the availability of reliable77

RT-PCR and antigen tests that are able to do so [9, 19] (recent antigen test authorized by the FDA78

under an emergency use can give results in 15 minutes with 97.1% sensitivity).79

We consider cases in which only a fraction of contacts can be tested, as they either do not80

consent or can not be traced; we refer to this fraction as cooperativity. We assume that the contacts81

who can be identified are identified within a day, such turnaround times are for example attainable82

if individuals install contact tracing apps [7] in their wearable or hand-held devices which contin-83

ually and automatically record all contacts and communicate to the authorities once an individual84

tests positive or is alerted of direct or indirect exposure. Tests can then be scheduled the next day85

through the same apps.86

The probability with which an infected individual infects a susceptible in an interaction de-87

pends on various factors such as the duration, environment (e.g., indoor or outdoor) of the inter-88

action, protective gears worn by the individuals involved etc. Since different environments and89

behavioral patterns have different values of this probability, we consider a range of values, namely,90

0.04, 0.2, 0.4 respectively, for symptomatic individuals. We consider that a presymptomatic indi-91

vidual infects a susceptible individual with the same probability as a symptomatic individual, and92

refer to this probability as the probability of infection. We consider that an asymptomatic individual93
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infects a susceptible with 0.75 times this probability [21].94

We have simulated k-hop contact tracing for k = 0, 1, 2, 3 to large values of k for 1) a data-95

driven time-varying network, obtained from data individuals in Tokyo, Japan provide over a social96

network about their locations and the corresponding time-stamps [25] and 2) various static syn-97

thetic topologies (of Erdős Rényi random network and scale-free networks) in which connections98

do not change with time. We choose these two broad categories to complement each other and99

represent various human contact patterns. The first captures a certain semblance of reality in that100

it is obtained from spatial and temporal records of actual human presence over a time period; here101

the contact patterns vary over time which is also what happens in reality. Yet, it is constructed102

from only one set of data, which may not be representative of all contact patterns. We therefore103

examine whether the phenomena observed in it also recurs in some other very different networks,104

namely in two examples of classical synthetic networks: Erdős Rényi and scale-free networks.105

These examples complement each other in some fundamental characteristics such as in the nature106

of the degree distribution. The degrees of the nodes represents the number of contacts of the cor-107

responding individuals. The Erdős Rényi network is more regular, in that there is relatively low108

variance in the degree distribution. The scale-free network, on the other hand, has some nodes109

with high degrees (perhaps representing celebrities who interact with a large number of individu-110

als) and many more nodes with low degrees (representing common folks); the degree distribution111

therefore has a high variance. Any phenomenon that is observed in the three very different types112

of networks modeling human contact patterns (the data-driven time-varying network and the two113

static synthetic networks) is likely to recur extensively.114
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Refer to Methods for details on the systems we consider, the parameters we choose and115

further justification for the choices and the limitations thereof.116

Results117

We start with a summary of our important findings from the simulations for k-hop contact tracing118

that we perform for k = 0, 1, 2, 3, . . .. We observe the following for multi-hop testing, which is119

k-hop contact testing for k > 1:120

• Benefit of multi-hop contact tracing: Multi-hop contact tracing considerably reduces the total121

number of infections over time compared to 1-hop contact tracing (that is, the traditional contact122

tracing). The reduction is higher with 1) increase in probability of infection 2) the decrease in123

cooperativity 3) decrease in the latency period. In addition, multi-hop contact tracing substan-124

tially reduces the average daily new infection count in the peak infection period (time until the125

daily new infection count peaks) compared to 1-hop contact tracing.126

• Cost of multi-hop contact tracing: Over time the overall number of tests required in multi-127

hop contact tracing is usually lower, than that in 1-hop contact tracing. But, studying how128

the number of tests changes with time, initially the number of tests needed for multi-hop is129

somewhat (considerably in few instances) higher than for 1-hop contact tracing.130

Increasing the value of k from k = 1, the number of infections and the number of tests over131

time decreases up to a threshold value of k (we observe that this threshold value is k = 2 or k = 3132
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in our simulations). Formally, we define the threshold point as the value of k at which the overall133

number of tests required (cost) is minimized. As k increases beyond this threshold value, we see134

a phenomenon of diminishing return, that is, the number of infections only marginally decreases135

and number of tests increases (considerably, in some instances).136

We substantiate the above findings with the results reported in Figures 3 and 5, Figure 3 for137

data-driven time-varying network and Figure 5 for static synthetic topologies. In each case we138

report the average of 1000 simulation runs on given topologies.139

We first consider the highest probability of infection (i.e., 0.4) and lowest cooperativity (i.e.,140

0.2) from our range of choices. As k increases from 0 to 3, the cumulative number of infections141

considerably decreases, and subsequently decreases only marginally with further increase in k.142

3-hop contact tracing achieves 81% reduction in the cumulative number of infections compared143

to no-contact tracing, while 1-hop contact tracing achieves only 24% reduction (first column in144

Figure 3a). The total number of tests for k-hop contact tracing steadily decreases with increase in145

k from k = 1 to k = 3, and subsequently steadily increases as k increases further. This number146

is minimized for 3-hop contact tracing, at which value 37% fewer tests are required, overall, than147

1-hop tracing (first column in Figure 3a). Thus, the threshold value is k = 3. The daily number148

of tests is somewhat higher initially for multi-hop contact tracing, but rapidly declines soon, as149

compared to 1-hop contact tracing (Figure 4), leading to overall fewer number of tests for multi-150

hop contact tracing. These observations may be explained as follows. Multi-hop contact tracing151

may test greater number of individuals in early stages because it traces up to more hops even152
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(a)

(b)

Figure 3: The cumulative number of infections and average daily tests required for k-hop

contact tracing for various values of k for data-driven time-varying network. The red colored

bar corresponds to the threshold value of k. For k exceeding the threshold value, the curves for

the cumulative number of infections heavily overlap and become indistinguishable.
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Figure 4: The number of tests over time for data-driven time-varying network.

from the same number of confirmed cases. However, this aggressive preemptive testing from early153

stages can rapidly mitigate the spread of infection earlier than 1-hop contact tracing through early154

identification and quarantining of the infected, thus fewer number of individuals transmit the virus155

and need tests with passage of time. The latter phenomenon more than compensates for the larger156

number of tests required in early stage for multi-hop contacts of those who test positive.157

All the phenomena reported above is replicated for other parameters for data-driven time-158

varying networks (other subfigures of Figure 3), but the extent of the advantage and values of the159

thresholds differ. We comment on the insights the differences provide.160

When cooperativity increases to 1, the efficacy of 1-hop tracing increases substantially, it161
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reduces cumulative infections by 83% compared to 0-hop tracing (third column in Figure 3a).162

Comparing the results for cooperativities of 1 and lower, we note that multi-hop contact tracing163

can offset the limitation arising from the lack of available information on contacts.164

As probability of infection decreases, 1-hop contact tracing becomes more and more effec-165

tive, and the threshold value generally decreases (or remains the same). Refer to Figure 3b for166

the intermediate value of 0.2 for the probability of infection, and to Figure 7 in Supplementary167

Information for the lowest value of 0.04.168

We consider static synthetic networks now (Figure 5). All the phenomena reported above is169

replicated, but the specifics differ. When probability of infection is 0.4, the threshold value is 2 for170

both the scale-free and Erdős Rényi networks (first column in Figure 5). In the two cases, despite171

the fact that the overall number of tests required in 2-hop contact tracing is significantly lower than172

that in 1-hop contact tracing, 2-hop contact tracing reduces the cumulative number of infections by173

96% and 98%, respectively compared to 0-hop tracing, while 1-hop tracing reduces by 56% and174

41%, respectively. The phenomenon of diminishing return is even more accentuated in these as the175

number of tests sharply increase with increase in k beyond k = 2 for k−hop contact tracing. Also,176

considering the variation of the number of tests over time, we notice that in scale-free networks,177

the number is significantly higher for multi-hop contact tracing than that for 1- hop contact tracing178

initially (Figure 6). But, the decline in the number of tests required for multi-hop contact tracing179

becomes equally precipitous over time, and the rapid decline starts in a short time from the start of180

the testing period as well. Figure 5 plots the average of 1000 simulation runs over 1 realization of181
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(a)

(b)

Figure 5: The cumulative number of infections and average daily tests required for k-hop

contact tracing for various values of k for static synthetic networks. The red colored bar

corresponds to the threshold value of k. For k exceeding the threshold value, the curves for the

cumulative number of infections heavily overlap and become indistinguishable.
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Figure 6: The number of tests over time for static synthetic networks.

the static synthetic topologies, Figure 9 in Supplementary Information reports the average of 100182

runs over 10 realizations of the same static synthetic topologies, corresponding plots in Figure 5183

and Figure 9 show identical trend.184

We now focus on the peak infection period and the average daily new infection count during185

this period. The duration of this period is a measure of how soon the infection is contained. The186

average daily new infection count during this period is a measure of the treatment-load health187

care centers experience in a critical period in which these have the potential to be overwhelmed.188

Under multi-hop contact tracing the peak infection period is shorter, in some cases considerably189

shorter, and the average daily new infection count during this period is invariably substantially190

lower, and therefore the healthcare facilities run lower risk of being overwhelmed. For example,191
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in the data-driven time-varying network, considering the parameters as the first column in Figure192

3a, for 3-hop contact tracing, the peak infection period is 7 days and an average of 3.6 (per 1000193

population) daily new infections occurs during this period. On the other hand, for 1-hop contact194

tracing, the peak infection period is 11 days, and an average of 8.6 (per 1000 population) daily new195

infections occurs during this period. Next, in scale-free and Erdős Rényi networks, considering196

the parameters as the first column in Figure 5, under 2-hop contact tracing, the peak infection197

periods are 8 and 10 days, respectively, and an average of 3 (per 1000) and 1.1 (per 1000) daily198

new infection occurs during this period, respectively. On the other hand, for 1-hop contact tracing199

in these topologies, the peak infection periods are 10 and 22 days, respectively, and an average200

of 8.9 (per 1000) and 7.7 (per 1000) daily new infections occurs during this period, respectively.201

Note that multi-hop contact tracing substantially reduces the peak infection period in scale-free202

networks.203

We now examine how increase in the latency period affects the results. In this case, the in-204

fected individuals become contagious later, thus, the potential of 1-hop contact tracing to detect and205

remove individuals before they become contagious or in the early period of their becoming con-206

tagious increases. Comparing the results for randomized latency periods of two different means,207

we note that this is indeed the case. In data-driven time-varying network, when the mean latency208

period is 1 day (2 days, respectively), 1-hop contact tracing can achieve 24% (33%, respectively)209

reduction in the cumulative number of infections compared to 0-hop contact tracing, and 3-hop210

contact tracing can achieve 81% (86%, respectively) reduction. In scale-free network, when the211

mean latency period is 1 day (2 days, respectively), 1-hop contact tracing can achieve 56% (71%,212
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respectively) reduction in the cumulative number of infections compared to 0-hop contact tracing,213

and 2-hop contact tracing can achieve 96% (98%, respectively) reduction. In Erdős Rényi network,214

when the mean latency period is 1 day (2 days, respectively), 1-hop contact tracing can achieve215

41% (58%, respectively) reduction in the cumulative number of infections compared to 0-hop con-216

tact tracing, and 2-hop contact tracing can achieve 98% (99%, respectively) reduction. Refer to217

Figure 10 in Supplementary Information for a bar-graph representation of this data.218

Discussion219

Our findings obtained through extensive simulations over a diverse set of contact topologies, start-220

ing from data-driven time-varying networks to static synthetic networks show that multi-hop test-221

ing has the potential to substantially reduce total number of infections (which would in turn reduce222

fatalities and treatment load on healthcare facilities) and reduce overall testing load. It also helps223

contain COVID-19 outbreaks within shorter times and reduces average daily new infection counts,224

specifically in the period up to when the daily new infection count peaks, which would in turn225

reduce the treatment load on healthcare facilities during the peak period. All these collectively226

have the potential to contain the outbreak without extensive lockdowns and economic downturns.227

Our findings lead to the following recommendations for public health authorities:228

• Deploy multi-hop testing; usually testing up to secondary or tertiary contacts of those who229

test positive suffices.230
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• The recommended number of hops are on the higher end of the above range when: 1) the231

probability of infection in each contact is high (e.g., from indoor contacts, longer durations232

of contacts, lack of protective gears) 2) cooperativity is low 3) the latency period is short.233

• Create the infrastructure for handling a larger testing load for limited periods, which will234

lead to a reduction in the overall testing load over time with the daily testing load expected235

to decline shortly after the testing starts (if multi-hop testing is deployed).236

Finally, multi-hop testing may provide similar benefits for other infectious diseases which exhibit237

silent propagation (infection from individuals who do not show symptoms).238

Note that the contact tracing recommendation of the CDC involves both testing and quaran-239

tining (even when the test result is negative) the direct or primary contacts of those who test posi-240

tive. Along the same lines, recent works considered tracing and quarantining the direct contacts of241

those who tested positive [1, 7, 11]. Another recent work considered tracing and quarantining both242

primary and secondary contacts of those who test positive, and found that quarantining secondary243

contacts decreases the cumulative infection count compared to quarantining only the primary con-244

tacts, but also requires substantially higher number of quarantines [8]; this work appears to reject245

the notion of quarantining secondary contacts and did not therefore explore quarantining tertiary246

or even more distant contacts. It does not investigate testing the primary and secondary contacts,247

perhaps because they would be quarantined regardless of the test results. We instead explore trac-248

ing and testing multi-hop contacts, testing eliminates the need for extensive quarantining as only249

those who test positive need to be quarantined. Our results show that multi-hop testing even re-250
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duces the number of tests required. The difference between our finding and the recent work arises251

because quarantine is a cumulative process in which each contact is quarantined for several days,252

while tests related to each positive patient are done only once. As to the primary contacts of those253

who test positive, we take no position on whether they should be quarantined even when they test254

negative, and leave that to the policies of the relevant public health authorities.255

We now discuss the scenarios in which some of our assumptions may not hold. Tracing256

contacts and scheduling tests for those traced may require more than a day when individuals do257

not use contact tracing apps. PCR test results are not obtained same day if the testing site and258

laboratory are not co-located, though this delay may not affect the broad nature of our findings259

if those tested quarantine until the test results are known. Antigen tests give results in an hour260

but some of them reportedly record non-negligible proportion of false negatives. Depending on261

classifiers such as duration, environment (indoor or outdoor), usage of protective gears, different262

contacts may pass on infection with different probabilities. Assuming that such a probability is263

identical for all contacts with same infectious categories, which is what we did, is equivalent to264

considering an average over all contacts. Explicitly investigating the impact of 1) delay in tracing265

contacts and obtaining test results 2) errors in test results 3) non-uniform infection probabilities266

constitute directions for future research.267

Methods268

Construction of data-driven time-varying network. Our goal has been to evaluate the multi-hop269

contact tracing strategy using publicly-available data of human contact patterns. For evaluating the270
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impact of multi-hop contact tracing, data sets need to involve large population sizes, otherwise271

length of the contact chains will be limited by the size of the target populace. Also, in reality,272

pandemic spread involves large target populaces. Data of human contact patterns is not plentiful in273

the public domain due to privacy and other concerns, the availability becomes even less for contact274

patterns of large population sizes. We utilized the data that users of Foursquare service (a Location-275

Based Social Networking or LBSN) made available in Social Media about their locations in Tokyo,276

Japan along with time-stamps. This dataset contains advertised locations (or check-ins) collected277

for about 10 months (from 12 April 2012 to 16 February 2013). Each check-in contains information278

about the time at which the user visited the location, the GPS coordinates of the locations, and279

the nature of the locations (e.g., coffee shops, restaurants etc.) [25]. We use the first 100 days280

of data with at least one check-in. The strength of this data set is that it provides actual time-281

stamped locations of a large number of individuals, more than 2000, over a long period of time.282

The weakness is that the contacts are still sparser than what arises in reality as the locations in283

question are usually crowded and much larger number of individuals actually visit these locations284

in overlapping time intervals but their whereabouts are not being reported in this dataset as they do285

not use this LBSN. The contact network will become denser if their presence can be considered.286

To compensate for this artificial sparsity we construct contact patterns based on the available data287

by postulating that people have had a contact if they have been at the same venue in the same day.288

During such a contact a contagious individual passes the disease on to a susceptible individual289

with a certain probability (we mention how we choose these probabilities where we provide details290

on the Compartmental model of virus transmission and in Table 1 in Supplementary Information).291
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Note that in reality individuals who have been at the same location in the same day do not always292

do so at the same time and are therefore not always in physical proximity to pass on the disease293

from one to another. Thus, the contact pattern we consider is denser than what the dataset actually294

provides, which may compensate for the artificial sparsity in question. The constructed data-driven295

time-varying contact patterns has 5553.71 daily interaction on average among 2120 individuals.296

The evaluations can be repeated on more accurate and expansive contact patterns as they become297

available through collective efforts and enrichment of existing data repositories.298

Static synthetic networks The static topologies consist of scale-free network [2, 3] and Erdős299

Rényi random network [3, 6]. Figure 5 have been provided for only one realization of scale-free300

network and Erdős Rényi random network, Figure 9 in Supplementary Information however shows301

plots of averages over 10 realizations of each.302

The scale-free network topologies are generated by Barabási-Albert method where new303

nodes are added at each time step with 2 links that connect to existing nodes with a probability304

being proportional to the degree of the existing nodes. We consider topologies of 10, 000 nodes305

and 19, 997 edges, thus average degree of a node is 〈k〉 = 3.9994. For the single realization we306

use in Figure 5a, diameter and average path length are 9 and 5.01, respectively. Figure 8a in Sup-307

plementary Information shows that for the one realization we consider in Figure 5a, the degree308

distribution is well approximated by power-law with degree exponent 3, as should be for scale-free309

networks. Thus, the single realization in question is a typical scale-free network.310

The Erdős Rényi network consists of 10, 000 nodes which are connected with 20, 000 ran-311
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domly placed edges, thus the average degree of a node is 〈k〉 = 4. For the one realization we312

consider in Figure 5b, diameter (i.e., the greatest distance between pair of nodes of connected313

components) is 14 and average path length (i.e., average distance along the existing paths) is 6.76.314

Figure 8b in Supplementary Information shows that for the one realization we consider in Figure315

5b, the degree distribution is well approximated by Poisson distribution with parameter 〈k〉, as316

should be for Erdős Rényi random networks. Thus, the single realization in question is a typical317

Erdős Rényi random network.318

Compartmental model of virus transmission. We use a discrete time compartmental disease319

model to model the progression of COVID-19 where the transition from each compartment to320

the next happens after a random amount of time with a geometric distribution. Compartmental321

model is also used in [1, 24]. Different stages of the disease are shown in Figure 2. The Com-322

partmental model consists of the following stages: Susceptible (S), Presymptomatic-Latent (Ip-L),323

Presymptomatic (Ip), Symptomatic (Is), Ready-to-Test (RT ), Asymptomatic-Latent (Ia-L), Asymp-324

tomatic (Ia), Recovered (R), and Dead (D). Only symptomatic individuals show symptoms, while325

presymptomatic, symptomatic and asymptomatic individuals infect others.326

When a susceptible (S) individual comes into contact with a symptomatic (Is) individ-327

ual, he is infected with the probability of infection βs. Similarly, a presymptomatic (Ip) and an328

asymptomatic (Ia) individual infects a susceptible upon contact with probabilities, βp(= γpβs),329

βa(= γaβs), respectively, where γp and γa are respectively infectiousness of presymptomatic and330

asymptomatic individuals relative to symptomatic individuals. If a susceptible individual i inter-331

acts with l symptomatic, m presymptomatic, and n asymptomatic individuals at time t − 1, the332
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probability that the susceptible individual is infected at time t is 1− (1− βs)l(1− βp)m(1− βa)n.333

Once an individual is infected he becomes contagious after a geometrically distributed la-334

tency time, whose statistics depends on whether he will develop symptoms at some point or335

otherwise. Following the nomenclature in compartmental models already utilized for COVID-336

19, we assume that an infected individual becomes asymptomatic-latent (with probability pa) or337

presymptomatic-latent (with probability 1−pa). The asymptomatic-latent (Ia-L) individuals never338

develop symptoms, do not infect others for an mean latency duration of 1/λ, and subsequently be-339

come contagious, at which stage we call them asymptomatic or Ia for simplicity. An asymptomatic340

individual remains contagious for a geometrically distributed random duration with mean 1/ra, af-341

ter which he recovers. We now consider the other compartment an individual enters after infection,342

the presymptomatic-latent compartment. A presymptomatic-latent individual becomes contagious343

after a mean latency period of 1/λ, at which point we call him presymptomatic or Ip. He remains344

presymptomatic for a geometrically distributed duration with mean 1/α; after this duration he de-345

velops symptoms and is called symptomatic. A symptomatic individual continues to infect his346

contacts until he opts for testing (RT ). The duration for which a symptomatic individual infects347

others is geometrically distributed with mean 1/w. Once this duration ends, the patient quaran-348

tines himself and does not infect others. He ultimately dies (D) with probability pd, or recovers349

(R) with probability 1− pd, after a geometrically distributed duration whose mean is 1/rs. We do350

not consider that individuals can be reinfected.351

We consider that initially all but three individuals are susceptible, among the three there352

is one each of presymptomatic, symptomatic and asymptomatic. The parameters we choose and353
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further justification for the choices are listed in Table 1 in Supplementary Information.354

Multi-hop contact tracing process. Every day individuals who are ready to test by virtue of355

showing symptoms are tested and isolated if they test positive. Considering an individual who356

tests positive on day t, we describe the process of tracing his k-hop contacts on day t and testing357

them on day t+1. On day t after the individual in question tests positive, the public health authority358

traces his k-hop contacts, over the last 14 days, and informs them that they may have been exposed.359

If cooperativity is q, only q proportion of interactions per day can be identified. Tests are scheduled360

on day t+1. Those scheduled to be tested are isolated from everyone else on the day of the test. The361

test results are available in the same day, and those who test positive are isolated until they recover362

and those who test negative can resume their normal activities. Individuals who test positive will363

not be tested again, but those who test negative can be tested again after 3 days from the test date if364

they have direct or indirect interactions with any one who tests positive or if they show symptoms.365

Competing Interests The authors declare no competing interests.366

Correspondence Correspondence and requests for materials should be addressed to J.K.367

368 1. A. Aleta, D. Martı́n-Corral, A. P. y Piontti, M. Ajelli, M. Litvinova, M. Chinazzi, N. E. Dean,369

M. E. Halloran, I. M. Longini Jr, S. Merler, et al. Modelling the impact of testing, contact370

tracing and household quarantine on second waves of COVID-19. Nature Human Behaviour,371

4(9):964–971, 2020.372

23

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 2, 2020. ; https://doi.org/10.1101/2020.10.01.20205047doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.01.20205047
http://creativecommons.org/licenses/by-nc-nd/4.0/


2. A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286(5439):373

509–512, 1999.374

3. A.-L. Barabási et al. Network science. Cambridge university press, 2016.375

4. M. Biggerstaff, M. A. Jhung, C. Reed, A. M. Fry, L. Balluz, and L. Finelli. Influenza-like376

illness, the time to seek healthcare, and influenza antiviral receipt during the 2010–2011 in-377

fluenza season—United States. The Journal of infectious diseases, 210(4):535–544, 2014.378

5. A. W. Byrne, D. McEvoy, A. B. Collins, K. Hunt, M. Casey, A. Barber, F. Butler, J. Griffin,379

E. A. Lane, C. McAloon, K. O’Brien, P. Wall, K. A. Walsh, and S. J. More. Inferred duration of380

infectious period of SARS-CoV-2: rapid scoping review and analysis of available evidence for381

asymptomatic and symptomatic COVID-19 cases. BMJ Open, 10(8), 2020. ISSN 2044-6055.382

doi: 10.1136/bmjopen-2020-039856. URL https://bmjopen.bmj.com/content/383

10/8/e039856.384
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Supplementary Information448

Figure 7: The cumulative number of infections and average daily tests required for k-hop

contact tracing for various values of k for data-driven time-varying network. The probability

of infection is 0.04. The red colored bar corresponds to the threshold value of k. For k exceeding

the threshold value, the curves for the cumulative number of infections heavily overlap and become

indistinguishable.
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(a) (b)

Figure 8: Degree distribution of the respective network realizations of the scale-free and

Erdős Rényi network used for the data plotted in Figures 5 and 6. (a) The points represent the

cumulative degree distribution for the scale-free network, and the slope of the line is 2 which is

the theoretical exponent of this power-law distribution. Those are plotted on a double logarithmic

scale. (b) The points represent the degree distribution for the Erdős Rényi network, and the line

represents the Poisson distribution with parameter 4.
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(a)

(b)

Figure 9: Cumulative infection count and total number of tests needed for multi-hop contact

tracing policy. The data has been obtained for the same setups as in Figure 5, only difference is

that this figure plots the results averaged over 10 network realizations and 100 simulation runs on

each network realization, while Figure 5 plots the results averaged over 1000 simulation runs over

1 network realization. This figure closely resembles Figure 5 both in overall trends and specific

values of the data points.
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Figure 10: Comparison of cumulative infection for different values of mean latency period.

We use probability of infection as 0.4. The cooperativities are 0.2 and 1 respectively for data-

driven time-varying network and static synthetic networks. The plots compare the numbers for

1-hop and k-hop contact tracings when k equals the corresponding threshold value.
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Table 1: Values of disease parameters

Parameter Notation Value Reference & Description

Probability of infection

(Probability with which a symptomatic individual

infects a susceptible in an interaction)

βs 0.4, 0.2, 0.04 Assumed various scenarios

Infectiousness of presymptomatic individuals

relative to symptomatic
γp 1 Inferred from [10] suggesting

significant presymptomatic transmission

Infectiousness of asymptomatic individuals

relative to symptomatic
γa 0.75 Best estimate by [21]

from prior studies [13],[27],[26],[15],[17]

Proportion of infections that are asymptomatic pa 0.4 [21],[18]

Mean latency period † 1/λ 1, 2 days Inferred from [16]

Mean duration in asymptomatic stage 1/ra 7 days Inferred from [5],[16]

Mean incubation period

(period between infection and the onset of symptoms)
1/λ+ 1/α 5 days [14],[12]

Mean duration from symptom onset to testing 1/w 4 days Inferred from [4]

Mean duration of symptom onset to recovery or death 1/w + 1/rs 14 days Inferred from [20], [5]

Fraction of symptomatics who die pd 0.0065 [21]

† All Figures use a mean latency period of 1, except Figure 10 in which we compare the results for mean latency periods of 1 and 2.

32

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 2, 2020. ; https://doi.org/10.1101/2020.10.01.20205047doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.01.20205047
http://creativecommons.org/licenses/by-nc-nd/4.0/

