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Abstract  

As of August 27, 2020, the number of cumulative cases of COVID-19 in the US exceeded 

5,863,363 and included 180,595 deaths, thus causing a serious public health crisis. Curbing the 

spread of Covid-19 is still urgently needed. Given the lack of potential vaccines and effective 

medications, non-pharmaceutical interventions are the major option to curtail the spread of 

COVID-19. An accurate estimate of the potential impact of different non-pharmaceutical 

measures on containing, and identify risk factors influencing the spread of  COVID-19 is crucial 

for planning the most effective interventions to curb the spread of COVID-19 and to reduce the 

deaths.  Additive model-based bivariate causal discovery for scalar factors and multivariate 

Granger causality tests for time series factors are applied to the surveillance data of lab-

confirmed Covid-19 cases in the US,  University of Maryland Data (UMD)  data, and Google 

mobility data from March 5, 2020  to August 25, 2020 in order to evaluate the contributions of 

social-biological factors, economics, the Google mobility indexes, and the rate of the virus test to 

the number of the new cases and number of deaths  from COVID-19. We found that active 

cases/1000 people, workplaces, tests done/1000 people,  imported COVID-19  cases, 

unemployment rate and unemployment claims/1000 people, mobility trends for places of 

residence (residential), retail and test capacity  were the most significant risk factor for the new 

cases of  COVID-19 in 23,  7, 6, 5, 4, 2, 1 and 1 states, respectively, and that active cases/1000 

people, workplaces, residential, unemployment rate, imported COVID cases, unemployment 

claims/1000 people, transit stations, mobility trends (transit) , tests done/1000 people,  grocery, 

testing capacity, retail, percentage of  change in consumption, percentage of  working from home 

were the most significant risk factor for the deaths of  COVID-19 in 17, 10, 4, 4, 3, 2, 2, 2, 1, 1, 
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1, 1 states, respectively. We observed that no metrics showed significant evidence in mitigating 

the COVID-19 epidemic in FL and only a few metrics showed evidence in reducing the number 

of new cases of COVID-19 in AZ, NY and TX. Our results showed that the majority of non-

pharmaceutical interventions had a large effect on slowing the transmission and reducing deaths, 

and that health  interventions were still needed to contain COVID-19.  
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Introduction 

As of August 27, 2020, the number of cumulative cases of COVID-19 in the US  exceeded 

5,863,363 and included 180,595 deaths, thus causing a devastating public health and economic 

crisis. Since the number of new cases in the US remains high (43,814 in the US on August 27, 

2020), curbing the spread of COVID-19 is urgently needed (Callaway 2020). There is increasing 

recognition that many geographic, economic and environmental factors contribute to the 

outbreak of COVID-19.  In the absence of vaccines and specifically effective medications, non-

pharmaceutical public health interventions and personal hygiene practices are the only options to 

slow the spread of COVID-19 (Priyadarsini and Suresh, 2020; Irfan 2020).  The effects of the 

different factors and intervention measures on the spread of COVID-19 vary. Identifying key 

factors that most contribute to the rapid spread of COVID-19, and accurately  estimating the 

potential impact of different non-pharmaceutical measures for containing COVID-19 are crucial 

for  planning the most effective interventions to curb the spread of Covid-19 (Farseev et al. 

2020).   

     The widely used statistical methods for COVID-19 epidemiological factor analysis and 

evaluation of intervention measures include correlation analysis (Farseev et al. 2020; 

Tantrakarnapa et al. 2020; Priyadarsini and Suresh, 2020; Nakada and Urban 2020), regression 

(Chaudhry et al. 2020), the spatial autoregressive (SAR) model (Baum and Henry, 2020), logistic 

regression (Coccia M 2020) and a transmission dynamic model coupled with a linear model 

(Livadiotis 2020). The most examined scalar factors consists of  underlying health conditions 

such as high blood pressure, diabetes, stroke, cardiac or kidney diseases, and aging individuals 

(Priyadarsini and Suresh, 2020; Zhou et al. 2020; Raghupathi 2019), atmospheric temperature 

(Tantrakarnapa et al. 2020), age, gender, ethnicity, and population density (Priyadarsini and 
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Suresh, 2020; Anderson et al. 2020), airflow (Priyadarsini and Suresh, 2020), and 

socioeconomics such as median income (Coccia 2020; Saadat et al. 2020).   

     The most explored non-pharmaceutical public health interventions and digital technologies 

for curbing the spread of COVID-19 include social distancing, case isolation and quarantine as 

well as closuring borders, schools travel restrictions, use of face-masks, and testing (Flaxman et 

al. 2020; Viner et al. 2020;  Quilty et al. 2020; Ngonghala et al. 2020) andpopulation  

surveillance, case identification, contact tracing, mobility data collection, and communication 

technology, which utilize billions of mobile phones and large online datasets to provide 

information for the evaluation of intervention strategies and to strengthen the curb of the spread 

of COVID-19 (Budd et al. 2020; Ngonghala et al. 2020; Badawy and Radovic 2020).   

     Although association analysis is of great importance for curbing the spread of COVID-19, 

association measures dependence between two variables or two sets of variables in the data, and 

use the dependence for prediction and evaluation of  the effects of environmental, social-

economic factors and public health interventions on the spread of COVID-19 (Altman and  

Krzywinski 2015; Sharkey and Wood 2020). It is well recognized that association analysis is not 

a direct method to discover the causal mechanism of complex diseases. Association analysis may 

detect superficial patterns between intervention measures and transmission variables of COVID-

19. Its signals provide limited information on the causal mechanism of the transmission 

dynamics of COVID-19 (Steigera et al. 2020). Association analysis has been a major paradigm 

for statistical evaluation of the effects of influencing factors and health interventions on the 

spread of COVID-19 (Li et al. 2020). Understanding the transmission mechanism of COVID-19 

based on association analysis remains elusive.  The question to uncover the transmission 

mechanisms of COVID-19 is causal in nature.      
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    Distinguishing causation from association is an age-old problem. Methods for causation 

analysis that is one of the most challenging problems in science and technology need to be 

developed as an alternative to association analysis (Zenil et al., 2019).A number of researchers 

have performed causal analysis of COVID-19 to evaluate the causal effects of mobility, 

awareness, and temperature (Steigera et al. 2020), social distancing (Sharkey  and Wood 2020),  

mobility (Ramachandra and  Sun 2020), herd immunity (Friston et al. 2020), and mask use 

(Chernozhukov et al. 2020). However, most causal analysis of COVID-19 have treated time 

series data as pseudo-cross sectional data. In some cases  causal analysis of COVID-19 treated 

the data as time series; time series was assumed stationary. In practice, the number of new cases 

and the number of deaths from COVID-19 were nonstationary time series in most cases. The 

environmental, social-economic and geographic factors, and intervention measures include two 

types of data: scalar variables and time series (stationary or nonstationary) variables.  

     The purpose of this paper is to develop a general framework for the causal analysis of 

COVID-19 in the US.   The number of new cases and deaths from COVID-19 are taken as 

response variables. The factors and intervention measures are taken as potential causal variables. 

If the factor and intervention variables are scalar variables, the additive noise models (AMMs) 

(Peters et al. 2014)  are used to test for causation between the response variable and potential 

causal variable where the number of new cases or deaths should be averaged over time. Most 

intervention measures are time series data. An essential difference between time series and cross-

sectional data is that the time series data have temporal order, but cross sectional data do not 

have any order. As a consequence, the causal inference methods for cross sectional data cannot 

be directly applied to time series data. Basic tools in statistical analysis are the raw of large 

numbers and the central limit theorem. Applications of these tools usually assume that all 
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moment functions are constant.  When the moment functions of the time series vary over time, 

the raw of large numbers and the central limit theorem cannot be applied. In order to use basic 

probabilistic and statistical theories, the nonstationary time series must be transformed to 

stationary time series (Johansen 1991).  

    A widely used concept of causality for time series data is Granger causality (Granger 1969; 

Eichler 2013). Underlying the Granger causality is the following two principles: 

(1) Effect does not precede the cause in time; 

(2) The effect series contains unique causal series information which is not present 

elsewhere. 

The multivariate linear Granger causality test will be used to test causality between the number 

of new cases and deaths from COVID-19 and environmental, economic and intervention time 

series variables (Bai et al. 2010).  The proposed ANMs and  multivariate linear Granger causality 

analysis methods are applied to the surveillance data of lab-confirmed Covid-19 cases in the US,  

UMD data, and Google mobility data from March 5, 2020  to August 25, 2020 in order to 

evaluate the contributions of social-biological factors, economics, the Google mobility indexes, 

and the rate of  virus testing to the number of the new cases and number of deaths from COVID-

19. 

Materials and Methods 

Nonlinear additive noise models for bivariate causal discovery 

The ANMs are used for identifying causal effect of a factor or an intervention measure on the 

number of new cases or an intervention measure (Peters et al. 2014; Jiao et al. 2018). Assume no 

confounding, no selection bias, and no feedback. Let  be the average number of new cases or 
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new deaths from COVID-19 and  be a scalar factor or an intervention measure such as gender, 

population density, ethnic group, among others. Consider a bivariate additive noise model 

YX  where Y is a nonlinear function of X  and independent additive noise 
YE : 

 ,        (1) 

where X and 
YE are independent. Then, the density  is said to be induced by the additive 

noise models (ANM) from  to  (Mooij et al. 2016). In some cases, we may have the following 

alternative direction of the ANMs: XY  : 

,       (2) 

whereY and 
XE are independent.   If the density is induced by the ANM YX  , but not by 

the  ANM XY  ,  then the  ANM  is identifiable. 

Assume that   state data were sampled.   Divide the dataset into a training data set by 

specifying  for fitting the model and a test 

data set      for testing the independence, 

where n  is not necessarily equal to m .    

Procedures for using the ANM to assess causal relationships between two variables are 

summarized below (Jiao et al. 2018). 

Step 1. Regress  on  using the training dataset  and non-parametric regression methods: 

                      .                                         (3) 

Step 2. Calculate the residual   using the test dataset and test whether the 

residual  is independent of causal  to assess the ANM  . 

Step 3. Repeat the procedure to assess the ANM . 
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Step 4. If the ANM in one direction is accepted and the ANM in the other is rejected, then the 

former is inferred as the causal direction. 

    There are many non-parametric methods that can be used to regress Y on X or regress X on 

Y . For example, we can use neural networks (Heydari et al. 2019), smoothing spline regression 

methods (Wang 2011), B-spline (Wang 2017) and local polynomial regression (LOESS, see 

Cleveland, 1979). In this paper, the smoothing spline regression method was used to fit the 

regression models. 

      Covariance can be used to measure association, but cannot be used to test independence 

between two variables with a non-Gaussian distribution. A covariance operator that is a 

generalization of  the finite dimensional covariance matrix to infinite dimensional feature space 

can be used to test for independence between two variables with arbitrary distributions.  

Specifically, we will use the Hilbert-Schmidt norm of the cross-covariance operator or its 

approximation, the Hilbert-Schmidt independence criterion (HSIC) to measure the degree of 

dependence between the residuals and potential causal variable  and test for their independence 

(Gretton et al. 2005; Mooij et al. 2016).  

    The covariance operator can be defined as 

 , 

where  are any nonlinear functions and  is the covariance operator and  is an 

inner product in the  Hilbert space.  The Hilbert-Schmidt norm of the covariance operator can be 

used as criterion for assessing independence between two random variables and is called the 

Hilbert-Schmidt independence criterion (HSIC). The Hilbert-Schmidt norm of the centered 

covariance operator is defined as 

 , 
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where  is the Hilbert-Schmidt norm. 

We know that (Wang et al. 2018) 

 if and only if  and  are independent. 

  can be approximated by  

 , 

where  is a sample size,  and L are   dimensional kernel matrices and . We 

used the Gaussian kernel:  to test independence between the potential 

cause  and residual ; we calculated    as follows.  

 , 

 and , 

. 

In summary, the general procedure for testing independence between the average number of new 

cases or new deaths and the scalar factor or intervention measure is given as follows (Mooij et al. 

2016; Jiao et al. 2018): 

Step 1: Divide a data set into a training data set   for fitting the model and a test 

data set } for testing the independence. 

Step 2: Use the training data set and smoothing spline regression nonparametric regression 

methods 

(a) Regress  on : , 

(b) Regress X on Y : XX EyfX  )( . 
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Step 3: Use the test data set and estimated smoothing spline regression nonparametric regression 

that fits the test data set    
 
to predict residuals: 

(a) , 

. 

Step 4: Calculate the dependence measures ),(2 XEHSIC Y  and ),(2 YEHSIC X . 

Step 5: Infer causal direction:  

 YX   if ),(),( 22 YEHSICXEHSIC XY  ;     (4) 

 XY   if ),(),( 22 YEHSICXEHSIC XY  .     (5) 

 If  ),(),( 22 YEHSICXEHSIC XY  , then causal direction is undecided.  

We  do not have  closed the analytical forms for the asymptotic null distribution of the HSIC and 

hence it is difficult to calculate the P-values of the independence tests. To solve this problem, the 

permutation/bootstrap approach can be used to calculate the P-values of the causal test statistics.  

The null hypothesis is 

 no causations  and  (Both  and  are dependent, and  and  are 

dependent).       

    Calculate the test statistic: 

                      .                   (6) 

    Assume that the total number of permutations is pn . For each permutation, we fix 

 

 and randomly permutate   Then, fit the ANMs and calculate the residuals  

   and test statistic . Repeat above procedures  pn times. The P-values are 
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defined as the proportions of the statistic  (computed on the permuted data) greater than or 

equal to  (computed on the original test data ).   

Multivariate Linear Granger Causality Test  

Before performing multivariate linear Grander causality test, we first need to transform 

nonstationary time series to stationary time series. 

Consider an -variable VAR with  lags: 

 ,        (7) 

where  is a  dimensional vector, the  are   coefficient matrices and  

dimensional residual vector,  is assumed to have mean zero ( , with no autocorrelation 

(  , but can be correlated across equations ( .  

     Vector error correction model (VECM) consists of first differences of cointegrated  

variables, their lags, and error correction terms: 

 ,      (8) 

where matrixes  and  are functions of matrices .   

When two non-stationary variables are cointegrated, the VAR model should be augmented with 

an error correction term for testing the Granger causality (Engle and Granger, 1987).  

The VECM can be reduced to  

 ,      (9) 

where  
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. 

Consider two non-stationary time series,  and . Let 

. 

Suppose that  and  are cointegrated with the residuals .  The VECM model for testing 

the Granger causality is given by 

 ,  (10) 

where  and  are  and  dimensional vectors of intercept terms, respectively, 

 and  are  and  dimensional 

matrices of lag polynomials, respectively, and  and  are  and  dimensional coefficient 

vectors for the error correction term , respectively. The lag length was selected using the 

two-stage procedure (Abdalla and  Murinde, 1997).   

      There are four different cases of causal relationships between two vectors of time series  

and  (Bai et al. 2010)  

(1)  If  is significantly different from zero, while  shows no significantly 

different from zero, then there exists a unidirectional Ganger causality from time series  

to ;  
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(2) If   is significantly different from zero, while  shows no significantly 

difference from zero, then there exists a unidirectional Ganger causality from  to ;  

(3) If both coefficients   and  are significantly different from zero, then there 

exists bidirectional Granger causality between  and ;  

(4) If both  coefficients   and  are not significantly different from zero, then      

and  are not rejected to be independent.   

The four statements imply that Ganger causal relationships between  and  depend on the 

coefficients  and   .   Therefore, the null hypotheses for testing the Ganger 

causality between  and  are 

(1) , 

(2) , and  

(3) Both  and    and  

Likelihood ratio tests for multivariate Granger causality are given by the following. 

(1) The likelihood ration statistics for testing the null hypothesis:  is 

 ,        (39) 

which is asymptotically distributed as a central   under the null hypothesis . 

(2) The likelihood ration statistics for testing the null hypothesis:  is 

 ,         
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which is asymptotically distributed as a central   under the null hypothesis .  

(3) The likelihood ration statistics for testing the null hypothesis:   and    

and  is  

 , 

 which is asymptotically distributed as a central   under the null hypothesis  and 

.   

Data Collection 

Data on the number of new cases and new deaths of Covid-19 across the 50 states in the US were 

obtained from John Hopkins Coronavirus Resource Center 

(https://coronavirus.jhu.edu/MAP.HTML).  Google mobility indexes were downloaded from 

Google COVID-19 Community Mobility Reports (https://www.google.com/covid19/mobility/). 

Comprehensive data and insights on COVID-19’s impact on mobility, economy, and society 

were downloaded from the University of Maryland COVID-19 Impact Analysis Platform 

(https://data.covid.umd.edu) (Maryland Transportation Institute, 2020;  Zhang et al. 2020). All 

data were collected from March 5, 2020 to August 25, 2020.  

Results 

Test for scalar potential causes 

The scalar variables tested for causation of the new cases and deaths from COVID-19 in the US 

included the number of contact tracing workers per 100,000 people, percent of population above 

60 years of age, median income, population density, percentage of African Americans, 
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percentage of Hispanic Americans,  percentage of males, employment density, number of points 

of interests for crowd gathering per 1000 people,  number of staffed hospital beds per 1000 

people, and number of ICU beds per 1000 people. The number of new cases and deaths were 

averaged over time. Each state was a sample. Since the sample sizes were small, the P-value for 

declaring significance was 0.05 without Bonferroni correction for multiple comparison. The P-

values for testing 11 scalar potential causes of the number of new cases and deaths from COVID-

19 in the US were summarized in Table 1. We observed from Table 1 that population density (P-

value < 0.0002) and percentage of males (P-value < 0.03) showed significant evidence of 

causing the spread of COVID-19. Percentage of Hispanic Americans (P-value < 0.0575) was 

close to significance. Percentage of African American (P-value < 0.024) and population density 

(P-value < 0.025) showed significant evidence of causing deaths due to COVID-19. P-values of 

employment density (P-value < 0.059) and percentage of Hispanic Americans (P-value < 0.064) 

were close to significance level 0.05 for causing death.  

   The second most significant demographic risk factor for the spread of COVID-19 was 

percentage of males. We found higher COVID-19 morbidity in males than females. However, we 

did not find higher COVID-19 mortality in males than females.  

    Population density was an important risk factor for both the spread and death from COVID-

19. High density resulted in closer contact, stronger interaction among residents and lower social 

distancing, which facilitated the spread and increased the death rate from COVID-19 (Rocklöv 

and Sjödin 2020; Pequeno et al. 2020; Henderson 2020; Rajan et al. 2020). However, our results 

were contradictory with the conclusion of Hamidi et al. (2020). Some literature also confirmed 

that high proportion of African Americans caused a high rate of deaths (Rajan et al. 2020; 

Golestaneh et al. 2020; Mahajan and Larkins-Pettigrew  2020).  Our results concluded that 
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percentage of Hispanic Americans was a weak risk factor for both the spread and death 

fromCOVID-19, while the literature showed stronger evidence that Hispanic communities were 

highly vulnerable to COVID-19 (Calo et. Al. 2020).  

        It was reported that higher COVID-19 mortality in males than females can be due to the 

following factors (Bwire 2020). The first factor was higher expression of angiotensin-converting 

enzyme-2 (ACE 2; receptors for coronavirus) in males than females. The second factor was sex-

based immunological differences due to sex hormone and the X chromosome.  

Test for Granger Causality 

    Daily mobility and social distancing data from a COVID-19 impacted the analysis platform, 

including four categories: category A: mobility and social distancing, category B: COVID and 

health, category C: economic impact, and category D: vulnerable population. A total of 12 

temporal metrics in four categories  and 12 metrics from the COVID-19 impact analysis 

platform, six daily Google Community Mobility indexes and protest attendee data that  captured 

real-time trends in movement patterns for each state in the US were included in the analysis to 

test for Granger causality between these risk factors, health intervention measures and the 

number of new cases and deaths from COVID-19 across 50 states in the US (Zhang et al. 2020; 

Google community mobility reports, 2020). The total number of variables to be tested was 19. 

The P-value for declaring significance after Bonferroni correction was 0.0025. 

     All 19 metrics except for protest attendee showed high significance in causing a reduction of 

the new cases of COVID-19 in 19 less affected states: VT, WY, ME, AK, NH, WV, ND, SD, 

NM, RI, DE,  KY, KS, CT, CO, IA, WA, WI,  and MS. Most of these states were less populated. 

However, although CA was most affected and the most populated state, all 19 metrics except 
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protest attendance showed a strong significance in causing rapid spread of COVID-19 (Table 2 

and Table S1).  

    All 19 metrics showed no significance in causing reduction of the new cases of COVID-19 in 

Florida. The majority of the 19 metrics did not demonstrate evidence that they can significantly 

mitigate the spread of COVID-19 in most the affected states such as TX, NY, GA, IL, AZ, NJ, 

NC, and TN. These 10 states were in the top largest states by population in the US. Public health 

intervention measures such as closing schools and businesses, avoiding public gatherings, 

restricting traffic, placing residents to stay-at-home and adherence to guidelines were less well 

implemented or difficult to implement homogeneously due to large populations and geographical 

areas (Althouse et al. 2020). These results also explained why the number of new cases of 

COVID-19 in these states was high and confirmed by several studies (Lai et al. 2020; Masrur et 

al. 2020; Goldschmidt-Clermont 2020).  

        Table 3 summarized the ranges of P-values and Table S2 summarized all P-values for  

testing 18 temporal  potential causes of the number of new deaths from COVID-19 across 50 

states in the US. All 19 metrics except for protest attendance showed high significant evidence 

for causing a reduction of new deaths across 50 states except for Michigan (MI)  in the US. Our 

results suggested that a cascade of causes led to the COVID-19 tragedy in the US.  

    Table 4 listed the most significant risk factor for the new cases of COVID-19 in each of the 50 

states in the US. Active Cases/1000 People, workplaces, number of tests completed/1000 people,  

imported COVD cases,  unemployment rate  and unemployment claims/1000 people,  mobility 

trends for places of residence (residential), retail & recreation, mobility trends for places like 

restaurants, cafes, shopping centers, theme parks, museums, libraries, and movie theaters (retail)  
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and test capacity were the most significant risk factors for the new cases of  COVID-19 in 23,  7, 

6, 5, 4, 2, 1 and 1 states of the US, respectively.  

    Table 5 summarized the most significant risk factor for the deaths from COVID-19 in each of 

the 50 states in the US. Active Cases/1000 people,  workplaces,  residential, unemployment rate, 

imported COVID cases,  unemployment claims/1000 people, transit, test done/1000 people,  

grocery, testing capacity, retail, percentage of  change in consumption, percentage of  working 

from home were the most significant risk factor for the deaths of  COVID-19 in 17, 10, 4, 4, 3, 2, 

2, 2, 1, 1, 1, 1 states, respectively. We also observed that the number of protest attendees showed 

mild significant evidence to cause increasing  the number of new cases of COVID-19 in KY (P-

value < 0.00012), KS (P-value < 0.00026), NH (P-value < 0.00108), MA (P-value < 0.0016) and 

TN (P-value < 0.0024) or to cause more deaths from COVID-19 in OR (P-value < 5.11 E-05), 

TX (P-value < 0.00017), ME (P-value < 0.00028), KS (P-value < 0.00061), MI (P-value < 

0.0015), OH (P-value < 0.0021) and NC (P-value < 0.0023). 

  To illustrate the causal relationships between the risk factors and the number of new  cases and 

deaths from COVID-19, we plotted Figures 1 and 2. Figure 1 plotted the social distance index 

curves as a function of time from March 5, 2020  to August 25, 2020  in Florida (FL)  and Rhode 

Island (RI).  Figure 1 showed that the social distance index in FL was much higher than that in 

RI state, which resulted in the larger number of new cases of COVID-19 in FL than that in RI.   

Figure 2 showed the number of imported COVID-19 cases as a function of time from March 5, 

2020 to August 25, 2020 in Maryland (MD) and Wyoming (WY). We observed a huge 

difference in the number of imported COVID-19 cases between MD and RI.  The very low 

number of imported cases of COVID-19 in WY resulted in the very low number of deaths from 

COVID-19 in WY, while the high number of imported cases in MD state led to the increased 
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deaths from COVID-19 in MD. These results were consistent with the finding in the literature. It 

was reported that strong interventions would substantially decrease the number of deaths (Davies 

et al. 2020; Gagnon et al. 2020).  

Discussion  

Causal inference for COVID-19 is essential for selecting and implementing public intervention 

measures and understanding the role of the demographics in curbing the spread and reducing the 

deaths from COVID-19. In this paper, we systematically addressed the issues in identifying 

causal risk factors and evaluating the causal effects of risk factors and intervention measures on 

the spread and deaths from COVID-19 in the US. Risk factors and intervention measures 

included scalar variables and temporal variables.   The ANMs were used to test for causal 

relationships between scalar risk factors and the average number of new cases or deaths from  

COVID-19 in the US. Transmission of COVID-19 is a dynamic system. Many risk factors and 

intervention measures are temporal variables. The Granger Causality Test was used to reveal the 

causal relationships between the temporal risk factors and intervention measures, and the number 

of new cases or new deaths from COVID-19 across the 50 states in the US. 

    The demographic risk factors were the major part of the scalar risk factors in the causal 

analysis of COVID-19. We found that population density was the most significant causal factor 

of both new cases and death from COVID-19.  Population density measured the average number 

of people per kilometer living in a built-up area. Densely populated states generated conditions 

where COVID-19 can spread quickly and undetected in the densely populated areas and created 

high levels of vulnerability.  The second significant demographic factor was percentage of males. 

Our data suggested that men were more vulnerable to Covid-19 than women . However, our 

analysis did not conclude that more  men than women were dying from COVID-19.  
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    We also discovered that more Black Americans were dying from COVID-19. The reasons for 

this were complex.  Black Americans had higher rates of chronic disease conditions, including 

diabetes, heart disease, and lung disease, were poor and more easily exposed to the COVID-19, 

and lived in the cramped housing. Inequities in the social determinants of health affected 

mortality and morbidity of COVID-19 for Hispanic Americans with much milder significance.  

     We studied the causal effect of major public health interventions across the 50 states in the 

US. In the absence of centralized intervention measures and implementation of a timeline and 

presence of the complex dynamics of human mobility and the variable intensity of local 

outbreaks of COVID-19, evaluating the causal effect of public health intervention measures on 

COVID-19 transmission and deaths in the USA  posed a great challenge. We used 6 Google 

mobility indexes and 12 daily metrics to measure the effects of COVID-19 spread and public 

health interventions on mobility and social distancing,  derived from  mobile device location data 

and COVID-19 case data, provided by the University of Maryland COVID-19 Impact Analysis 

Platform.  These real time metrics capture the dynamics of social distancing. Granger causality 

tests were used to identify the causality relationships between time series metrics and time 

varying in the number of new cases or deaths from COVID-19.  Although the risk factors 

differed by location, Active Cases/1000 people were a significant risk factor for both number of 

new cases and deaths from COVID-19 in most states. The most popular intervention measure in 

the US was workplaces (mobility trends for places of work). Workplaces were the significant 

cause of the number new cases of COVID-19 in 44 states and significant cause of death in 49 

states. Therefore, workplaces should be considered as a very important risk mitigation measure 

to reduce the number of new cases and deaths from COVID-19. Tests done/1000 people was the 

second population intervention in the US. It was the significant cause of the new cases of 
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COVID-19 in 46 states and significant cause of death in 47 states. Virus test results in quick case 

identification and isolation to contain COVID-19, and rapid treatment to reduce the number of 

deaths. Imported COVID cases were also a top significant risk factor for speeding the spread and 

increasing the deaths from COVID-19.  Our results showed that the imported COVID case 

metric was the significant causal factor for the new cases in 46 states and the significant causal 

factor for the deaths in 47 states.  

    Our results showed that the high numbers of cases and deaths from COVID-19 were due to 

lacking strong interventions and high population density.   We observed that no metrics showed 

significant evidence in mitigating the COVID-19 epidemic in FL and only a few metrics  showed 

evidence in reducing the number of new cases of COVID-19 in AZ, NY and TX. Our results 

showed strong interventions were needed to contain COVID-19.  

    Although we tried to systematically and comprehensively analyze the data, this study has 

multiple limitations. First, we only analyzed the causal relationship between mobility patterns 

and the number of new cases or deaths and ignored the role of other potential mitigating factors 

(e.g, wearing face masks) that could also have contributed to the reduction of new cases or 

deaths from COVID-19. When data are available, more metrics should be included in the 

analysis.  

      Second, we have not addressed the confounding bias issue. When confounding is unknown, 

adjusting for confounding methods cannot be applied to eliminate confounding bias from the 

causal analysis.   Unadjusted confounding bias will distort the inferred (true) causal relationship 

between the number of new cases or deaths from COVID-19, and metrics for social distancing 

when these two variables share common causes. This will have substantive implications for 

reuse, remix, or adapt this material for any purpose without crediting the original authors.
this preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, 

The copyright holder has placedthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.29.20203505doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.29.20203505


23 
 

developing interventions to mitigate the spread of COVID-19 and reduce the deaths from 

COVID-19. However, removing confounding from causal analysis for COVID-19 is complicated 

and will be investigated in the future.  

     In summary, our analysis has provided information for both individuals and governments to 

plan future interventions on containing COVID-19 and reduction of deaths from COVID-19.  
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Table 1. P-values for testing 11 scalar  potential causes of the number of new cases and deaths 

from COVID-19 in the US. 

Risk Factor P-value 

  New cases Deaths 

Percent of population above the age of 60 years of age 0.4634 0.1530 

Median income 0.1109 0.0760 

Percentage of African Americans 0.6526 0.0240 

Percentage of Hispanic Americans 0.0575 0.0640 

Percentage of males 0.0300 0.1440 

Population density 0.0002 0.0250 

Employment density 0.4571 0.0590 

Number of points of interests for crowd gathering per 1000 people 0.3224 0.5810 

Number of staffed hospital beds per 1000 people 0.6732 0.3130 

Number of ICU beds per 1000 people,  0.5134 0.4860 

Number of contact tracing workers per 100,000 people 0.4203 0.8190 
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Table 2. P-values testing 18 temporal potential causes of the number of new cases of COVID-19 in the top 10 most affected states and 

bottom 10 less affected states in the US.   

 
State CA FL TX NY GA IL AZ NJ NC TN 

Number of cumulative cases  673095 605502 586730 430774 258354 224887 199273 190021 157741 145417 

Miles/person 7.7E-08 3.1E-02 2.3E-03 9.1E-02 2.8E-04 4.9E-04 7.3E-05 4.7E-03 9.2E-06 5.9E-06 

Population 1.6E-06 3.6E-02 5.1E-03 6.1E-02 3.2E-04 5.2E-05 1.9E-04 1.2E-03 2.5E-04 2.9E-05 

% change in consumption 1.4E-05 5.5E-02 4.7E-03 1.8E-03 8.7E-04 1.8E-04 2.2E-04 9.6E-07 1.1E-04 1.1E-04 

Social distancing index 8.0E-06 9.1E-02 8.8E-03 4.0E-02 3.4E-04 4.6E-04 5.9E-04 1.5E-05 3.5E-03 2.7E-04 

Unemployment claims 4.3E-05 6.8E-02 1.7E-02 1.1E-03 2.3E-03 8.0E-04 1.1E-03 2.2E-07 4.2E-03 3.9E-04 

Unemployment rate 3.7E-08 2.6E-02 4.4E-03 1.7E-01 4.2E-04 5.3E-06 2.4E-04 2.8E-03 1.5E-04 4.8E-05 

% working from home 5.2E-07 3.7E-02 2.4E-03 3.4E-02 2.4E-04 6.6E-06 2.2E-05 2.8E-04 1.2E-05 2.0E-06 

Active cases/1000 people 2.3E-18 7.2E-02 3.1E-06 5.8E-01 2.8E-10 2.3E-05 7.1E-07 9.5E-04 7.5E-14 3.4E-12 

Testing capacity 9.0E-05 7.2E-02 1.3E-02 3.0E-02 2.4E-03 2.1E-05 4.1E-04 1.2E-04 1.7E-03 1.8E-04 

Tests done/1000 people 1.2E-14 3.6E-02 1.1E-05 1.0E-01 2.5E-09 1.5E-03 7.0E-05 3.8E-03 1.3E-07 3.7E-11 

Imported COVID cases 1.3E-16 4.5E-01 1.1E-04 2.6E-01 1.7E-07 1.3E-03 5.1E-04 5.9E-04 1.7E-06 4.4E-12 

Retail 1.3E-05 9.6E-02 2.2E-02 2.9E-02 4.4E-03 5.9E-04 1.4E-03 3.4E-07 4.5E-03 6.1E-04 

Grocery 1.5E-05 1.1E-01 4.1E-03 2.0E-01 5.8E-04 1.5E-05 2.7E-04 9.0E-06 2.6E-04 4.5E-05 

Parks 2.4E-08 8.2E-02 6.3E-03 4.1E-02 3.1E-02 6.4E-02 5.6E-03 4.0E-03 8.6E-03 1.7E-05 

Transit 5.8E-06 6.4E-02 7.3E-03 2.0E-02 3.3E-04 2.2E-07 3.0E-04 9.2E-06 1.2E-03 3.3E-04 

Workplaces 1.5E-05 9.6E-03 2.6E-03 3.5E-03 2.1E-05 5.8E-08 9.3E-06 2.2E-05 1.2E-04 6.1E-05 

Residential 7.0E-05 1.7E-02 7.2E-03 9.6E-05 3.6E-04 1.7E-07 6.5E-05 1.1E-06 2.8E-04 1.5E-04 

Protest 3.6E-01 9.6E-01 6.6E-01 7.7E-01 8.0E-03 5.1E-01 3.8E-01 1.7E-01 4.1E-01 2.3E-03 

State SD ND WV NH HI MT AK ME WY VT 

Number of cumulative cases  11559 10229 9395 7150 6984 6624 5666 4368 3634 1572 

Miles/person 3.7E-08 1.1E-04 1.3E-09 3.8E-14 9.5E-03 5.8E-04 2.8E-05 8.2E-11 2.7E-13 4.8E-14 

Population 4.2E-08 5.4E-04 6.6E-08 1.7E-18 2.0E-02 1.2E-03 5.4E-04 1.7E-12 1.7E-11 6.8E-16 

% change in consumption 2.1E-08 1.1E-04 4.6E-10 3.6E-19 3.1E-02 1.4E-04 7.2E-05 1.2E-11 4.2E-10 7.5E-19 
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Social distancing index 5.7E-05 9.8E-03 5.0E-06 2.8E-19 3.3E-02 6.5E-03 2.4E-03 1.6E-08 1.9E-09 1.6E-19 

Unemployment claims 5.0E-06 4.3E-03 1.8E-06 3.6E-16 3.1E-02 3.3E-03 1.4E-03 1.9E-07 1.0E-08 2.1E-32 

Unemployment rate 3.8E-08 1.3E-03 2.5E-06 4.8E-26 2.9E-02 2.7E-03 2.8E-04 7.1E-18 8.0E-12 3.8E-14 

% working from home 1.5E-09 1.3E-05 1.5E-12 1.4E-16 2.3E-03 1.1E-04 8.3E-04 1.3E-11 2.4E-15 1.8E-16 

Active cases/1000 people 3.9E-09 3.3E-13 1.5E-16 6.2E-27 1.3E-08 4.8E-09 3.2E-07 6.8E-13 2.1E-21 6.9E-15 

Testing capacity 1.1E-07 3.4E-05 5.4E-07 1.3E-22 2.1E-02 3.6E-03 2.0E-03 1.7E-14 6.0E-10 1.5E-23 

Tests done/1000 people 4.5E-07 4.6E-11 2.1E-16 1.9E-12 3.8E-05 1.9E-11 6.3E-09 7.4E-07 1.5E-19 5.7E-13 

Imported COVID cases 2.7E-07 6.8E-09 9.6E-13 9.0E-32 7.4E-06 2.7E-08 2.0E-06 1.3E-14 5.4E-19 2.5E-13 

Retail 1.3E-07 6.1E-03 4.4E-06 4.8E-19 2.9E-02 2.7E-04 3.1E-04 2.0E-09 5.4E-14 1.4E-20 

Grocery 1.3E-04 3.7E-04 1.1E-07 1.7E-22 2.0E-02 2.3E-04 7.5E-04 4.3E-10 3.3E-13 5.6E-20 

Parks 3.9E-06 4.9E-04 1.6E-06 3.9E-12 1.9E-02 1.6E-07 2.8E-04 7.8E-07 1.6E-19 3.1E-12 

Transit 3.3E-06 3.2E-03 7.4E-09 1.3E-22 2.2E-02 1.6E-04 5.6E-04 6.3E-11 2.0E-13 3.0E-19 

Workplaces 3.9E-12 2.3E-04 1.2E-07 1.4E-23 1.8E-02 4.6E-04 4.7E-04 9.8E-15 1.9E-09 2.2E-19 

Residential 3.5E-09 1.6E-03 2.0E-06 3.0E-24 1.6E-02 1.4E-03 6.3E-04 4.9E-12 5.6E-08 3.1E-22 

Protest 2.4E-01 2.6E-01 9.7E-01 1.1E-03 1.3E-02 2.1E-01 9.6E-03 8.0E-02 8.3E-01 1.6E-01 

 

Retail: Retail & recreation, mobility trends for places like restaurants, cafes, shopping centers, theme parks, museums, libraries, and 

movie theaters. 

Grocery: Mobility trends for places like grocery markets, food warehouses, farmers markets, specialty food shops, drug stores, and 

pharmacies. 

Parks: Mobility trends for places like local parks, national parks, public beaches, marinas, dog parks, plazas, and public gardens. 

Transit: Transit stations, mobility trends for places like public transport hubs such as subway, bus, and train stations. 

Workplaces: Mobility trends for places of work. 

Residential: Mobility trends for places of residence. 

Test Rate: Ratio of the number of individuals who have taken the virus test over the total population in the region. 

Attendee: Number of attendees in the protest.  
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Table 3. Ranges of  P-values for testing 18 temporal  potential causes of the number 

of new deaths from COVID-19 across 50 states in the US. 

  P-value   P-value 

State  Lower Bound Upper Bound State  Lower Bound Upper Bound 

AK 1.47E-18 3.95E-24 MT 7.66E-15 4.41E-25 

AL 7.45E-11 1.10E-18 NC 2.93E-08 8.95E-18 

AR 1.17E-12 1.54E-30 ND 2.54E-17 1.04E-20 

AZ 4.35E-11 1.29E-27 NE 5.11E-15 2.62E-23 

CA 1.10E-04 1.54E-13 NH 6.67E-15 3.41E-28 

CO 1.41E-21 6.44E-26 NJ 1.80E-03 1.96E-09 

CT 6.73E-07 3.13E-16 NM 7.20E-07 1.15E-16 

DE 1.20E-03 1.35E-06 NV 9.00E-09 1.45E-17 

FL 2.50E-04 1.47E-15 NY 4.30E-02 1.52E-05 

GA 6.53E-07 5.81E-17 OH 1.82E-08 2.67E-17 

HI 1.77E-15 1.14E-20 OK 4.29E-07 1.89E-19 

IA 6.78E-06 8.06E-15 OR 3.37E-15 4.50E-26 

ID 1.96E-08 7.11E-18 PA 3.86E-15 1.11E-23 

IL 3.81E-05 1.34E-12 RI 4.26E-09 2.16E-22 

IN 1.78E-07 3.39E-17 SC 8.97E-08 6.75E-25 

KS 8.74E-30 1.42E-40 SD 5.04E-18 6.01E-25 

KY 1.89E-13 1.40E-24 TN 7.28E-09 2.06E-24 

LA 7.71E-11 2.38E-20 TX 6.22E-07 2.59E-23 

MA 1.25E-03 3.92E-04 UT 3.90E-13 8.12E-29 

MD 3.80E-02 7.63E-06 VA 3.39E-17 2.61E-16 

ME 2.29E-15 4.29E-25 VT 3.39E-07 1.23E-29 

MI 0.28 2.07E-05 WA 5.67E-16 3.83E-29 

MN 2.40E-04 8.89E-11 WI 2.21E-10 4.77E-29 

MO 1.73E-11 7.85E-20 WV 9.61E-15 7.81E-22 

MS 2.94E-08 1.49E-19 WY 7.93E-26 2.39E-28 
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Table 4. The most significant risk factor for the new cases of COVID-19 in each of the 50 states in the US.   

P-value State Risk Factor P-value 

6.27E-09 MT Tests Done /1000 People 1.87E-11 

5.40E-08 NC Active Cases/1000 People 7.49E-14 

4.49E-14 ND Active Cases/1000 People 3.35E-13 

7.12E-07 NE Unemployment Rate 6.10E-10 

2.29E-18 NH Imported COVID Cases 9.04E-32 

1.48E-17 NJ Unemployment Claims/1000 People 2.15E-07 

5.46E-25 NM Active Cases/1000 People 5.68E-13 

3.64E-15 NV Imported COVD Cases 2.36E-09 

9.60E-03 NY Residential 9.57E-05 

2.76E-10 OH Active Cases/1000 People 6.42E-10 

1.31E-08 OK Tests Done/1000 People 4.14E-10 

5.07E-14 OR Active Cases /1000 People 3.87E-12 

4.53E-10 PA Work Places 4.21E-09 

5.82E-08 RI Imported COVD Cases 1.02E-27 

1.12E-09 SC Active Cases / 1000 People 1.58E-04 

1.21E-32 SD Work Places 3.89E-12 

4.30E-26 TN Active Cases/1000 People 3.45E-12 

1.58E-19 TX Active Cases/1000 People 3.05E-06 

3.20E-10 UT Active Cases/1000 People 2.04E-07 

6.35W-09 VA Active Cases/ 000 People 2.08E-08 

7.15E-18 VT Unemployment Claims 1000 People 2.07E-32 

1.16E-10 WA Active Cases/1000 People 2.65E-21 

9.01E-07 WI Active Cases/1000 People 5.19E-12 

2.42E-09 WV Active Cases/1000 People 1.53E-16 

2.16E-12 WY Active Cases/1000 People 2.13E-21 
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Table 5. The most significant risk factor for deaths from COVID-19 in each of 50 states in the US. 

Risk Factor P-value State Risk Factor P-value 

Active Cases/1000 People 3.95E-24 MT Active Case /1000 People 4.41E-25 

Active Cases/1000 People 1.10E-18 NC Work Places 8.95E-18 

Tests Done/1000 People 1.54E-30 ND Unemployment Rate 1.04E-20 

Active Cases/1000 People 1.29E-27 NE Work Places 2.62E-23 

Work Places 1.54E-13 NH Imported COVID Cases 3.41E-28 

Residential 6.44E-26 NJ Residential 1.96E-09 

Active Cases/1000 People 3.12E-16 NM Unemployment Rate 1.15E-16 

Retail 1.35E-06 NV Active Cases/1000 People 1.45E-17 

Active Cases/1000 People 1.47E-15 NY % Change in Consumption 1.52E-05 

Work Places 5.81E-17 OH Unemployment Rate 2.67E-17 

Active Cases/1000 People 1.14E-20 OK Work Places 1.89E-19 

Unemployment Rate 8.06E-15 OR % Working from Home 4.50E-26 

Active Cases/1000 People 7.11E-18 PA Imported COVID cases 1.11E-23 

Residential 1.34E-12 RI Imported COVID cases 2.16E-22 

Work Places 3.39E-17 SC Active Cases/1000 People 6.75E-25 

Grocery 1.42E-40 SD Active Cases/1000 People 6.01E-24 

Work Places 1.40E-24 TN Test Done/1000 People 2.06E-24 

Transit 2.38E-20 TX Active Cases/1000 People 2.59E-23 

Active Cases /1000 People 3.92E-09 UT Active Cases/1000 People 8.12E-29 

Grocery 7.60E-06 VA Work Places 2.61E-16 

Residential 4.29E-25 VT Unemployment Claims/1000 People 1.23E-29 

Unemployment Claims / 1000 People 2.07E-05 WA Transit 3.83E-29 

Testing Capacity 8.89E-11 WI Work Places 4.77E-29 

Work Places 7.85E-20 WV Active Cases/1000 People 7.81E-22 

Active Cases/1000 People 1.49E-19 WY Active Cases/1000 People 2.39E-28 
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Figure Legend 

Figure 1. Social distance index curves as a function of time from March 5, 2020 to August 25, 

2020 in Florida (FL) (red color) and Rhode Island (RI) (blue color). 

Figure 2. Number of imported COVID-19 cases as a function of time from March 5, 2020 to 

August 25, 2020 in Maryland (MD) (red color) and Wyoming (WY) (blue color).  
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Figure 1. Social distance index curves as a function of time from March 5, 2020 to August 25, 

2020 in Florida (FL) (red color) and Rhode Island (RI) (blue color). 
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Figure 2. Number of imported COVID-19 cases as a function of time from March 5, 2020 to 

August 25, 2020 in Maryland (MD) (red color) and Wyoming (WY) (blue color).  
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