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ABSTRACT 
Background: Aberrant methylation of DNA acts epigenetically to skew the gene transcription 
rate up or down. In this study, we have developed a comprehensive computational framework 
for the stage-differentiated modelling of DNA methylation landscapes in colorectal cancer.  
Methods: The methylation β - matrix was derived from the public-domain TCGA data, 
converted into M-value matrix, annotated with sample stages, and analysed for stage-salient 
genes using multiple approaches involving stage-differentiated linear modelling of 
methylation patterns and/or expression patterns. Differentially methylated genes (DMGs) 
were identified using a contrast against control samples (adjusted p-value <0.001 and |log 
fold-change of M-value| >2). These results were filtered using a series of all possible pairwise 
stage contrasts (p-value <0.05) to obtain stage-salient DMGs. These were then subjected to a 
consensus analysis, followed by Kaplan–Meier survival analysis to explore the relationship 
between methylation and prognosis for the consensus stage-salient biomarkers. 
Results: We found significant genome-wide changes in methylation patterns in cancer 
samples relative to controls agnostic of stage. Our stage-differentiated analysis yielded the 
following stage-salient genes: one stage-I gene (FBN1), one stage-II gene (FOXG1), one 
stage-III gene (HCN1) and four stage-IV genes (NELL1, ZNF135, FAM123A, LAMA1). All 
the biomarkers were hypermethylated, indicating down-regulation and signifying a CpG 
island Methylator Phenotype (CIMP) manifestation. A prognostic signature consisting of 
FBN1 and FOXG1was significantly associated with patient survival (p-value < 0.01) and 
could be used as a biomarker panel for early-stage CRC prognosis.  
Conclusion: Our workflow for stage-differentiated consensus analysis has yielded stage-
salient diagnostic biomarkers as well as an early-stage prognostic biomarker panel. In 
addition, our studies have affirmed a novel CIMP-like signature in colorectal cancer, urging 
clinical validation.  
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INTRODUCTION 
Colorectal adeno-carcinoma (CRC) is a clinically important malignant disease with 
devastating incidence and mortality, claiming the third spot among all cancers globally, only 
after lung and breast cancers, and accounting for 1.36 million new cases annually [1]. The 
etiology of CRC involves chromosomal instability (involving accumulation of mutations in 
oncogenes and tumor suppressor genes), microsatellite instability (MSI) (leading to loss of 
DNA mismatch repair) and CpG island methylator phenotype (CIMP), observed in nearly 
85%, 15% and 10–40% respectively of all reported sporadic cases [2,3,4].Epigenetic 
dysregulation is a key driver of these processes, and DNA methylation is the most important 
epigenetic modification [5,6]. DNA hypomethylation could cause gain-of-function of 
oncogenes [7], and might aid severe tumor progression [8]. More recently, Timp et al. found 
that large hypomethylation blocks (hundreds of kb) are a universal characteristic of colorectal 
cancers and other solid tumors [9]. Hypomethylation could also contribute to tumor initiation 
and progression by a general increase in genomic instability [10]. DNA hypermethylation 
could cause loss-of-function of tumor suppressor genes, and hypermethylation in the 
germline could cause heritable loss of gene expression through genomic imprinting. Aberrant 
hypermethylation of specific CpG islands has been observed to occur in colorectal cancer. 
The CIMP was first described in a subset of colorectal cancers in 1999 [11] and later refined 
to the involvement of five genes CACNA1G, IGF2, NEUROG1, RUNX3, and SOCS1 [12]. 
Methylation changes contributing to phenotypic aberrations need not be localized to promoter 
regions but could occur in the gene coding regions and intron-exon structures[13-16].The 

persistence of such modifications  throughout the tumor cell lifetime was demonstrated by 
Lengauer et al. [17], who showed that methylation aberrations and genome instability were 
correlated, suggesting a key role for such aberrations in tumorigenic chromosomal 
segregation processes.  

The Cancer Genome Atlas (TCGA) is a comprehensive resource of genome-wide mutation, 
expression and DNA methylation profiles of 46 different types of cancers [18]. Besides the 
TCGA, the International Human Epigenetic Consortium (IHEC) is specifically devoted to 
data-driven understanding of the role of epigenomics in normal vs disease states [19]. 
Methylation patterns constitute an emerging class of promising prognostic factors mainly due 
to: (i) the persistence of widespread DNA methylation changes; (ii) the occurrence of such 
changes much ahead of the consequent changes in gene expression; and (iii) the ability to 
detect these changes in body fluids and blood plasma [20]. Few methylation markers have 
been previously translated to clinically applicable biomarkers [21], but it is known that tumor 
behavior corresponds with differential DNA methylation [80]. Early detection may reduce the 
mortality rate via tailored adjustments to the treatment regimen, with the result of fewer side-
effects and better patient compliance. Chen et al., signalled  an era of methylation-based tests 
by demonstrating an effective screening method to identify multiple types of cancer based on 
a blood test four years before conventional diagnosis [22]. A consensus approach to 
identifying significant methylation signatures in each stage of colorectal cancer progression 
would increase the utility and reliability of putative biomarkers.  This motivated our interest 
in investigating stage-salient DMGs using several model-driven approaches, and evaluating 
their prognostic significance.  
 

METHODS 
Data Preprocessing: 
Processed 27k methylation data (gdac.broadinstitute.org_COADREAD.Merge_methylation 
_humanmethylation27_jhu_usc_edu_Level_3_within_bioassay_data_set_function_data.Leve
l_3.2016012800.0.0.tar) was retrieved from The Cancer Genome Atlas (TCGA) through 
firebrowse portal (www.firebrowse.org) [23]. The latest clinical data 
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(clinical.cases_selected.tar.gz) was obtained from the GDC data portal 
(https://portal.gdc.cancer.gov/repository) by matching on patient barcode.  
The data containing the methylation β-values for each probe in each sample was converted 
into a matrix with probes as rows and samples as columns. Each probe corresponds to one 
CpG site in the genome. A single gene may be under the control of multiple epigenetic sites, 
hence multiple probes may be associated with the same gene. It is noted that multiple probes 
usually exist for the same gene. The probes which have “na” values were discarded from the 
analysis. To transform the range of methylation values from (0,1) to (-∞,+∞), we used the 
following function on the β-matrix values, to obtain the M-value matrix [24]:  
 

    Mi = log2[βi/(1-βi)]   (1) 
  

In our study, two M-value matrices were considered: one, where all the probes were used in 
the analysis; and two, where the probes corresponding to one gene were represented by an 
average of their values (“averep”), thus reducing the M-value matrix from a probe:sample 
matrix to a gene:sample matrix. Further, we filtered out the probes/genes showing little 
change in methylation (defined as σ < 1) across all samples in the M-value matrices. The 
stages were annotated for both the β-matrix and M-value matrices using the clinical data 
encoded in the “Pathologic_stage” attribute. Samples with unknown stage (“na” values) were 
discarded from the analysis. The sample counts in various stages are represented in Table 1. 
 
Table1. Sample counts in different stages based on 27k methylation COADREAD TCGA 
data. ‘na’ samples were dropped from analysis, and the sub-stages were combined into the 
parent stage. 
 

TCGA Stage  TNM 
Classificatiom 

Cases 

Stage I  T1N0M0 50  
Stage II - 17 

86 
 

Stage IIa T3N0M0 64 
Stage IIb T4aN0M0 5 
Stage III - 16 

60 
 

Stage IIIa T1-T2N1/NcM0 
3 

T1N2aM0 
Stage IIIb T3-T4aN1/NcM0 

21 T2-T3N2aM0 
T1-T2N2bM0 

Stage IIIc T4aN2aM0 
20 T3-T4bN2bM0 

T4bN1-N2M0 
Stage IV - 35 

36 Stage IVa Any-T Any-N M1a 1 

Control - 42  

NA - 1  
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The final β and M-value matrices were subjected to stage-differentiated contrast analysis with 
a battery of six different methods, described below. All analysis was carried out on R [25]. 
 
Models 
(1) Linear model analysis: Linear modelling is essential to identify linear trends in 
expression across cancer stages and thereby detect stage-sensitive patterns. We used the R 
package limma [26] for linear modelling of stagewise expression  
using the complete M-value matrix, with multiple probes per gene (File S1).  
(2) Linear modelling with the averep matrix: This is essentially similar to the above 
model, except that the input is the averep matrix, where each gene is represented by the 
average M-value across all its probes (File S2). These alternative representations of the 
methylation data negotiate a tradeoff with respect to information loss and interpretability. 
In both the linear models, the control samples contributed to the intercept of the design 
matrix, while the stages were represented as indicator variables [27].  The linear fit was 
subjected to empirical Bayes adjustment to obtain moderated t-statistics. These results were 
then used for the stage-differentiated contrast analysis 

(3) Association between methylation status and phentoype: The strength of the association 
between the methylation levels of CpG sites and the phenotype of interest (CRC-stage) could 
enable the identification of relevant markers. We used the R package CpGassoc [28] to 
estimate this association based on ANOVA with multiple hypothesis correction. The β-matrix 
was used as input, and five factors (control, stage I, stage II, stage III, stage IV) were 
specified as the target phenotype.   
(4) The Chip Analysis Methylation Pipeline (ChAMP): The Chip Analysis Methylation 
Pipeline (ChAMP) integrative analysis suite uses limma to identify differentially methylated 
probes (DMPs) from the β-matrix [29]. A mapping of sample IDs with the clinical stage 
phenotype was provided as an additional input file. In addition, the identification of 
differentially methylated regions (DMRs), consisting of polygenic genomic blocks, was 
performed using DMRcate in ChAMP (with preset p-value cutoff <0.05) [30]. GSEA was 
used to identify the enrichment of DMPs and DMRs in the MSigDB pathways [31], using the 
Fisher Exact test calculation with adjusted p-value < 0.05.   
(5) Modelling expression from methylation: We used the R package BioMethyl to model 
the aggregate expression level of a gene from its methylation patterns [32]. The gene 
expression matrix was estimated using the methylation β-matrix and then subjected to linear 
modelling with limma, followed by stage-differentiated contrast analysis.  
(6) Correlation between gene methylation and expression: We used MethylMix2.0 to 
estimate the correlation between the methylation and actual expression patterns of each gene 
[33]. The expression data for the samples of interest were retrieved from TCGA 
(gdac.broadinstitute.org_COADREAD.Merge_rnaseqv2_illuminaga_rnaseqv2_unc_edu_Lev
el_3_RSEM_genes_data.Level_3.2016012800.0.0.tar.gz). MethylMix was executed with the 
preset correlation cutoff ( > |0.3| ), and statistical significance was assessed using Wilcoxon 
Rank Sum test with adj. p-value < 0.05. 
 
Stage-differentiated contrast analysis  
A directed two-tier set of contrasts was performed in limma to drill down to the stage-salient  
genes: 
(1) Tier I: Stage-differentiated contrast against controls. Four pairwise contrasts were 
performed, one for each of the stages I, II, III and IV. To identify reliable DMGs, the 
following criteria were used: |lfc M-value| >2,  and adj. p-value <0.001.  
(2) Tier II: Inter-stage contrasts. Six pairwise contrasts between the stages (namely: I-II, I-III, 
I-IV, II-III, II-IV, and III-IV) were performed (p-value for each contrast: <0.05).  
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To illustrate, a putative DMG identified in Tier I would undergo three inter-stage contrasts in 
Tier II, to ensure stage-salience. For example, a putative stage-II DMG established by Tier I, 
would have to pass the following inter-stage contrasts: stage-II vs stage-I, stage-II vs stage-III 
and stage-II vs stage-IV, for confirmation as  stage II-salient DMG.  
 
Identification of stage-salient biomarkers 
Finding the consensus of a set of methods with different algorithms overcomes the biases 
specific to individual methods, and enables screening out false positives. Consensus was 
obtained by finding the agreement among the results of the various methods used. At least 
three methods should agree on a given DMG’s stage-salience, for confirmation as consensus 
stage-salient biomarker.  
 
Survival analysis 
The survival data for each patient was obtained from the following attributes encoded in the 
clinical data: patient.vital_status, patient.days_to_followup, and patient.days_to _death. The 
association between consensus stage-salient DMGs and case overall survival (OS) was 
evaluated by univariate Cox proportional hazards regression model using the R survival 
package [34]. This uncovered potential prognostic stage-salient genes from the methylation 
analysis, using a significance cutoff < 0.05. Such prognostic genes were used as the 
independent variables in a regression model to estimate the survival risk of each patient. 
Based on this risk score, patients with colorectal cancer were categorized into high and low 
groups using the optimal cut point determined by the maxstat (maximally selected rank) 
statistic)  [35]. Kaplan-Meier estimation was then applied to the median survival times of 
these two groups for flagging significant differences,  providing prognostic assessment of the 
biomarkers of interest.  
 
RESULTS 
Linear modelling at the probe-level: 
The number of significant genes present in each stage-control pair from the Tier-I contrasts is 
shown in Figure 1(i).  Using the top 100 DM genes of the linear model (given in 
Supplementary Information S3), we found a clear separation between controls and stage 
samples (Figure 1(ii)). The top genes in each stage (by adjusted p-value of contrast with 
control) are shown in Table 2, with |lfc M-value| and inferred regulation status. Figure 2 
shows boxplots of stagewise methylation levels for two representative genes: (1) TMEM179, 
mutations in which could cause MSI [36]; and (2) MEOX2 whose promoter methylation 
status is a known CRC marker [37].The top four genes of each stage were used to construct a 
stagewise methylation heatmap(Figure 3). The stagewise methylation patterns of the top five 
linear model genes are also shown, in Figure 4. It is notable that a naturally occuring read-
through fusion protein GPR75-ASB3 is the top linear model gene with significant differential 
expression in all stages relative to the control. GPR75-ASB3 is positively differentially 
expressed in the lung as well as different keratinocyte cell types, and evidence is emerging of 
its role in other cancers [79]. In this light, GPR75-ASB3 could play a significant role in 
colorectal cancers which are of epithelial origin. The top 100 significant stage-specific genes, 
listed in S3, were used in the consensus analysis. 
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(i)      (ii) 
Figure 1. Linear modelling with M-value matrix, all probes. (i) Distribution of number of 
significant genes in each stage relative to the control. (ii) Sample distribution obtained by 
plotting the first two principal components for the top 100 genes. A clear separation of 
controls and cancer samples (labelled by stage) could be seen. 

 

Figure 2. Stagewise methylation levels of differentially methylated genes. (i) TMEM179   
(ii) MEOX2  

 

Figure 3. Stagewise methylation portrait using the top 4 significant stage-specific DMGs 
identified from linear model at the probe level. The contrast with the control is especially 
evident.  
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Table 2. Top ten genes of the linear model at the probe level. The log fold-change of M-
value of the probe in each stage relative to the controls, followed by p-value adjusted for the 
false discovery rate, and the methylation status of the gene in the cancer stages with respect 
to the control 

ID StageI StageII StageIII StageIV adj. p-val Methylation 
status 

GPR75-ASB3 

2.280584 2.190314 2.159852 2.320709 2.90E-82 Hyper 
TM4SF19 -3.62705 -3.57631 -3.72308 -3.71059 4.08E-82 Hypo 

CNRIP1 2.743322 2.605539 2.678591 2.974642 5.57E-78 Hyper 

PDE4A 1.682123 1.578549 1.599996 1.707521 1.27E-71 Hyper 

KRTAP11-1 -2.36005 -2.29961 -2.37583 -2.39962 9.04E-70 Hypo 

ADHFE1 3.153667 2.967236 3.000252 3.432456 2.03E-69 Hyper 

FAM123A 3.56288 3.181145 3.429552 3.895594 5.54E-69 Hyper 

KHDRBS2 2.302345 2.16154 2.103098 2.339009 4.41E-68 Hyper 

AJAP1 2.528654 2.438316 2.462037 2.6367 9.36E-68 Hyper 

NALCN 2.959115 2.796519 2.949049 3.250277 9.36E-68 Hyper 
 

 

Figure 4. Top 5 DMGs of the full linear model: (i) GPR75-ASB3, (ii) TM4SF19,  (iii) 
CNRIP1, (iv) ADHFE1 and (v) KRTAP11-1. For each gene, notice that the trend in 
methylation could be either hyper-or hypo-methylation relative to the control. In particular, 
TM4SF19 and KRTAP11-1 are hypomethylated whereas CNRIP1, GPR75-ASB3,  PDE4A 
are hypermethylated. 

Linear modelling at the gene-level (averep):  
The genes with more than one probe were averaged to a single methylation value, which was 
then further analyzed. The number of genes present in each stage-control pair from the Tier-I 
contrasts is shown in Figure 5(i). Using the top 100 genes of the linear model (given in 
Supplementary Information S4), we found a clear separation between controls and stage 
samples (Figure 5(ii)). The top genes in each stage (by adjusted p-value of contrast with 
control) are shown in Table 3, with |lfc M-value| and inferred regulation status. Figure 6 
shows the boxplots of stagewise methylation levels for two representative genes, NALCN 
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and GLRX. Mutations in NALCN have been reported in sporadic CRC [38]; here NALCN is 
seen to be significantly hypermethylated, indicating the same outcome (loss of function) 
could be effected in multiple ways. GLRX is a target of the activating transcription factor 
MEOX2 [39]. The top four genes of each stage were used to construct a stagewise 
methylation heatmap (Figure 7). The stagewise methylation patterns of the top five linear 
model genes are also shown, in Figure 8. It is observed that LY6H showed both 
hypermethylation and hypomethylation when compared to the control samples, indicating the 
role of experimentation necessary to clarify its role in colorectal cancer progression. The top 
significant 100 genes of each stage, listed in S4, were used for the consensus analysis.  
 

 

(i)      (ii) 
Figure 5. Linear modelling with M-value matrix, averep.(i) Distribution of number of 
significant genes in each stage relative to the control. (ii)  Sample distribution obtained by 
plotting the first two principal components of the top 100 genes from the linear model. A 
clear separation of controls and cancer samples (labelled by stage) could be seen. 
 

 

Figure 6. Stagewise methylation levels of differentially methylated genes from averep 
analysis: (i) NALCN, and (ii) GLRX. 
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Figure 7. Stagewise methylation portrait using the top 4 significant stage-specific DMGs 
identified from linear model at the gene level. The contrast with the control is especially 
outstanding.  
 
Table 3. Top ten genes of the linear model at the gene level, using average values of 
methylation. The log fold-change of M-value of the gene in each stage (relative to the 
control) is given, followed by p-value adjusted for the false discovery rate and the 
methylation status of the gene in the cancer stages with respect to the control. A consistent 
methylation pattern is observed for all the top genes.  
 

ID StageI StageII StageIII StageIV adj.P.Val Methylation  
status 

TM4SF19 -3.62512 -3.576 -3.72406 -3.70707 1.01E-82 Hypo 
GPR75-ASB3 2.279406 2.186388 2.154401 2.319774 7.39E-82 Hyper 
CNRIP1 2.742948 2.602632 2.673634 2.97448 2.74E-77 Hyper 

KRTAP11-1 -2.35972 -2.30206 -2.37938 -2.3988 3.65E-70 Hypo 

ADHFE1 3.152625 2.962694 2.994224 3.4316 4.02E-69 Hyper 

FAM123A 3.561976 3.177355 3.423787 3.894354 1.01E-68 Hyper 

AJAP1 2.527459 2.435239 2.458005 2.635741 3.21E-67 Hyper 

NALCN 2.957453 2.792623 2.943573 3.248803 1.07E-65 Hyper 

IRF4 1.98933 1.824373 1.887686 2.128157 1.07E-65 Hyper 

PRKAR1B 3.381341 3.131659 3.244301 3.494884 1.07E-65 Hyper 
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Figure 8. Boxplots of top 5 linear model genes. For each gene, notice that the trend in 
expression could be either hyper- or hypo-methlation relative to the control. In particular, 
TM4SF19 and KRTAP11-1 are hypomethylated whereas GPR75-ASB3, CNRIP1, ADHFE1 are 
hypermethylated. 

 
Association with phenotype  
The ANOVA from CpGassoc yielded p-values and log fold-changes, which were used to 
identify significant genes for each stage using the criteria given in Methods (Figure 9). The 
top 100 genes of each stage from this analysis (given in Supplementary Information S5) were 
used for the consensus investigation. 

 

Figure 9. Venn diagram for CpG association analysis showing the distribution of number of 
significant genes in each stage 
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Figure 10. Distribution of probes based on (i) Genomic position: opensea, shore, island, 
shelf; (ii) gene context: transcription start site (TSS), exons, un-transcribed regions (UTRs), 
and inter-genic regions (IGR).     
 
DMP analysis with ChAMP 
The summary features of the β matrix dataset were evaluated using ChAMP (Figure 10). The 
DMPs were identified using CHAMP analysis from the β matrix. All the inter-stage contrasts 
yielded null results (i.e, no significant genes), except for stageII – stageIV contrast. Due to 
this, the top 100 DMPs from the stage vs control contrasts were used for the consensus 
analysis directly. Contrasts that showed significant DMPs were subjected to a further DMR 
analysis, to enable identification of DM genes.  The stage-salient DMR regions (genes) 
determined are provided in Supplementary Information S6, and summarized in Table 4. The 
stage-II vs stage-IV DMR contrast yielded three genes, namely PLAG1, SOCS2, and NNAT. 
It is observed that these genes might be critical players in the transition to malignancy. 
Interestingly, some genes were differentially methylated in all the stagewise contrasts with 
the control; such genes are differentially methylated agnostic of stage, and could serve as 
valuable drug targets for CRC therapy. The top such genes included EYA4, WT1, DCC, 
RP11, GATA4, MSX1, DLX5, BNC1, WT1-AS, and ZIM2. A total of 31 such genes were 
identified and tabulated in Supllementary Information S7. The DMPs and DMRs from the 
analysis were subjected to GSEA and these results could also be found in Supplementary 
Information S6. Figure 11 shows representative DMP and DMR plots using MethylMix.  
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Figure 11. (i) DMP plot of FCN2 for stage-I vs control illustrating significant 
hypomethylation (ii) DMR plot of transcriptional activator EYA4 for stage-I vs control 
illustrating significant hypermethylation. Solid lines represent mean values while dashed 
lines represent the loess.  
 
Table 4. Contrast-wise counts of DM probes and DM regions.  
 

Contrast DMPs DMRs 

Control and Stage 1  11045 34 

Control and Stage 2  11254 35 

Control and Stage 3  11254 36 

Control and Stage 4  11108 34 

Stage 2 and Stage 4 404 3 

 

Methylation and Gene Expression Correlation analysis  
Mixture models of genes, indicative of the number of methylation states, were constructed 
using MethylMix, and the top three genes from an overall cancer vs control comparison are 
shown in Figure 12. The estimated correlation between the methylation levels and actual gene 
expression for the same genes is depicted in Figure 13. Genes were differentially methylated 
and designated as ‘driver’ genes if the p-value of the contrast being studied was significant. 
The calculated differential methylation (DM) values from stage vs control contrasts ranged 
from -0.7 to +0.8, and genes were classified as hyper- or hypo-methylated based on the DM 
value. There were 209, 441, 275, and 134 driver genes in each of the contrasts with the 
controls (stage-I, stage-II, stage-III and stage-IV, respectively). All between-stages contrasts 
yielded null DM genes. The results from this analysis, including driver genes for all the 
contrasts, are provided in Supplementary Information S8. Top 100 genes from each 
comparison were taken forward for the consensus analysis. Certain genes emerged common 
to all the four comparisons, indicating  stage-agnostic differential methylation events. The top 
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such genes included CCDC88B, C1orf59, CHFR, ZP2, HOXA9, ELF5, FAM50B, MUC17, 
TBX20, and VSIG2. Stage-agnostic genes hold promise as therapeutic targets for the treatment 
of colorectal cancer; the complete list of 56 stage-agnostic genes arising out of the 
MethylMix analysis is provided in Supplementary File S9. 
 

 

Figure 12. Mixture models of the genes GATA4, CCDC88B, and WAS. The x-axis indicates 
the degree of methylation; the y-axis represents the frequency of that particular methylation 
degree; and the mixture component curves represent density fits of the histogram.  

 

Figure 13. Correlation plots for i. GATA4, ii. CCDC88B, iii. WAS. A negative correlation 
between methylation and expression is evident, indicating that methylation acts to repress 
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gene transcription, though the strength of the inverse correlation varies from gene to gene. 
Colour indicates the mixture model fit (cf. Fig. 12).  
 
BioMethyl analysis 

The significant stage-specific DEGs identified by this BioMethyl are shown in Figure 14.  
Top 100 genes of each stage from this analysis were taken for consensus analysis. The stage-
specific genes from this analysis are presented in the Supplementary Information S10. 

 

Figure 14. Venn diagram for BioMethyl-based Gene expression modelling showing the 
distribution of number of significant genes in each stage relative to the control. 
 
Stage-salient consensus biomarkers 

The top 100 significantly differentially-expressed genes of each stage from all the methods 
discussed above (collated in Supplementary Information S11) were used for the consensus 
determination. The consensus analysis yielded seven stage-salient  DMGs: one stage-I gene 
(FBN1), one stage-II gene (FOXG1), one stage-III gene (HCN1) and four stage-IV genes 
(NELL1, ZNF135, FAM123A, LAMA1). Each of these stage-salient genes presented an |lfc M-
value| > 0.4 with respect to the other stages, validating their salience. Figures 15,16 represent 
boxplots of the consensus biomarkers, and Table 5 presents a summary of the consensus 
analysis. Gene ontology (GO) analysis [40] of the consensus biomarkers yielded processes 
related to structural integrity of cell division processes, immunity dysfunction, and cell 
migration (Table 6). Detailed GO results are presented in the Supplementary Information 
S12. 
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Figure 15. Boxplot analysis of stage-salient genes. (i) Stage-I Gene FBN1,  (ii) Stage-II Gene 
– FOXG1, (iii) Stage-III Gene – HCN1. 

 

Figure 16. Boxplot representation of stage-wise methylation levels for Stage-IV salient 
genes. (i) LAMA1, (ii) NELL1, (iii) FAM123A, (iv) ZNF135.  
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Table 5. Stage-salient biomarkers. The results of the consensus analysis and univariate 
survival analysis are summarized.  
HGNC 
ID 

Gene 
Name 

Methods 
providing 

identical 
results 

Stage 
salien
ce 

Status 
of 
methyla
tion 

Inferred 
effect 
on gene 
expressi
on 

P-values from 
modelling 

P-values from 
univariate 
survival analysis 

M 
value 

Averep Cox 
analysi
s 

Kaplan
Meier 

3603 FBN1 Averep, 
CHAMP 

I Hyper Down 0.310 0.040 0.036 0.025 

3811 FOXG1 Averep, 
Mvalue, 
CHAMP, 
Methylmi
x 

II Hyper Down 3.25E-
16 

0.003 0.019 0.037 

4845 HCN1 Averep, 
Mvalue, 
CHAMP 

III Hyper Down 1.32E-
17 

0.022 0.031 0.059 

7756 NELL1 Mvalue, 
CHAMP, 
Methylmi
x 

IV Hyper Down 2.49E-
68 

0.0614 0.283 0.27 

12919 ZNF135 Mvalue, 
CHAMP, 
Methylmi
x 

IV Hyper Down 1.29E-
76 

0.0622 0.096 0.084 

26360 FAM12
3A 

Mvalue, 
CHAMP, 
Methylmi
x 

IV Hyper Down 5.09E-
115 

0.0966 0.30 0.28 

6481 LAMA1 Mvalue, 
CHAMP, 
Methylmi
x 

IV Hyper Down 7.57E-
86 

0.297 0.052 0.051 

 
Table 6. GO analysis of stage-salient genes in the order of decreasing significance (i.e, 
increasing p – value). Ontology: Cellular Compartment (CC), Molecular Function (MF), 
Biological Process (BP).  
 

GO ID Term Ontology   ep-value 

GO:1990047 spindle matrix CC   0.000148 
GO:0030109 HLA-B specific inhibitory MHC 

class I receptor activity 
MF   0.000297 

GO:0032396 inhibitory MHC class I receptor 
activity 

MF   0.000594 

GO:0042609 CD4 receptor binding MF   0.001187 
GO:0032393 MHC class I receptor activity MF   0.001336 
GO:0050930 induction of positive chemotaxis BP   0.001632 
GO:0050927 positive regulation of positive 

chemotaxis 
BP   0.003263 
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GO:0050926 regulation of positive chemotaxis BP   0.003411 
GO:0008608 attachment of spindle microtubules 

to kinetochore 
BP   0.004299 

GO:0007094 mitotic spindle assembly checkpoint BP   0.004448 
 
Survival analysis: 
We constructed independent prognostic models of the stage-salient genes and the 
corresponding univariate Kaplan-Meier plots of prognostically significant biomarkers are 
shown in Fig. 17. These include FBN1, FOXG1, HCN1, and LAMA1. Rational combinations 
of stage-salient genes, termed ColoRectal cancer Signatures (CRS), were modelled using 
multivariate Kaplan-Meier regression, to yield a risk score. Risk scores were then used to 
estimate survival-effect significance, as described in Methods. We found that CRS12 
signature (consisting of stages I and II biomarkers: FBN1, FOXG1) yielded significant risk 
scores in the multivariate Kaplan-Meier analysis, and both CRS12 and CRS34 (which 
consisted of stages III and IV biomarkers: HCN1, NELL1, ZNF135, FAM123A, LAMA1) 

were significant in estimating overall survival (prognosis p-value  ≤ 0.02) (Figure 18). The 
results of the survival analysis are summarised in Table 7. Supplementary Information S13 
provides survival plots of all possible signatures; it is observed that the optimal signatures 
immediately yield an early-stage panel (CRS12),  and a late-stage panel (CRS34).. 

 

Figure 17. K-M plots for the prognostically significant stage-salient genes. (A) FBN1, (B) 
FOXG1, (C) HCN1, and (D) LAMA1. 

 

Table 7. Summary of the multivariate prognostic models. Significant signatures are 
emphasized.   
 

Signature  Stages Biomarkers Coeff   Multivariate 
model p- value 

Prognosis p-
value 

CRS12 Stage I+II FBN1 -0.6224 0.01526 0.005 
FOXG1 -1.0549   

CRS34 Stage III+IV NELL1 0.09638 0.172 0.02 
ZNF135 -0.21216   
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FAM123A -0.22547   
LAMA1 -0.39093   
HCN1 -1.101045   

CRS4 Stage IV NELL1 0.0984 0.3978 0.12 
ZNF135 -0.24114   
FAM123A -0.05873   
LAMA1 -0.51838   

CRS234 Stage 
II+III+IV 

FOXG1 -0.99151 0.0874 0.032 
HCN1 -1.07172 
NELL1 -0.09822 
ZNF135 -0.21515 
FAM123A -0.37211 

LAMA1 -0.27019 
CRSall Stage 

I+II+III+IV 

FBN1 -0.4346 0.9875 0.041 
FOXG1 -0.9381 
HCN1 -1.0038 
NELL1 0.2649 
ZNF135 0.2210 
FAM123A -0.3165 
LAMA1 -0.1817 

 
\ 

 

 
 
 

Figure 18. Survival analysis of combination biomarker panels shows significance. (A) Early-
stage panel; and (B) Late-stage panel.  
 
DISCUSSION 
CRC development is due to the accumulation of genetic and epigenetic changes of which 
DNA methylation is of prime importance. DNA methylation profiles of colorectal cancer 
have been investigated in several previous studies using various approaches [41, 42]. It is 
well-known that changes in methylation status correspond with CRC progression [43]. Here 
we have designed a comprehensive approach to systematically analyze stage-differentiated 
DNA methylation patterns in colorectal cancer and their relationship to patient survival.  Our 
study has yielded consensus stage-salient significantly differentially methylated genes, stage-
agnostic genes, and their prognostic value. A total of seven genes were identified by at least 
two methods, and of those, six were identified by at least three methods (FBN1 being the 
exception). None of the stage-salient genes is included as a cancer gene or hallmark gene in 
the Cancer Gene Census [44], while HCN1 alone is reported as a candidate cancer gene based 
on mouse insertional mutagenesis experiments [45]. Below, a discussion of all the stage-
salient DMGs (Table 5) is provided with respect to the existing literature. 
 
Early-stage salient DMGs: 
Promoter hypermethylation of FBN1, a glycoprotein component of calcium-binding 
extracellular matrix microfibrils [46], is a recognized biomarker of CRC [47, 48]. Our 
analysis supports this literature, while pinpointing the stage I-salience in its action. FOXG1 is 
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well-known as an etiological factor in certain neurological disorders and plays a role in the 
epithelial-mesenchymal transition of CRC cells (a key hallmark of cancer progression), and is 
known to be overexpressed in CRC patients [49]. It is a nodal gene, with connections to 
oncogenic pathways like WNT pathway in hepatocellular carcinoma [50] and TGF-β 
pathway in ovarian cancer [51]. Interestingly, FOXG1 was found to be a hypermethylated 
stage-II salient gene. HCN1, coding for hyperpolarization-activated cyclic nucleotide-gated 
channel subunits is associated with low survival rates in breast, brain, and colorectal cancer 
[52]. We have identified HCN1 as a stage-III hypermethylated gene, suggesting a loss-of-
function mechanism for its tumorigenic potential.  
 
Stage-IV salient DMGs: 
Our study has provided clear evidence that hypermethylation of LAMA1 (which codes for α-
laminin of the extracellular matrix) is a stage IV-specific signature. Experimental evidence 
for the hypermethylation of the promoter region of LAMA1 in CRC patients is available [53]. 
NELL1 is a known tumor suppressor gene [54], whose hypermethylation is associated with 
poor survival outcomes [55]. Here it is found to be a stage IV-specific hypermethylated gene, 
resonating with the above findings. ZNF135 is involved in regulation of cell morphology and 
cytoskeletal organizations, and its expression and epigenetic regulation have been reported to 
be key in cancers of the cervix and esophagus, respectively [56, 57]. Here we have found that 
epigenetic silencing of ZNF135 is a key feature of stage-IV CRC. FAM123A, also known as 
AMER2, is associated with microtubule proteins [58], and is a lesser known cousin of 
FAM123B, a tumor-suppressor whose loss-of-function by mutation, methylation and copy-
number aberrations is known play pivotal roles in colorectal cancer, especially in older 
patients [59,60,61]. It is significant that our study has uncovered FAM123A as a 
hypermethylated stage IV-specific DMG, signalling the need for experimental investigations. 
There is very little literature on the cancer significance of any of the above stage-salient 
genes, marking our findings as novel and important in the context of gaps in our knowledge. 

Putative CIMP signature: 

Aberrant methylation of CpG promoter regions causes stable repression of transcription 
leading to gene-silencing [62,63]. In the context of tumorigenic processes, this is likely to 
lead to loss-of-function of tumor-suppressor genes. Multiple CpG islands might be 
methylated simultaneously in some cancers, paving the way for CpG island methylator 
phenotype (CIMP), first discovered in colorectal cancer [64]. CIMP is characterised by 
hypermethylation of CpG islands surrounding the promoter regions of genes involved in 
cancer onset and progression [65]. The phenotype is heterogenous with the type of tumor [66] 
and dependent on definition [67]. In this background, it is less straightforward to interpret the 
functional importance of hypermethylation of individual genes. Still it is clear from Table 5 
that the stage-salient hypermethylated biomarkers identified in our study could constitute an 
aggregate novel CIMP. The original CIMP had been associated with advanced T staging 
(T3/T4) [68], which accords with our finding of five hypermethylated stage IV-salient 
DMGs. Epigenetic intervention for CIMP-positive cancers has been suggested as a possible 
treatment strategy [69].  

The biomarkers contributing to the putative CIMP were tested with Cox regression and then 
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evaluated independently as well as in combination for prognostic significance. Five of the 
seven stage-salient genes were prognostically significant in both the Cox univariate model 
and the Kaplan-Meier analysis (Table 5). A multivariate analysis of biomarker panels 
uncovered two signatures, an early-stage CRS12, and a late-stage CRS34 that might be 
prognostically valuable. In particular, CRS12 suggests a significant early-stage biomarker 
panel (p-value < 0.01) for the effective prognosis and stage-sensitive detection of colorectal 
cancer. 

The current standard of CRC screening is colonoscopy, an invasive method with a significant 
rate of complications. A non-invasive method based on molecular diagnostics would improve 
patient satisfaction and efficiency. Several studies have been conducted to identify and/or 
validate biomarkers for CRC diagnosis. It is recognized that DNA methylation patterns could 
serve as valid biomarker candidates [70,71]. Freitas et al., have validated the performance of 
a 3-gene biomarker panel for the detection of colorectal cancer irrespective of the molecular 
subtype [72]. However optimal stage-salient epigenetic biomarkers have not yet been 
reported. Using hypermethylated DNA patterns as cancer markers offers the advantage of 
providing small targets with high concentrations of CpG for assays, useful for the  design of 
analytical amplicons [73]. Hypermethylation in gene body and upstream control regions like 
enhancers and insulators might affect transcription differently than hypermethylation of 
promoter regions [74.75]. Further DNA methylation patterns in noncoding RNA genes seem 
to be important in tumorigenesis and progression [76]. Non-encoding RNAs themselves play 
a significant role in epigenetic modification through the phenomenon of RNA-directed DNA 
methylation [77]. The nuanced relationship between methylation and gene transcription does 
urge the interpretation of our results with caution, contingent on experimental validation, 
however consensus study designs such as ours suffer less uncertainties with respect to the 
results. Since methylation is a direct, ubiquitous and effective mechanism of epigenetic 
regulation used by plants and animals [78], it is hoped that our studies would advance our 
understanding of the complex effects of methylation events, patterns, and landscapes in 
different scenarios, including in the developmental stages of life. 

CONCLUSION 

We have developed a comprehensive computational framework for the consensus 
identification of stage-differentiated significant differentially methylated genes, and 
evaluation of their prognostic significance. Our analysis has yielded seven stage-salient 
genes, all hitherto unreported in the literature: one stage-I gene (FBN1), one stage-II gene 
(FOXG1), one stage-III gene (HCN1) and four stage-IV genes (NELL1, ZNF135, FAM123A, 
LAMA1). Stage-salient genes could serve as diagnostic biomarkers. The top stage-agnostic 
genes could serve as targets for drug discovery in CRC therapy. All the stage-salient genes 
were found to be hypermethylated, indicating a novel CIMP-like character possibly 
promoting epigenetic destabilisation that merits further investigation. Independent prognostic 
evaluation of the stage-salient genes yielded significance for FBN1, FOXG1, HCN1, and 
LAMA1. Survival analysis of biomarker signatures composed of the stage-salient genes 
yielded a significant early-stage panel and a significant late-stage panel. Robust consensus 
approaches, like the one used here, are more reliable, and the epigenetic biomarkers identified 
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in our study could greatly advance the early detection of colorectal cancers, their treatment 
and prognostic evaluation. Our approach is extendable to the investigation of epigenomics in 
other cancers, normal/disease conditions, and perhaps even developmental biology.  
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