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ABSTRACT 
 
Objectives: To determine the extent to which variation in hospital antibiotic prescribing is associated 
with mortality risk in acute/general medicine inpatients. 
 
Design: Ecological analysis, using electronic health records from Hospital Episode Statistics (HES) 
and antibiotic data from IQVIA.  
 
Setting: 135 acute National Health Service (NHS) hospital Trusts in England. 
 
Participants: 36,124,372 acute/general medicine inpatients (≥16 years old at admission) admitted 
between 01/April/2010-31/March/2017 (median age 66 years, 50.4% female, 83.8% white ethnicity). 
 
Main outcome measures: Random-effects meta-regression was used to investigate whether 
heterogeneity in the adjusted probability of death within 30-days of admission was associated with 
hospital-level antibiotic use, measured in defined-daily-doses (DDD)/1,000 bed-days. Models also 
considered DDDs/1,000 admissions and DDDs for selected antibiotics, including narrow-
spectrum/broad-spectrum, inpatient/outpatient, parenteral/oral, piperacillin-tazobactam and 
meropenem, and Public Health England interpretations of World Health Organization Access, Watch, 
and Reserve antibiotics. Secondary analyses examined 14-day mortality and non-elective re-
admission to hospital within 30-days of discharge.  
 
Results: There was a 15-fold variation in hospital-level DDDs/1,000 bed-days and comparable or 
greater variation in broad-spectrum, parenteral, and Reserve antibiotic use. After adjusting for a wide 
range of admission factors to reflect varying case-mix across hospitals, the adjusted probability of 30-
day mortality changed by -0.010% (95% CI: -0.064 to +0.044) for each increase in hospital-level 
antibiotic use of 500 DDDs/1,000 bed-days. Analyses focusing on other metrics of antibiotic use, sub-
populations, and 14-day mortality also showed no consistent association with the adjusted probability 
of death. 
 
Discussion: We find no evidence that the wide variation in antibiotic use across NHS hospitals is 
associated with case-mix adjusted mortality risk in acute/general medicine inpatients. Our results 
indicate that hospital antibiotic use in the acute/general medicine population could be safely cut by up 
to one-third, greatly exceeding the 1% year-on-year reductions required of NHS hospitals. 
 
KEYWORDS 

Antimicrobial use; Antimicrobial Stewardship; Electronic Health Records; Secondary care; mortality 
risk 
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What is already known on this topic 
 

• Previous studies have reported wide variation in both recommended antibiotic prescribing 
duration and total antibiotic consumption among acute hospitals. 
  

• In hospitals with more acute patients, systematic under-treatment might reasonably be 
expected to harm patients, and though a growing body of evidence shows reducing hospital 
antibiotic overuse may be done safely, there is a lack of good data to indicate how much it 
may be possible to safely reduce use 

 
• Examination of the possibility that substantially driving down antibiotic use could 

compromise clinical outcomes is needed to reassure practitioners and the public that 
substantially reducing antibiotic use is safe. 

 
What this study adds 

 
• After adjusting for a wide range of admission factors to reflect varying case-mix across 

acute hospitals, we observed no consistent association between 24 metrics of hospital-level 
antibiotic use and the adjusted probability of death in a large national cohort of over 36 
million acute/general medicine inpatients 
 

• These findings indicate that at many hospitals patients are receiving considerably more 
antibiotics than necessary to treat their acute infections, and we estimate system-wide 
reductions of up to one-third of antibiotic defined-daily-doses (DDDs) could be achieved 
safely among medical admissions. 
 

• The magnitude of the antibiotic reductions that could be safely achieved dwarf the 1% 
year-on-year reductions required of NHS hospitals. 
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INTRODUCTION 

Antibiotic overuse puts individual patients(1) and whole populations(2) at risk of antimicrobial 
resistance (AMR). AMR infections cause higher mortality, longer hospital admissions, and increased 
costs of care.(3) Reducing unnecessary antibiotic use is therefore essential to reduce the selective 
pressure for resistance(4,5) and avoid other harms including adverse drug events,(6) toxicity,(7–9) 
changes to the gut microbiome,(10,11) and increased susceptibility to infections such as 
Clostridioides difficile.(12–15) The urgency of this problem is reflected in many national plans to 
tackle AMR, with 26/30 countries in Europe, Canada, and the United States having established or 
planned targets to reduce antimicrobial use in humans,(16) including the UK which aims to reduce 
antimicrobial use by 15% between 2019-2024.(17)  
 
In England’s National Health Service (NHS) primary care antibiotic stewardship initiatives focusing 
on decisions to start antibiotics have been successful in reducing antibiotic overuse(18), but in 
hospital practice, prescribers must balance the risks of harm posed by under-treating an infection and 
those of prolonged or excessively-broad spectrum antibiotic use.(19) For patients with life-threatening 
infections, even modest treatment delays can increase mortality risk,(20) and diagnostic uncertainty 
means it is often necessary to administer broad-spectrum antibiotics empirically while waiting for 
additional clinical, microbiological, or radiographic information. 
 
For these reasons, controlling antibiotic overuse in hospitals depends on early antibiotic initiation 
followed by the review of prescriptions after 24-72 hours to re-evaluate whether continued therapy is 
appropriate.(21) Different healthcare systems operationalise this approach in different ways, including 
through “antibiotic timeouts” in the United States(22) and “Start Smart then Focus” in England.(21) 
Yet opportunities to stop early or “de-escalate” – i.e. switch from parenteral to oral antibiotics, or to 
agents with a narrower spectrum of activity – are often missed. Estimates suggest 20-30% of 
prescriptions may be safely stopped at review,(23) but stop and review dates are poorly 
documented(24) and fewer than 10% of antibiotic prescriptions are stopped early.(25,26) Similarly, 
audits in England have shown one in six patients who are eligible for de-escalation at 72 hours are not 
switched,(27) while data from US hospitals show only 9% of inpatients on empiric antibiotics have 
narrowed or discontinued therapy within three days of starting treatment.(28) In NHS hospitals 
antibiotic consumption has continued to increase year-on-year(18) despite the introduction of 
financial incentives to reduce overuse.(29) 
 
The issues of clinical urgency and diagnostic uncertainty which make limiting antibiotic overuse in 
hospitals challenging for clinicians also make attempts to define inappropriate use inherently 
subjective.(30) Another way to approach this problem is through “benchmarking”, whereby low-
prescribing organisations are used to drive improvements.(31–33) Previous studies have reported 
wide variation in both recommended antibiotic prescribing duration(34) and total antibiotic 
consumption(35,36) among acute hospitals. However, simple comparisons of hospital-level 
consumption data largely fail to account for case-mix, and in hospitals with more acute patients, 
systematic under-treatment might reasonably be expected to harm patients. Antibiotic stewardship 
leads at acute hospitals in England have also expressed widespread concern about the safety of a 
target-driven antibiotic reduction strategy.(26) As a result, many hospitals are benchmarked against 
their own historical performance rather than externally, and only relatively small reduction targets are 
sought, such as the 1% year-on-year reduction target used in the NHS Standard Contract with hospital 
Trusts.(37) Examination of the possibility that substantially driving down antibiotic use could 
compromise clinical outcomes is needed to reassure practitioners and the public that substantially 
reducing antibiotic use is safe. 
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This study therefore aimed to determine the extent to which variation in antibiotic prescribing was 
associated with mortality risk in acute/general medicine inpatients in England. 
 
METHODS 
 
Data sources 
 
Patient data was obtained through NHS Digital’s Data Access Request Service, which provided an 
extract from the Health Episode Statistics (HES) Admitted Patient Care data warehouse. This 
database captures all emergency, planned, and day-case admissions requiring an NHS hospital bed in 
England, but excludes outpatient visits and A&E attendances.(38) General medical patients may be 
treated under several different adult specialties, with coding practices varying by hospital Trust. The 
study population was therefore defined using multiple consultant specialty codes (Figure 1). This 
definition was selected to align with the most commonly used HES specialty codes used to admit 
adult general medicine inpatients. All inpatient spells and episodes were requested for patients with 
any eligible admission, in order to calculate hospital exposure. 
 
The data contained a pseudonymised patient ID that is unique across hospital Trusts and over 
time,(39) patient information (sex, age at admission, ethnicity), clinical information (diagnoses), 
geographic information (admitting hospital, Index of Multiple Deprivation (IMD)), and administrative 
information such as admission and discharge dates, method and source of admission, method and 
destination of discharge, patient classification (day-case or ordinary admission), the specialties under 
which attending consultants were contracted or worked, and the start and end dates of consultant care 
episodes. A binary measure of death within 14 and 30 days of admission (all cause, in/out of hospital) 
was obtained through linkage with data from the Office of National Statistics (ONS), performed in 
advance by NHS Digital. 
 
Information on NHS hospital-level antibiotic consumption was obtained from pharmacy dispensing 
records provided by IQVIA (formerly Quintiles and IMS Health, Inc)(40) through Public Health 
England (PHE) and measured in defined-daily-doses (DDDs), which enable standardised comparisons 
of antibiotic use and are defined by the World Health Organisation (WHO) as the average 
maintenance dose per day for a drug used for its main indication in adults.(41) The DDDs were 
calculated using the WHO Anatomical Therapeutic Chemical (ATC) DDD Index 2020 and 
disaggregated by drug, route of administration, and quarter/year (April 2014 to March 2017) for the 
included 135 NHS Trusts. Data was only available at the hospital Trust-level (not by specialty) and 
only from April 2014. Bed-days by hospital Trust were obtained from PHE(42) and admissions by 
hospital Trust were obtained from NHS Digital.(43) 
 
Patient and Public Involvement (PPI) 

Our lead PPI representative had input into the conception and design of this study as part of the 
original programme grant. This study is based on routinely collected de-identified electronic medical 
records in HES and therefore members of the public were not involved in the data analysis; they were 
also not involved in the interpretation or reporting of the results. There are no plans to disseminate the 
results to the study participants as the data were de-identified. 
 
Data Cleaning 

The HES data extract included 88,718,419 hospital admissions (“spells”) from 15,708,476 patients 
admitted between 1 April 2009 and 31 March 2017. Data cleaning steps are outlined in Appendix 
Figure A1. The merging and splitting of NHS hospital Trusts over time was accounted for by updating 
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provider codes so they were current at March 2017 (Appendix Table A1).(44) This left admissions 
from 188 NHS hospital Trusts, defined as spells with a provider code of treatment beginning with “R” 
(thereby excluding primary care Trusts, independent providers and NHS treatment centres).(45) To 
improve model stability, 49 hospital Trusts with fewer than 50,000 admissions between April/2010 
and March/2017 were excluded, as were four specialist hospital Trusts which lacked admissions in 
general medicine, producing an analytic cohort with 135 acute hospital Trusts in England for which 
antibiotic data was merged (subsequently denoted “hospitals”). 

All data processing was carried out in Stata/MP 16 with data held on NHS servers located at the 
Oxford University Hospitals NHS Trust. We followed the RECORD statement(46)—an extension of 
the STROBE reporting guideline(47) for routinely collected observational health data (Appendix 
Table A2). 

Primary statistical analysis 

The primary ecological analysis employed a meta-regression(48) on hospital-level summary data to 
compare outcomes in acute/general medicine inpatients with hospital-level antibiotic use. This 
involved deriving confounding-adjusted relative risks of death (all-cause, in/out of hospital) within 30 
days of admission using Poisson regression with a robust variance adjustment by patient.(49) Time-
to-event models could not be used as they required knowledge of date of death, which is available 
from ONS but considered identifiable by NHS Digital; only a binary indicator of death was therefore 
available for analysis. Models included admissions between April 2010 to March 2017, with prior 
data used only to calculate previous hospital exposure. A separate model was fit to each hospital (135 
models) to allow each potential confounder to have a different impact on the outcome in each 
hospital, including the same factors in each model regardless of statistical significance. These 
multivariate models included an a priori list of 16 admission factors used to adjust for case-mix in 
previous analyses (Table 1) and nine interaction terms that improved model fit by lowering the 
Bayesian information criterion (BIC) of a single multivariate model applied to all hospitals (with 
hospital as a main effect).(50) Continuous factors were truncated at 2.5th and 95th or 99th percentiles to 
reduce the influence of outliers, and natural cubic splines were used to account for non-linear effects 
of continuous covariates if they lowered the BIC of a model containing hospital as a factor; the 
number of knots was chosen based on BIC (Appendix Figure A2). Marginal effects (conditional 
adjusted predictions) were then derived, along with their standard errors, at the reference level of all 
model covariates in each hospital.(51) 
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Table 1: Admission Characteristics of 36,124,372 Acute/General Medical Inpatient Admissions 
in 135 Acute Care NHS Hospital Trusts, England, April 2010 to March 2017 
 

Characteristic 
Admissions 

(N=36,124,372) 
Age (years) i Median (IQR) 66 (51-78) 
Charlson Comorbidity Index i Median (IQR) 0 (0-7) 
Index of multiple deprivation 
(IMD) ii 

Median (IQR) 
18.5 (10.5-32.2) 

Overnight admissions in past 
year i 

Median (IQR) 0 (0-1) 
0 20,684,824 (57.3%) 
1-3 12,626,901 (35.0%) 
4-6 2,032,847 (5.6%) 
7+ 779,800 (2.2%) 

Any complex overnight 
admission in past year (>1 
consultant episode, excluding 
episodes in A&E or 
rehabilitation)  

No iii 27,299,336 (75.6%) 
Yes 

8,825,036 (24.4%) 
Sex 
  

Female iii 18,197,325 (50.4%) 
Male 17,927,047 (49.6%) 

Ethnic category  
  
  

White iii 30,270,021 (83.8%) 
Asian 1,728,243 (4.8%) 
Black 874,178 (2.4%) 
Mixed/other  640,043 (1.8%) 
Unknown 2,611,887 (7.2%) 

Patient classification 
  
  

Ordinary admission iii 20,663,007 (57.2%) 
Day-case admission 13,559,311 (37.5%) 
Regular day attender 1,902,054 (5.3%) 

Admission source 
  

Usual/other residence iii 34,680,673 (96.0%) 
NHS general ward / other care 
provider 1,443,699 (4.0%) 

Admission method 
  
  

Accident and emergency (A&E)  iii 14,477,420 (40.1%) 
Elective / non-emergency 17,218,343 (47.7%) 
Emergency via GP or other  4,428,609 (12.3%) 

Immunosuppression 
  

No iii 35,119,372 (97.2%) 
Yes 1,005,000 (2.8%) 

Admission time of week 
  

Weekday iii 30,719,593 (85.0%) 
Weekend 5,404,779 (15.0%) 

Admission specialty 
  
  
  
  
  

General medicine iii 19,144,018 (53.0%) 
Gastroenterology 4,991,951 (13.8%) 
Clinical Haematology 4,441,171 (12.3%) 
Cardiology 2,456,490 (6.8%) 
Geriatric Medicine 1,878,069 (5.2%) 
Other 3,212,673 (8.9%) 

Admission financial year 
(April-March) 

2010 4,532,650 (12.5%) 
2011 4,712,543 (13.0%) 
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Characteristic 
Admissions 

(N=36,124,372) 
  
  
  
  
  

2012 4,939,621 (13.7%) 
2013 5,124,951 (14.2%) 
2014 5,383,865 (14.9%) 
2015 5,634,144 (15.6%) 
2016 iii 5,796,598 (16.0%) 

Admission month 
  
  
  
  
  
  
  
  
  
  
  

January iii 3,137,513 (8.7%) 
February 2,922,611 (8.1%) 
March 3,170,887 (8.8%) 
April 2,890,364 (8.0%) 
May 2,975,721 (8.2%) 
June 2,951,925 (8.2%) 
July 3,043,793 (8.4%) 
August 2,937,379 (8.1%) 
September 2,962,424 (8.2%) 
October 3,088,645 (8.6%) 
November 3,040,081 (8.4%) 
December 3,003,029 (8.3%) 

5 most prevalent CCS 
diagnosis groups (abbreviated, 
out of 29) 

Nonspecific chest pain iii 4,649,241 (12.9%) 
Cancer related 3,848,695 (10.7%) 
Headache / other nervous system 
disorders 2,520,624 (7.0%) 
Regional enteritis and ulcerative 
colitis 2,288,317 (6.3%) 
Other gastrointestinal disorders 2,062,927 (5.7%) 

Five largest hospital Trusts 
  
  
  
  

Barts Health NHS Trust 655,728 (1.8%) 
Heart of England NHS Foundation 
Trust 600,781 (1.7%) 
University Hospitals of Leicester 
NHS Trust 592,378 (1.6%) 
King's College Hospital NHS 
Foundation Trust 577,624 (1.6%) 
Pennine Acute Hospitals NHS 
Trust 563,816 (1.6%) 

Five smallest hospital Trusts 
  
  
  
  

Yeovil District Hospital NHS 
Foundation Trust 103,543 (0.3%) 
George Eliot Hospital NHS Trust 94,417 (0.3%) 
East Cheshire NHS Trust 93,900 (0.3%) 
Weston Area Health NHS Trust 89,741 (0.2%) 
Wye Valley NHS Trust 86,567 (0.2%) 

i Truncated at the 99th percentile to improve model stability. Median age was used as reference in 
regression models. Overnight admissions in past year was included in adjusted models as a continuous 
covariate; categories are shown here only for information. 
ii Higher IMD scores indicate greater deprivation (range: 0.53–87.8), and median IMD score was used 
as the reference in regression models. 
iii Reference category in regression models. 
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Finally, random effects meta-regression was used to investigate whether heterogeneity in the adjusted 
probability of death (one estimate per hospital) was associated with hospital-level antibiotic use, 
measured in total DDDs/1,000 bed-days. Hospital-level antibiotic data was used as a proxy for 
consumption in acute/general medicine as specialty-level data was not available during the study 
period. The DDD estimates were calculated as the annual mean of antibiotic data from April 2014 to 
March 2017. Multiple other metrics of antibiotic use were also considered, including inpatient and 
outpatient DDDs, narrow-spectrum and broad-spectrum DDDs, parenteral and oral DDDs, DDDs for 
piperacillin/tazobactam and meropenem specifically, and DDDs for PHE-interpretations of WHO 
Access, Watch, and Reserve (AWaRe) antibiotics,(52) which were introduced in WHO’s 2017 
Essential Medicines List to improve access and monitoring of important or ‘last resort’ antibiotics 
(Appendix Table A3). The minor PHE amendments to AWaRe classifications reflected which 
antibiotics NHS hospitals should be prioritizing for human use. Meta-regression models adjusted for 
hospital size measured in terciles of either bed-days(42) or admissions,(43) depending on whether 
DDDs was measured per bed-days or per admissions. An interaction between DDDs and hospital size 
was assessed and retained where the heterogeneity p<0.01. Meta-regressions were fit on both the log 
probability and the probability scale; the latter are presented here to aid interpretation of observed 
associations.  
 
In sensitivity analyses, a more narrow definition of general medicine was used, where all spells had a 
HES main specialty code or treatment specialty code of 300 in the first or second consultant episode. 
As outlined in Figure 1, this definition is likely to have perfect specificity but varying sensitivity 
among hospitals due to local variations in coding practices. Since antibiotic data was only available 
from April 2014, a separate sensitivity test restricted the study sample to admissions between 
01/April/2014 and 31/March/2017. 

Secondary outcomes 

Secondary outcomes included death within 14 days of admission (all cause, in/out of hospital) and 
non-elective re-admission to hospital within 30 days of discharge (regardless of re-admission 
speciality). Analyses of re-admission were restricted to patients discharged alive more than 30 days 
before 31 March 2017. Without death date, deaths outside hospital could not be treated as competing 
events for re-admission. Poisson models for each binary outcome adjusted for the same admission 
characteristics and interaction terms and this was followed by random effects meta-regression as 
previously described. 

RESULTS 

Primary statistical analysis 

The final analytic cohort contained 36,124,372 acute/general medicine admissions from 12,320,069 
patients between April 2010 and March 2017 inclusive, with median of two admissions (IQR: 1-3) per 
patient. Admissions increased year-on-year admissions (Table 1). The largest and smallest hospitals 
were Barts Health NHS Trust (655,728 admissions) and Wye Valley NHS Trust (86,567 admissions) 
respectively (complete list in Appendix Table A4). Patients had a median age of 66 years (IQR: 51-
78), the most prevalent admission characteristics were female sex (50.4%), ethnically white (83.8%), 
admission on a weekday (85.0%), a low median Charlson Comorbidity Index (0, IQR: 0-7), low 
median IMD score (18.5, IQR: 10.5-32.2), and a Clinical Classifications Software (CCS) diagnosis 
group indicating non-specific chest pain (12.9%) (see Appendix Table A5 for other CCS groups). 

In primary analyses, which adjusted for all the factors in Table 1, the adjusted probability of death 
within 30 days of admission at the reference category (as in Table 1) varied three-fold by hospital 
(0.58-1.75%; median: 1.12%, IQR: 0.96-1.28%). Antibiotic consumption measured as mean total 
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DDDs/1,000 bed-days (2014-2016) varied 15-fold across hospitals (median: 1,814; IQR: 1,624-2,080; 
range: 266-4,006), with a 13-fold difference when expressed as DDDs/1,000 admissions (median: 
4,132; IQR: 3,604-4,766; range: 584-7,494). Wide variation was also observed for other antibiotic 
metrics (Figure 2), including broad-spectrum DDDs/1,000 bed-days (median: 520; IQR: 389-650; 
range: 88-1,269) and per 1,000 admissions (median: 1,185; IQR: 925-1,443; range: 193-2,387), 
parenteral DDDs/1,000 bed-days (median: 437; IQR: 380-496; range: 51-729) and per 1,000 
admissions (median: 971; IQR: 845-1124; range: 112-1893), and ‘Reserve’ DDDs/1,000 bed-days 
(median: 40; IQR: 29-57; range: 5-172) and per 1,000 admissions (median: 88; IQR: 63-129; range: 
12-350). Ten antibiotics accounted for the majority prescribed (63.36-85.10%) at every acute hospital, 
but there was also considerable variation in the use of individual agents. For example, in descending 
order, co-amoxiclav accounted for between 1.7-29.4% of total use among hospitals in 2016, followed 
by doxycycline (5.0-35.8%), flucloxacillin (4.2-18.2%), clarithromycin (1.4-25.5%), amoxicillin (1.8-
20.3%), metronidazole (1.8-7.7%), ciprofloxacin (1.0-14.4%), trimethoprim (0.6-8.4%), 
piperacillin/tazobactam (0.5-8.7%), and azithromycin (0.3-17.0%) (Appendix Figure A3). 
 
Meta-regression estimates are displayed in Figure 3 and Appendix Table A6, with associations 
between the four main measures of antibiotic consumption (total, parenteral, broad-spectrum, 
‘Reserve’ DDDs) per 1000 bed-days and 30-day mortality in Figure 4 (other meta-regression plots for 
30-day mortality in Appendix Figure A4). In 22/24 meta-regression models we found evidence of no 
association between the adjusted probability of death and hospital-level antibiotic use. The two 
models with some evidence of identified effects in opposite directions; for each increase of 500 oral 
DDDs per 1000 admissions we observed a decrease in adjusted probability of death of -0.028% (95% 
CI: -0.053,-0.003; p=0.028), while for each increase of 500 parenteral DDDs per 1000 bed-days we 
observed an increase in the adjusted probability of death of +0.284% (95% CI: +0.031,+0.538; 
p=0.028). 
 
Scope for achieving antibiotic prescribing reductions 
 
If hospitals with antibiotic use above the 25th percentile (1,624 DDDs/1,000 bed-days; 101 hospitals), 
10th percentile (1,454 DDDs/1,000 bed-days; 121 hospitals), or 5th percentile (1,282 DDDs/1,000 bed-
days; 128 hospitals) reduced their consumption to this level, total DDD use would decline by 21.6% 
(from 51,732,671 DDDs to 40,558,491 DDDs), 27.0% (from 58,838,197 DDDs to 42,953,040 
DDDs), or 34.4% (from 61,250,673 DDDs to 40,153,594), respectively. With antibiotic use measured 
in DDDs/1,000 admissions, reducing consumption to the 25th percentile (3,604 DDDs/1,000 
admissions), 10th percentile (3,198 DDDs/1,000 admissions), or 5th percentile (2,992 DDDs/1,000 
admissions) would drop total DDD use by 23.2%, 28.4%, and 31.8%, respectively. 
 
Sensitivity analyses 
 
Using a narrower definition of general medicine reduced the cohort from 36,124,372 to 19,144,018 
admissions. To improve model stability, five hospitals with fewer than 50,000 admissions were then 
excluded (as in the primary analysis; Appendix Figure A1), leaving an analytic cohort with 
19,023,144 admissions from 130 hospitals. The adjusted probability of death within 30 days of 
admission varied between 0.59-2.10% across hospitals (median: 1.11%, IQR: 0.96-1.33%) at the 
reference level of all model factors. In 23/24 meta-regression models there was no evidence of 
association between the adjusted probability of death and hospital-level antibiotic use (Figure 3 and 
Appendix Table A7). Again we observed that for each increase of 500 parenteral DDDs per 1000 bed-
days there was a small increase in the adjusted probability of death of +0.373% (95% CI: 
+0.082,+0.663; p=0.012). 
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Restricting the study sample to admissions between April 2014-March 2017 inclusive (the period with 
overlapping antibiotic data) excluded 19,309,765 spells. Four hospitals with fewer than 50,000 
admissions were then excluded, as were two hospitals with too few admissions in the reference group 
of admission specialty for multivariate models to converge. The resulting analytic cohort contained 
16,492,990 spells from 129 hospitals. There was no evidence of association between the adjusted 
probability of death and hospital-level antibiotic use, regardless of how antibiotic use was measured 
(Figure 3 and Appendix Table A8). 
 
Secondary outcomes 
 
The adjusted probability of death within 14 days of admission (in/out of hospital) varied from 0.38-
1.40% across hospitals (median: 0.79%, IQR: 0.65-0.93%) at the reference level of all model factors. 
Most (20/24) metrics of antibiotic use showed no evidence of association with 14-day mortality, while 
the remaining estimates showed both positive and negative associations (Figure 3 and Appendix Table 
A9). The adjusted probability of non-elective re-admission to hospital within 30 days of discharge 
varied between 7.07-13.59% across hospitals (median: 10.16%, IQR: 9.34-10.86%) at the reference 
level of all model factors. Some (14/24) metrics of antibiotic use suggested re-admission risk 
increased with greater hospital-level antibiotic use, while the remainder (10/24) showed no evidence 
of association with re-admission risk (Appendix Table A10). 
 
DISCUSSION 
 
We found very wide variation in the quantity of antibiotics being consumed across NHS acute 
hospitals, which is consistent with previous reports,(36) including a systematic review of antibiotic 
consumption in 3130 (primarily European) hospitals which found a 40-fold difference among 
studies.(35) By calculating the confounding-adjusted probability of death among general medicine 
inpatients in each hospital we have been able to control extensively for case-mix and found no 
evidence that variation in antibiotic use is associated with 14 or 30-day mortality. This finding is 
consistent across different measures of antibiotic consumption and in multiple sensitivity analyses 
focusing on sub-populations. These results indicate that at many hospitals patients are receiving 
considerably more antibiotics than necessary to treat their acute infections. Accordingly, substantial 
reductions in antibiotic use should be achievable without harming patients from under-treatment. 
Rather than set an arbitrary threshold for what reduction in use could be achieved, we have considered 
the impact of reducing hospital antibiotic use to the 25th, 10th and 5th centiles among hospitals. 
Depending on the threshold, our models indicate that system-wide reductions of up to one-third of 
DDDs could be achieved safely if high using hospitals could replicate prescribing practices of lower 
using hospitals. 
 
Safe control of antibiotic overuse in hospital depends on balancing the need to initiate prompt 
effective therapy when bacterial infection is present with early review and revision of antibiotic 
prescriptions in the light of clinical and diagnostic data.(21,22) This is challenging in clinical practice. 
We have reported previously that hospitals which do this well have lower rates of C. difficile 
infection.(34) It is to be expected that at hospitals where antibiotic prescription reviews are done well, 
fewer antibiotics would be used without compromising patient outcomes. Data from medical 
inpatients in Oxford showed substantial reductions in antibiotic use (of around 30%) can be achieved 
without adverse clinical outcomes when patients are admitted under an infectious diseases specialist 
versus other clinical teams.(23) The most likely explanation for our observation therefore is that some 
hospitals are much more effective than others at implementing antibiotic review and revise in line 
with best practice. This is in keeping with a growing body of evidence that reducing antibiotic 
treatment duration across a wide-range of clinical scenarios is a safe and effective way of controlling 
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antibiotic overuse.(53–57) Our data indicate the magnitude of reductions that could be safely 
achieved, dwarfing the 1% year-on-year reductions required of NHS hospitals.(37) 
 
Our study has important limitations. Of particular concern is unmeasured confounding. Patient-level 
factors significantly associated with mortality risk such as baseline haematology and biochemistry test 
results and admission time of day are not available in HES.(50) Any residual bias arising because 
hospitals with more acutely unwell patients are likely to use more antibiotics and to have patients at 
greater risk of death could mean we fail to detect harm associated with low antibiotic use. Some of 
our analyses indicated greater use of parenteral antibiotics (per 1,000 bed-days) was associated with 
increased risk of death, which is consistent with residual confounding after adjustment. Nevertheless, 
the magnitude of differences in antibiotic use we have observed and the marginal impact on mortality 
means residual confounders would have to be exerting a very large effect to meaningfully change our 
inferences.   
 
Although we find no evidence that reduced antibiotic use is associated with increased risk of 
readmission to hospital, this result should be interpreted with caution. More than half of our analyses 
using different measures of antibiotic consumption indicated increased antibiotic use to be associated 
with greater risk of non-elective readmission. This is difficult to explain biologically and is mostly 
likely because our model factors, selected a priori based on previous analyses to adjust for case-mix 
in mortality models,(50) are not sufficient to control for confounding of the relationship between 
antibiotic use and readmission. It may be that some hospitals which use more antibiotics also 
discharge more quickly, and there is evidence from the United States indicating patients discharged 
against medical advice have higher readmission rates.(58) Nevertheless, it does not undermine our 
fundamental observation that there is no evidence lower antibiotic use is associated with increased 
risk of death. 
 
Another important limitation of this study is that marginal effects were derived from outcomes in 
acute/general medicine admissions between 2010-2017, yet antibiotic data was not available at the 
specialty-level during this period or at all before April 2014. As a result, the share of DDDs 
attributable to general medical inpatients likely varies by hospital. The drawbacks of the available 
antibiotic data are off-set by our broad definition of general medicine (Figure 1) and the fact that 
general medical inpatients are the largest consumers of non-prophylactic antibiotics in hospitals.(59) 
Also, sensitivity analyses restricting to April 2014-March 2017 similarly found no evidence of 
association between 30-day mortality and hospital-level antibiotic use. The antibiotic data for 2014-
2017 was only received in January 2020; most hospitals use was fairly stable over this period, 
supporting our comparison of average effects. 
 
While the use of DDDs as a metric of antibiotic consumption has the advantage of enabling 
standardised comparisons of hospital antibiotic use without the need for patient-level data, it also has 
drawbacks.(60) For example, to reduce the selective pressure for resistance, antibiotic stewardship 
initiatives may encourage switching from the use of one broad-spectrum agent to combinations of 
narrow-spectrum agents. This would increase DDDs for treatment of the same indication, producing 
an apparent increase in antibiotic use. Differences may also exist between prescribed doses and 
WHO’s DDD reference values, leading to overestimates or underestimates of antibiotic use, 
depending on local treatment guidelines. Unfortunately, linkage of clinical data with electronic 
prescribing data is not yet widely available in England. 
 
Other limitations stem from the underlying HES datasets. For example, the diagnosis (ICD-10) codes 
used to derive Charlson Comorbidity Index, CCS groups, and immunosuppression status are captured 
in HES by clinical coding departments using discharge summaries. This process is both standardised 
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and audited but primarily serves administrative and reimbursement purposes and describes the main 
condition managed in an episode, which may be ruled out at a later date or be unrelated to the clinical 
indication for antibiotics. Adjusting for these factors could therefore use the future to predict the past 
in patients with long single-consultant admissions. 
 
Despite these limitations, electronic health record studies such as ours allow the impact of antibiotic 
therapy on patient outcomes to be assessed on a scale that cannot be achieved with other approaches. 
Where richer patient-level antibiotic data are available, investigations could analyse inappropriate 
prescribing, additional outcomes, and the use of alternate measures of antibiotic use that mitigate the 
limitations of DDDs, such as length of therapy (LOT) (days between first and last administered 
antibiotic inclusive) or days of therapy (DOT) (the sum of days between first and last administered 
antibiotic inclusive, with each antibiotic counted separately).(60)  
 
Future observational work could also expand outcome measures to include other potential markers of 
harm, including length of stay or admission to intensive care. By using HES data from NHS Digital 
we have not been able to assess potential benefits of lower antibiotic prescribing, such as declines in 
AMR or C. difficile infection. Such data would need to either be obtained from individual hospitals, or 
only analysed at a hospital level (rather than within general medical inpatients) by using mandatory 
reported surveillance data. 
 
Conclusion  

We found no evidence that the very wide variation in hospital antibiotic prescribing is associated with 
mortality risk in medical inpatients. Accordingly, risk-adjusted benchmarking of antibiotic use in 
hospitals could be used to drive safe and substantial reductions in antibiotic consumption. Further 
investigations should consider how some hospitals achieve low levels of antibiotic use. Understanding 
what explains these differences will facilitate the design of interventions that can be evaluated in 
randomised trials for unbiased inference. Although trials are costly and difficult to implement, the 
results of this study provide evidence to justify this further work. 
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FIGURE LEGENDS 
 
Figure 1: Study sample 
 
*Admissions were included if the specialty under which attending consultants were contracted (HES 
field: mainspef) or worked (HES field: tretspef) included any of the following HES codes in the first 
or second episode: acute/general medicine (300), gastroenterology (301), endocrinology (302), 
haematology (303), diabetic medicine (307), cardiology (320), acute internal medicine (326), 
respiratory/thoracic medicine (340), infectious diseases (350), neurology (400), rheumatology (410), 
and geriatric medicine (430). Given the variation in coding practices among hospitals, admission 
codes in general medicine (300) are likely only a subset of general medicine inpatients (perfect 
specificity, but less than perfect sensitivity). By contrast, the wider set of admission codes used to 
define this study sample is likely to have very high sensitivity but at the cost of reduced specificity. 
The extent of the reduction in specificity will vary by hospital depending on local coding practices. 
 
Figure 2: Mean Antibiotic Defined-Daily-Doses Consumed Among 135 NHS Acute Care 
Hospital Trusts (April 2014 – March 2017) 
 

* Each box represents the interquartile range of the distribution and is subdivided by a horizontal line 
representing the median. The ends of the whiskers display the most extreme DDD estimate within 1.5 
IQR of the nearest quartile, while even more extreme outliers are displayed as isolated points. 
“Pip/taz” refers to piperacillin/tazobactam. Some antibiotics may be considered Access or Watch 
depending on indication, so they have been included as their own separate category. 
 
Figure 3: Random Effects Meta-Regression of the Association Between the Adjusted Probability 
of Death (In/Out of Hospital) and Different Metrics of Hospital-level Antibiotic Use 
 
* Point estimates above the null (red line) suggest increasing hospital-level antibiotic use is associated 
with harm (increased mortality risk), or conversely that decreasing hospital-level antibiotic use is 
associated with clinical benefit (reduced mortality risk). Estimates below the null suggest increasing 
antibiotic use is associated with clinical benefit, or conversely that decreasing antibiotic use is 
associated with clinical harm. The associations displayed for Reserve antibiotics and 
piperacillin/tazobactam (“pip/taz”) and meropenem are for a unit increase of 100 DDDs rather than 
500 DDDs. Some antibiotics (not shown) may be considered either Access or Watch (depending on 
indication) and have been analysed as their own separate category in Appendix Tables A6–A10 
alongside the categories shown here. 
 
Figure 4: Random Effects Meta-Regression of the Association Between the Adjusted Probability 
of Death Within 30 Days of Admission (In/Out of Hospital) and Hospital-level Antibiotic Use 
 
A) Mean total DDDs/1,000 bed-days 
B) Mean broad-spectrum DDDs/1,000 bed-days 
C) Mean parenteral DDDs/1,000 bed-days 
D) Mean “Reserve” DDDs/1,000 bed-days 
 
* Marginal effects were derived from 135 separate (hospital-specific) models, represented here as 
circles sized according to the precision of the estimate (inverse of the within-hospital variance). Most 
(127/135) hospital-specific multivariate models included four spline terms (for age, Charlson 
Comorbidity Index, IMD score, and overnight admissions in the past year), however models for eight 
hospitals would only converge with two spline terms (age and overnight admissions in the past year). 
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Antibiotic use was truncated below the 2.5th percentile and above the 95th percentile. Probability 
estimates were truncated above the 99th percentile. Associations displayed here can be found in Table 
2. 
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Figure 2 

2a) Mean total DDDs per 1,000 bed-days* 

 
2b) Mean total DDDs per 1,000 admissions* 
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