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Abstract. Promising COVID-19 vaccines are under rapid development, with initial deployment expected by 2021.

Careful design of a vaccine prioritization strategy across socio-demographic groups is a crucial public policy challenge

given that (1) vaccine supply will be highly constrained for the first several months of the vaccination campaign (2)

there are stark differences in transmission and severity of impacts from SARS-CoV-2 across groups, and (3) SARS-

CoV-2 differs markedly from previous pandemic diseases like influenza. We assess the optimal allocation of a limited

vaccine supply in the U.S. across groups differentiated by age and also essential worker status, which constrains

opportunities for social distancing. We model transmission dynamics using a compartmental model parameterized

to capture current understanding of the epidemiological characteristics of COVID-19, including key sources of group

heterogeneity (susceptibility, severity, and contact rates). We investigate trade-offs between three alternative policy

objectives: minimizing infections, years of life lost, or deaths. Moreover, we model a dynamic strategy that responds

to changes in the population epidemiological status. Because contacts are concentrated within age groups, there is

diminishing marginal returns as vaccination coverage increases in a given group, increasing the group’s protective

immunity against infection and mortality. We find that optimal prioritization typically targets older essential workers

first. However, depending on the policy objective, younger essential workers are prioritized to control spread or

seniors to control mortality. When the objective is minimizing deaths, relative to a non-targeted approach, vaccine

prioritization averts 15,000 deaths in our baseline model, with a range of 7,000-37,000 across alternative scenarios.
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1 Introduction

As the novel coronavirus (SARS-CoV-2) continues to spread in many countries despite intervention efforts, public

health experts see a vaccine as essential to dramatically reduce the mortality burden and possibly halt local trans-

mission (1). Novel coronavirus disease 2019 (COVID-19) has resulted in over 930,000 confirmed deaths globally (2)

as of mid-September 2020. Multiple promising vaccines are under rapid development, with deployment possible in

late 2020 or early 2021 (3). While the vaccine supply schedule remains uncertain, it is clear that vaccine availability

will be highly constrained for at least several months after launching the vaccination campaign (4). This scarcity,

combined with stark differences in the spread and impact of SARS-CoV-2 across demographic groups, means that

prioritization of the vaccine is an imminent and crucial public health challenge, and as such under active discussion by

the “Advisory Committee on Immunization Practices (ACIP) of the US Centers for Disease Control and Prevention

(CDC) and the National Academy of Medicine (NAM), as well as globally at the World Health Organization (WHO)

and elsewhere” (5).

An effective public health policy for pandemic vaccine allocation requires an understanding of transmission and

epidemiological characteristics of the novel disease across different socio-demographic groups and estimates of preva-

lence and built-up immunity levels when immunization begins. These key components are then integrated into a

mathematical and statistical modeling framework of the state and the transmission dynamics of the novel pathogen.

This framework can then be utilized to investigate the optimal vaccine allocation strategies to achieve a defined public

health objective while taking into account alternative possible scenarios for uncertain components, e.g. the level of

vaccine efficacy or temporal changes in vaccine availability (6, 7).

Previous experience with vaccine development mid-pandemic offers limited insights for SARS-CoV-2 prioritization.

SARS and Zika vaccine development was incomplete when those outbreaks ended (8). In 2009, as the novel A/H1N1

influenza virus continued to spread across the U.S., researchers investigated optimal vaccination strategies using an

age-structured dynamical model. They found that school-aged children and their parents should be prioritized, a

strategy that would indirectly protect individuals at higher risk of severe health outcomes (6). Sharp differences in the

epidemiology of human influenza and COVID-19 indicate that vaccination strategies against the ongoing pandemic

should not simply mirror vaccination policies against influenza. For example, COVID-19 is associated with lower

susceptibility to infection among children and adolescents (9) and has a substantially higher infection fatality rate

overall that also increases markedly with age (10). Toner et al. (5, p. 24) provide a detailed overview of the 2018

pandemic influenza vaccination plan and conclude that, “the priority scheme envisioned...does not comport with the

realities of the COVID-19 pandemic and new guidance is needed.”

We develop and apply an analytic framework to assess the optimal and gradual allocation of limited COVID-19

vaccine supply in the U.S. across socio-demographic groups differentiated by age and essential worker status. Here

we use the concise label of “essential workers” to indicate workers who are (A) involved in activities essential to the

maintenance of critical services and infrastructure and (B) required to work in person. These individuals comprise

almost half of the U.S. workforce (see Methods). Toner et al. (5) emphasize the importance of considering the
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prioritization of essential workers, a group that has “been overlooked in previous allocation schemes”.

The transmission dynamics are modeled using a compartmental model tracking nine disease states as shown in

Fig. 1. The parameters are set to capture our current understanding of the epidemiology of COVID-19 (see Methods).

We investigate three alternative policy objectives: minimizing expected symptomatic infections, years of life lost, or

deaths. We use stochastic nonlinear programming techniques to solve for dynamic vaccine prioritization policies

that respond to changes in the epidemiological status of the population (shares of the population in different disease

states), by updating the prioritization every month for six months. A central constraint is the scarcity of the ongoing

supply of vaccines (e.g., sufficient to vaccinate 60% of the population in the first six months). We focus on the

challenge of allocating vaccines across the general population, specifically the distribution of vaccine remaining after

specialized top priority groups are covered (e.g. medical personnel treating COVID-19 patients).

Figure 1: Movement of individuals between disease states: suceptible (S), protected by the vaccine (P ), vac-
cinated but not protected (F ), exposed (E) presymptomatic (Ipresym), asymptomatic (Iasym), symptomatic
(Isym), recovered (R) and deceased (D)

We account for the interaction between vaccine allocation policy and non-pharmaceutical interventions (NPI) by

modeling location specific transmission rates reflecting social distancing patterns caused by increases in remote work,

school closures and reductions in social engagements (see Methods). A key component is the scaling of transmission

in the workplace to reflect the different constraints faced by essential versus non-essential workers in their capacity

to engage in social distancing. We also scale the probability of transmission from any given contact to capture the

effect of non-social-distancing (NSD) NPI such as the use of masks, hand washing and maintaining physical distance

while meeting. We construct a Base scenario to establish a set of plausible outcomes and then analyze a range of

alternatives to explore key uncertainties about the state of the world upon a vaccine’s arrival. We consider variation

in the following: the strength of NSD NPI; the overall and age-specific efficacy of the vaccine; the susceptibility of

younger individuals to infection; the available supply of vaccine; the social contact rate among school-age children;

and the mechanism by which vaccines work (by reducing transmission and/or symptoms).

To our knowledge there are no published analyses of optimal COVID-19 vaccination prioritization. Analysis in

preprint form includes Matrajt et al. (11) and Bubar et al. (12).1 Both consider the optimal allocation of vaccines

1We also note (13) use simulation without optimization to explore implications of vaccines with various levels of direct and
indirect protection.
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across five or more age groups. Their approaches feature rich exploration of policy sensitivity to vaccine efficacy and

availability. Matrajt et al. is particularly detailed in this respect, while Bubar et al. uniquely consider differences in

demographics and contact rates across multiple countries. Our analysis is differentiated by a deeper approach to the

behavioral, demographic and decision models by addressing social distancing, essential worker groups, and allocation

policies that can change over time.

General ethical guiding frameworks for vaccine prioritization decision-making have appeared earlier in the litera-

ture. Toner et al. (5) emphasize promoting three ethical values: the common good; fairness and equity; and legitimacy,

trust and communal contributions to decision-making. Emanuel et al. (4) promote four ethical values: maximizing

benefits, treating equally, instrumental value, and priority to the worst off. Our analytic focus on minimizing new

infections, years of life lost, or deaths emerges from promoting “the common good” or “maximizing benefits”. Our

focus on essential worker groups illustrates how ethical values (e.g. prioritizing essential workers due to the fairness

of protecting those placing themselves at risk) may overlap with the common good (e.g. prioritizing essential workers

to best reduce mortality and transmission). Issues of fairness and equity and protecting the worst off are not directly

analyzed here but remain critical considerations.

To capture, at least coarsely, the likely feedback between falling infections and relaxation of social distancing, we

assume that this distancing partially attenuates at a given threshold for new infections (see Methods). However, for

the sake of simplicity, we do not address in detail the potential set of complex and differential feedback processes

between health status and opening of schools, workplaces and other institutions. While we limit policy objectives to

a concise metric of health outcomes (minimizing expected cases, years of life lost, or deaths) we acknowledge that

other values of returning to school, work and social life are important. Finally, we do not address additional vaccine

complications, such as temporary efficacy, potential side effects or any failure to take a second dose of the vaccine if

necessary.

Previewing our results, we find that optimal allocation strategies are responsive to both the initial and evolving

epidemiological landscape of the disease. When deaths are considered, vaccines are initially allocated to older essential

workers 40− 59 yrs. followed by seniors 60+ yrs.; when years of life lost are minimized both ages groups of essential

workers are prioritized followed by seniors 60 − 74 yrs.; and when infections are minimized essential workers are

prioritized followed by school-age children. In general, we find that these results are robust across a range of possible

scenarios and parameters sets. However, they are sensitive to changes in vaccine efficacy and susceptibility between

age groups, indicating that these uncertainties are priorities for research emphasis prior to vaccine distribution. With

respect to key outcomes, we found that the optimal strategies outperformed a non-targeted strategy (e.g., distributed

proportional to the size of each group) by 8 to 20% for a given target policy objective. For example, when the focus

is minimizing mortality, we find that optimal vaccine prioritization averts 15,000 deaths relative to a non-targeted

approach in our baseline scenario, with a range of 7,000 to 37,000 lives depending on the effectiveness of the vaccine

and concurrent non-pharmaceutical interventions.
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2 Results

We present results for the Base model with essential worker demographic groups and then show the sensitivity of

these results with respect to the alternative scenarios. In Fig. 2 we show the optimal allocation of vaccines given

each objective for the Base model. The allocations are shown on a monthly basis for six decision periods and then

cumulatively (in percent of vaccine and percent of group vaccinated). Broadly, we find that the optimal policy is very

dynamic: specific groups are targeted each period and these targets shift over time. Furthermore, targeting is very

narrow and becomes less so as a large fraction of the population has been covered.

Figure 2: The optimal allocation of vaccines (vertical axes) between demographic groups for each decision
period (horizontal axis in panel A-C) under the Base scenario. The three rows represent each objective, to
minimize deaths (A), minimize years of life lost (YLL, B) and minimize infections (C). The bars for the
six decision periods show the percentage of vaccines allocated to a specific group (indicated by a letter,
color, and stars indicating essential worker groups) in that period. The two final columns show cumulative
measures at the end of month six, the percent of vaccines allocated to each group (D-F), and the percent of
each group that has been vaccinated (G-I). The whiskers on each bar represent the sensitivity of the optimal
solution to small deviations in the outcome, specifically the range of allocations resulting in outcomes within
0.25% of the optimal solution.

In general we find that optimal dynamic allocation does not cover 100% of the susceptible population in any single

demographic group before switching to another group. Further, an allocation may initially prioritize one group, only

vaccinate a fraction of that group and then prioritize that group again two or more decision periods later. These
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switching dynamics emerge because there are diminishing marginal returns to vaccinating additional individuals in a

group as more of that group becomes vaccinated.

The whiskers on bars in Fig. 2A-C show the range of alternative allocations that still produce an outcome that

is within 0.25% of the optimum. For example, in the first period of Fig. 2A the whiskers show that some limited

substitution in the allocation between groups d∗, f∗ and h (but not others) can occur without a substantial reduction

in the optimized outcome (minimizing deaths). In general, we find that these whiskers become more pronounced as

periods progress. This shows that it becomes less critical to precisely follow the exact optimal allocation as vaccine

coverage of the population expands. We also find that despite targeting of certain groups in certain periods, after six

periods the percent vaccine allocated to each group and the percent of each group vaccinated (Fig. 2D-I) is more even

across most groups. Overall, we find that pre-school-age children are substantially less targeted than most groups

(conditional on having relatively few contacts and lower susceptibility in the Base model).

Across objectives there are substantial differences in which groups are targeted early on. When minimizing deaths,

targeting progresses from older essential workers (40-59*), to the oldest (75+), to younger seniors (60-74), and then

younger essential workers (20-39*). These groups are a mix of those at high risk of mortality (older groups) and high

risk of contraction and spread (essential workers). When minimizing YLL, younger essential workers and younger

seniors are targeted earlier (given their longer average years of life remaining). Finally, when minimizing infections

we find that younger essential workers take top priority, followed by older essential workers and school-age children

(5-19), since these groups have higher contacts and thus risk of contraction and spread.

Results for the “Age-only” scenario—which does not distinguish essential workers—are broadly similar (see SI

Appendix). However, a significant difference is that the essential worker formulation presented in the main text

targets essential workers before other working age adults and prioritizes these groups before the higher risk, 60+ age

groups.

In Fig. 3A we show the dynamic path of infections, starting from the period in which vaccines become available,

under various policies. As expected, infections are highest given no vaccines. Results for allocating vaccines in a man-

ner “proportional” to each group’s size shows the substantial value of vaccines even with no targeting. As expected,

the policy for minimizing infections leads to the lowest level of infections. In Fig. 3B we show the performance of

each targeting policy relative to outcomes achieved with a proportional allocation, or each objective after 240 days

(the policy for the sixth month is used from days 150 to 240). Overall we find that when focusing on minimizing a

particular outcome, that outcome is reduced by 17-18% (relative to a proportional allocation). In the first cluster

of bars, as expected the policy that minimizes deaths (“D” in green) leads to the greatest reduction in deaths (18%

fewer than under a proportional allocation). However, trade-offs are stark in certain cases: the third cluster of bars

shows that minimizing deaths involves a strong opportunity cost in terms of infections, which are higher than even

under the proportional policy. The YLL policy is most consistent, performing second best (and never third best)

when considering other outcomes (infections and deaths).
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Figure 3: The number of infections per 1,000 individuals over time under each policy (a) and the performance
of each policy relative to a uniform allocation policy (b) for the Base scenario in the essential worker model.
The bars are clustered by the resulting outcome and colored by the objective driving each policy.

2.1 Sensitivity of prioritization across scenarios

To assess how robust the findings are to key uncertainties in the model we solved for optimal allocation across a

range of alternative scenarios. The differences between these scenarios and the Base case are detailed in Table 1.

Iterations of Fig. 2 and Fig. 3 for all alternative scenarios are shown in SI Appendix B. To compare and contrast

cumulative vaccination results, in Fig. 4 we show for each of the alternative scenarios the percentage of each group

vaccinated after three months (A-C) and six months (D-F). In general we find differences across groups that lessen

(but not completely) by month six. We also find some differences across scenarios and objectives that differ by the

horizon considered.

Certain scenarios are distinctive. For example, when the lower susceptibility enjoyed by those under 20 in the

Base scenario is replaced by “Even susceptibility” for all, over the first three months we see substantial substitution to

school-age children and away from older essential workers (min. deaths or infections) or younger seniors (min. YLL).

In a second example, both weaker vaccine scenarios do not substantially change results at three months, except if

minimizing deaths, in which case vaccination shifts from younger seniors to younger essential workers. When fewer

vaccines are available in the first three months due to a “Ramp up” in supply, the deficit mainly accrues to older

essential workers (min. deaths or infections), younger seniors (min. deaths or YLL), younger essential workers (min.

YLL), or school-age children (min. infections).

At three months, the only two groups consistently not targeted are pre-school-age children and older non-essential

workers. By six months, there are two groups consistently targeted: older and younger essential workers. Across

each objective, one of the essential worker groups has either the highest or second highest coverage rate. The only

exception to this rule is if school-age children are equally susceptible to infection as adults (as discussed above).
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Scenario Change from Base scenario parameters Source

Base scenario The full set of baseline parameters is pro-
vided in SI Appendix A.2

See SI Appendix A.2

Age-only Essential workers are not differentiated in
the model

assumed

Strong NPI Non-social distancing (NSD) NPI are
strong, resulting in a declining infection
rate (R < 1)

consistent with 30-70% of U.S.
population always wearing a
mask (14) with 33-58% effective-
ness (15)

Weak NPI NSD NPI are weak, resulting in a sharply
increasing burden of infection (R >> 1)

assumed

Weak vaccine Lower vaccine efficacy (success rate) for
all age groups relative to the Base sce-
nario

informed by influenza vaccine ef-
ficiency

Weak vaccine
seniors

Lower vaccine efficacy for ages 60+ yrs. informed by influenza vaccine ef-
ficiency

Low susceptibility
ages < 20

Individuals under the age of 20 are less
susceptible relative to Base scenario

(16)

Even
susceptibility

All ages are equally susceptible to infec-
tion. Increase in susceptibility for ages
< 20 yrs relative to Base.

assumed

Ramp up Vaccine supply is lower in the first three
months and then higher but total vaccine
supply over six months is unchanged

informed by comments from the
scientific head of the U.S. vaccine
development program (17)

Open schools Rate of social contact in schools increased
from 30% in Base model to 70%

assumed

Table 1: Descriptions of alternative scenarios to the Base model (see SI Appendix A.3 for specific levels).
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Figure 4: The cumulative percent of each demographic group (x-axis) vaccinated after three months (A-C)
or six months (D-F) under alternative scenarios (y-axis) and each objective (A, D minimize deaths; B, E
minimize YLL; and C, F minimize infections). Vaccine supply is sufficient to vaccinate 10% of the population
each month, except in the “Ramp up” scenario which involves 5% per month for three months, then 15%
per month.

9

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.22.20199174doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.22.20199174
http://creativecommons.org/licenses/by-nd/4.0/


2.2 Vaccines partially effective at the individual level

In our results discussed above we have assumed that vaccines are completely effective at preventing infection for

a given percentage of each group (e.g. 65%). An alternative approach is to consider vaccines as partially effective

for everyone at the individual level. Furthermore, it may be the case that a vaccine is more effective at reducing

symptoms than preventing infections. To analyze this case we extended our model structure in Fig. 1 to separate

infected individuals into those previously vaccinated or not. For vaccinated individuals, we replaced the single vaccine

efficacy parameter with separate parameters for reduction in spread (scaling susceptibility and transmissibility) and

mortality (scaling infection fatality rate). We consider three cases. First, for comparison with the Base model,

we consider the same level of efficacy (65%) for spread and mortality. Finally, we consider two variants in which

the vaccine is more effective at reducing mortality but less effective at preventing spread. Specifically we model an

extreme case where the vaccine reduces susceptibility and infectiousness by 10% and infection fatality rate by 90%

and a moderate case where these values are 30% and 70% respectively.

Details on modeling and results for these cases are provided in SI Appendix C. In general, results are similar

between the Base model (65% of individuals 100% protected by vaccination) and the three scenarios we tested with

the partially effective vaccine model formulation. However, when the vaccine had an efficacy of 65% for spread

and mortality, and when the vaccine had an efficacy of 90% against mortality but only 10% against spread, the

optimal solutions allocated a greater share of vaccines to ages 60+ to minimize years of life lost and deaths compared

to the Base model. Surprisingly, the scenario with a vaccine that reduces mortality by 70% and susceptibility and

infectiousness by 30% was qualitatively different to the others, shifting prioritization towards younger essential workers

and away from older non-essential workers. This finding illustrates that the indirect benefits of reducing spread (e.g.

in younger essential workers) is still important to take into account even if the vaccine is relatively less effective at

mitigating infections than deaths.

3 Discussion

Key insights and results from our analysis are summarized in Box 1. Together these lessons show the strong im-

plications of considering dynamic solutions, social distancing and essential workers (given their limitations in social

distancing) for vaccine prioritization.

While vaccine prioritization discussion often takes the form of identifying tiers that should be vaccinated to

completion before moving on (e.g., see (5, p. 25)), we find that the optimal approach does not involve seeking 100%

coverage in a single group before prioritizing other groups. In fact, in some cases a group is prioritized early on,

and then revisited two or more periods later. These findings are indicative of the diminishing marginal returns to

vaccinating individuals within a demographic group. Because social contacts are concentrated within groups, as

vaccine coverage in a given group increases, risks for that group fall more sharply than for others. Thus, as group

vaccine coverage increases, we see attenuation in the direct benefits (protection of the vaccinated) and indirect benefits

10

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.22.20199174doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.22.20199174
http://creativecommons.org/licenses/by-nd/4.0/


Box 1. Key insights and results

1. Benefits: Prioritization can reduce a particular undesirable outcome (deaths, YLL, or infections),
by 17-18% in the Base scenario (or 8-23% depending on the alternative scenario).

2. Dynamic prioritization: (A) Prioritization is responsive to the initial and evolving disease status;
(B) Diminishing marginal returns to additional vaccination within a group drives a shift to other
groups well before 100% vaccination of the first group is achieved.

3. High prioritization: Under the Base scenario, group prioritization over the first three months
starts with essential workers then, depending on the objective, progresses to older and younger
seniors (deaths), younger seniors only (YLL) or school-age children (infections).

4. Low prioritization: At three months (30% of the population vaccinated) the only two groups
consistently not targeted are pre-school-age children and older non-essential workers.

5. Widening prioritization: As vaccination rates rise, precise prioritization becomes less critical and
targeting widens to a larger set of groups.

6. Sensitivity: Some prioritization results are sensitive to the scenario modeled—especially whether
or not those under 20 are less susceptible.

7. Trade-offs: Focusing on one objective leads to sacrifices in the other objectives, typically strongest
when minimizing infections.

(protection of the unvaccinated) of additional vaccinations in that group.

Available existing analysis of optimal COVID-19 vaccination targeting in preprint form is limited to Matrajt

et al. (11) and Bubar et al. (12). Before comparing and contrasting results some key modeling differences should

be noted. Both preprints consider a wider range of vaccine availability than considered here. Our analysis uniquely

incorporates non-pharmaceutical interventions (NPI), including social distancing and non-social distancing (e.g. mask

wearing). Doing so allows us to account for differences between groups like essential workers constrained in distancing

versus others who are much less so. Matrajt et al. and Bubar et al. both implement static optimization where all

vaccination available is allocated and administered in a one-shot process. Our allocation is dynamic, responding to

changing conditions over a six-month period. Finally, Matrajt et al. and Bubar et al. model vaccines as “leaky”, i.e.,

reducing the probability that a susceptible individual will be infected. Bubar et al. also considers an “all-or-nothing”

vaccine that is 100% effective for a fraction of the population. In our Base model the vaccine is “all-or-nothing”,

though we also consider a leaky vaccine, as discussed at the end of the Results.

Matrajt et al. (11) found that optimal strategies to minimize deaths and years of life lost will either exclusively

target groups with high infection fatality rates maximizing the direct benefit of vaccines, or will target groups with

high rates of infection maximizing the indirect benefits of the vaccine. In contrast, our results indicate that optimal

policies initially target groups with high risk of infection and then switch to targeting groups with high infection

fatality. This difference most likely follows from our dynamic versus static allocation. The switching behavior we

identify is consistent with past work on pandemic influenza vaccine prioritization, which suggests that early in an

outbreak when the infection rate is growing targeting spread (maximizing indirect benefits) is more efficient, but later

when the infection rate is leveling off or declining maximizing direct protection is most efficient (18). Consistent with

this explanation, we find that the oldest group is prioritized in the first decision period when deaths are minimized

in the “Strong NPI” scenario where the number of infections are declining, compared to the Base case where they
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are not prioritized until the second period.

Bubar et al. found that prioritizing adults older than 60 years of age is a robust strategy for minimizing deaths.

In contrast we find that working-age adults are a key priority group, particularly older essential workers. These

differences may either arise from our allowance for social distancing and/or dynamic allocation. Our accounting for

social distancing on COVID-19 transmission increases the modeled benefits of targeting essential workers, who are

less able to substantially reduce their social contacts than individuals over 60. Furthermore, as discussed above, the

ability of dynamic policies to switch over time allows the allocation schemes we discuss to capture the benefits of using

the initial vaccine supply to slow transmission without sacrificing direct protection of more vulnerable individuals

later on.

While we explored a large set of alternative scenarios, there are other important possibilities that we have not

included. For example, if certain population groups (e.g., children or seniors) experience significant side effects from

the vaccine, prioritization might shift away from these groups (19). Another key component is the set of logistical

constraints imposed by the distribution network used. Vaccines will likely be administered through various points

of contact with the community (pharmacies, clinics, schools, etc.). For some demographic groups there may be

differences between the share of vaccines targeted to that group and the actual share received, e.g., due to constraints

in prediction and implementation.

We do not consider the potential for vaccine hesitancy in the model. In general, we find that it is not necessary

or even ideal to vaccinate all of the susceptible individuals in a demographic group, at least given the limit of 60%

of the population vaccinated we considered here. Thus, at least initially, some level of vaccine hesitancy may not

have a material impact. However, hesitancy may play a more significant role in the longer run, especially if hesitancy

rates are large and herd immunity proves difficult to achieve (e.g. if vaccine efficacy is low, and/or NPI relaxation

is aggressive). Vaccine hesitancy that is concentrated in a particular community or demographic group could also

change the optimal prioritization strategy. Similarly, adjustments would be needed if groups differ in the duration of

vaccine efficacy or diligence in obtaining a second dose of the vaccine (if necessary).

For simplicity we limited policy objectives to a set of concise metrics of health outcomes (minimizing expected

cases, years of life lost, or deaths). However, other health-related metrics such as protecting the most vulnerable and

social values such as returning to school, work and social life are important to consider. Our analysis reveals that

optimal strategies for minimizing deaths and years of life lost are broadly aligned with the goal of protecting the

most vulnerable. These solutions target essential workers who are the least able to participate in NPI such as social

distancing and thus are the most at risk of infection, and individuals over the age of 60 who have the highest risk of

deaths if infected by the disease. Other social values such as returning to school will most likely change the allocation

schemes to offset the risk created by relaxing social distancing. For example, if allowing children to return to school

was a high priority, then allocation strategies might be tilted towards targeting school-age children and teachers. A

detailed analysis of optimal vaccine allocation given the relaxation of social distancing to achieve particular social

objectives is a promising direction for future research.
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4 Methods

4.1 Model

To investigate the impact of vaccination strategies on the COVID-19 pandemic in the U.S., we employed a structured

compartmental transmission model similar to (20). We incorporated the demographic structure of the population by

tracking six age groups in the set J = {0-4, 5-19, 20-39, 40-59, 60-74, 75+}. We then extend this set to differentiate

essential workers by splitting the two prime working age groups into two groups—non-essential workers (20-39, 40-

59) and essential workers (20-39*, 40-59*)—yielding four groups of prime working age individuals and a total of

eight demographic groups in J = {0-4, 5-19, 20-39, 20-39∗, 40-59, 40-59∗, 60-74, 75+}. For each demographic group

we tracked 9 epidemiological states: susceptible (S), protected by a vaccine (P ), vaccinated but unprotected (F ),

exposed (E), pre-symptomatic (Ipre), symptomatic (Isym), asymptomatic (Iasym), recovered (R) and deceased (D).

In Fig. 1 we display the compartmental diagram and directions of transitions between epidemiological states.

We modeled the COVID-19 transmission dynamics using a system of coupled ordinary differential equations for

each demographic group, indexed by i and j. The transmission rate was given by the product of the transmission

probability (q), the age-specific susceptibility (si), strength of non-pharmaceutical interventions (θ), the relative

infectiousness of each symptom type (τm)—where m ∈ M ≡ {asym, pre, sym}—and the rate of contact (rm,i,j)

between infected individuals with symptom type m from group j and susceptible individuals from group i. The

exogenously given population vaccination rate at time t is given by v(t), where units of time are days.2 In our Base

model we assume that for each individual the vaccine either works or it does not (though we also consider vaccines

that are partially effective for all vaccinated in our sensitivity analysis). Individuals in group i are vaccinated at

a rate of µiv(t) and a fraction of the those (εi) are protected while a fraction remain susceptible and move to the

failed vaccination category (F ).3 Once infected, individuals move from exposed to pre-symptomatic at rate D−1
exp.

Pre-symptomatic individuals become symptomatic or asymptomatic at rates σasym/Dpre and (1 − σasym)/Dpre,

respectively. Asymptomatic individuals recover at an uniform rate D−1
asym and symptomatic individuals either recover

or die at a rate of (1− δa)/Dsym or δa/Dsym, respectively, where δa is the age-specific infection fatality rate. These

assumptions yield the system of differential equations described in SI Appendix A.1 , with parameter values given in

SI Appendix A.2 and A.3.

4.2 Contact rates

Contact rates indicating the level of direct interaction of individuals within and between groups drive the transmission

dynamics in the model. We built the contact matrices used in this model from the contact matrices estimated for the

U.S. in (21). These estimates are given for age groups with five year age increments from 0 to 80 yrs. These estimates

were aggregated to provide estimates for the coarser age structure used in our model. We also extended these data

2In the event that vaccination requires two doses over time, we consider an individual vaccinated upon receipt of the second
dose at time t and we assume that v indicates the number of individuals that can be vaccinated with the required number of
doses.

3This vaccine efficacy is inclusive of any efficiency loss from typical handling in the distribution chain.
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to estimate the contact rates of essential workers. A detailed derivation of these contact rates can be found in SI

Appendix A.6 but, in short, we assumed that essential workers have on average the same pattern of contacts as an

average worker in the population in the absence of social distancing. We then scaled the contact rates for essential

and non-essential workers to represent the effects of social distancing and calculated the resulting mixing patterns

assuming homogeneity between these groups.

We constructed contact matrices for each of four locations, x ∈ {home,work, school, other}, following (21). The

total contact rate for an asymptomatic individual before the onset of the pandemic is given by the sum of these

location specific matrices. However, it is clear that populations are exhibiting social distancing in response to the

pandemic (22). We further expect symptomatic individuals to change their behavior in response to the illness. We

account for these behavioral changes as described next.

4.3 Social distancing

Expression of symptoms and social distancing policies are likely to change individuals’ behaviors over time. To model

these changes we scaled the contribution of each contact matrix for location x:

rm =
∑
x

αm,x ∗ rx. (1)

The weights αm,x depend on disease and symptom status (m) and location (x) as specified in Table 2. We scaled

social contacts for symptomatic individuals following changes in behavior observed among symptomatic individuals

during the 2009 A/H1N1 pandemic (23). For those without symptoms (susceptible and asymptomatic) the weights

were specified to match reduced levels of social contacts as the product of social distancing policies. Home contact

rates were held constant. Since completed research studies to understand changes in work contact rates are not yet

available, we select a level based on preliminary survey data across eight U.S. regions collected by the Institute for

Transportation Studies at the University of California Davis, which indicates that trips to work have fallen after

the onset of the pandemic from an average of 4.1 to 1.9 days, or 54% (24). The work contact rates for both model

formulations were set to be consistent with an overall reduction of 54%. This value was used directly in the “Age-

only” scenario and divided into a weight of 100% for essential workers and a weight of 9% for non-essential workers in

the Base model (with essential workers). School contact rates were set to an assumed weight of 30%, to account for

a mixed effect of a small fraction of schools remaining open and possible increased social contacts between school-age

children during time that would otherwise have been devoted to school. As an alternative scenario, we considered

the case of more school contacts with a weight of 70% (see SI Appendix Table 4). Contacts in other locations were

given an assumed weight of 25%.

The proportion of workers deemed essential, p, was estimated with two components: the total number of workers

involved in activities essential to the maintenance of critical services and infrastructure and the fraction of these

workers that were required to work in person. The cyber-security and infrastructure security agency of the U.S.

estimates that 70% of the workforce is involved in these essential activities (e.g. healthcare, telecommunications,
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Disease and Contact rate weights, αm,x

symptom type Model home work school other

symptomatic all 1.0 0.09 0.09 0.25
susceptible,
asymptomatic

age-only 1.0 0.54 0.3 0.25
age and essential workers 1.0 1.0∗, 0.09 0.3 0.25

Table 2: Weights on contact rates for a given disease and symptom type (m) and location/activity (x) under
social distancing. When essential and non-essential-worker weights are both needed the former is marked
with a star.

information technology systems, defense, food and agriculture, transportation and logistics, energy, water, public

works and public safety)(25). We used estimates of the fraction of workers that could successfully complete their

duties from home produced by (26) who estimated this value at approximately 30%. These two values gave a final

proportion of p = 0.7(1− 0.3) = 0.49.

4.4 Transmission rate calibration

The model was calibrated to match the observed R0 for COVID-19 in the U.S. (see SI Appendix Table 3) by solving

for probability of transmission q, assuming a naive (pre-pandemic) population. Details of this procedure are provided

in SI Appendix A.4.

4.5 Initial conditions

Because the expected epidemiological conditions {Ipre(0), Iasym(0), Isym(0), S(0)} by the time the initial vaccine

doses are ready for deployment are uncertain, we constructed plausible baseline values for the U.S. using estimates

of COVID-19 disease burden from the start of the outbreak in February 2020 through mid-September 2020 and used

projected disease burden estimates by December 1, 2020 taken from near real-time projections by the Institute of

Health Metrics and Evaluation (27). Specifically, we set the initial epidemiological conditions to be consistent with

cumulative and current cases by December 1, 2020. These cases were apportioned between demographic groups to

reflect the attack rates of COVID-19 for each group under the given social distancing policy.

4.6 Vaccine prioritization optimization

The planner’s decision problem is to allocate the daily supply of vaccine (v(t)) across the demographic groups

according to a given objective. We assume that this group allocation vector, µ, can be chosen on a monthly basis

at the beginning of each of the first six decision periods. We numerically solved for vaccine allocation strategies

that minimize the total burden associated with three different health metrics: deaths, years of life lost (YLL) or
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symptomatic infections:

deaths: min

{∫ T

0

∑
i∈J

Isym,i(t)/Dsymdt

}
(2)

YLL: min

{∫ T

0

∑
i∈J

eiδiIsym,i(t)/Dsymdt

}
(3)

symptomatic infections: min

{∫ T

0

∑
i∈J

δiIsym,i(t)/Dsymdt

}
, (4)

where ei is the years remaining of life expectancy for group i and with a six month time horizon (T = 180 days).

Preventing deaths and years of life lost are “consensus value(s) across expert reports” (4, p. 2052) while some argue

that “protecting public health during the COVID-19 pandemic requires...minimizing COVID-19 infection” (5, p. 10).

We solved for the optimal allocation of available vaccines across demographic groups for each month over six

months. We identified the optimal solution using a two-step algorithm. In the first step we used a genetic algorithm

similar to (28) to identify an approximate solution. This approach uses random sampling of the potential solution

space to broadly explore in order to avoid narrowing to a local and not global minimum. In the second step we used

simulated annealing to identify the solution with precision. At a given optimal solution, it may or may not be the case

that the outcome of interest (e.g. minimizing deaths) is sensitive to small changes in the allocation decision. Thus,

around the optimal allocation we also identified nearby allocations that produce outcomes that are less desirable but

still within 0.25% of the optimized outcome. A detailed description of the algorithm is given in SI Appendix A.7.

All code for the optimization was written in the Julia programming language (29).

Data access

All data used for informing the numerical analysis are freely available at the source noted for each measure. The

data and code used to initialize and run the models will be made available on Github upon publication, https:

//github.com/XXX.
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Appendix

A Model specification, parameterization and optimization

A.1 Model dynamic equations

The dynamic equations specifying transitions between the disease states are as follows:

Ṡi = −qsiθ

[∑
j∈J

∑
m∈M

τmrm,i,jSi
Im,j
Nj

]
− µiv (5)

Ḟi = −qsiθ

[∑
j∈J

∑
m∈M

τmrm,i,jFi
Im,j
Nj

]
+ (1− εi)µiv (6)

Ėi = qsiθ

[∑
j∈J

∑
m∈M

τmrm,i,j(Si + Fi)
Im,j
Nj

]
− Ei/Dexp (7)

Ṗi = εiµiv (8)

İpre,i = Ei/Dexp − Ipre,i/Dpre (9)

İasym,i = σasymIpre,i/Dpre − Iasym,i/Dasym (10)

İsym,i = (1− σasym)Ipre,i/Dpre − Isym,i/Dsym (11)

Ṙi = Iasym,i/Dasym + (1− δi)Isym,i/Dsym (12)

Ḋi = δiIsym,i/Dsym. (13)

To reduce clutter we have suppressed the time index t on each of the state variables, the vaccine allocation vector
µi, and the vaccination rate v.
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A.2 Model parameters

Parameter Description Base Value(s) Source

J demographic groups: (1)
age-only,

{0-4, 5-19, 20-39, 40-59, 60-74,
75+},

assumed

(2) age and essential workers {0-4, 5-19, 20-39, 20-39*, 40-59,
40-59*, 60-74, 75+}

σasym infection asymptomatic rate 0.16 (30)

δ infection fatality rate
(age-specific)

{6.7×10−6, 2.5×10−5, 0.0002,
0.002, 0.018, 0.12}

(31)

s susceptibility (age-specific) {0.5, 0.5, 1.0, 1.0, 1.0, 1.0} (9)

τpre relative infectiousness 0.51 (20)
τasym by symptom type 0.51
τsym 1.0

Dexp symptom duration 3.0 (20)
Dpre (days) 3.2
Dasym 3.5
Dsym 7.0

ε vaccine efficiency
(age-specific)

{0.65, 0.65, 0.65, 0.65, 0.65,
0.65}

informed by influenza vaccine
efficiency (32–34)

p proportion of essential
workers

0.49 calculated with labor data
(26, 35); alternative: (36)

R0 secondary infections in a
naive population

2.5 (37, 38)

q transmission probability in a
naive population

0.053 calculated given R0, s and
other parameters

θ scaling factor for transmission
probability due to NPI other
than social distancing

0.65 assumed (consistent with
estimated COVID-19 R0

under NPI (38))

n population shares: (1)
age-only,

{0.06, 0.19, 0.27, 0.26, 0.19,
0.04},

(39)

(2) age and essential workers {0.06, 0.19, 0.19, 0.08, 0.18, 0.8,
0.19, 0.04}

e remaining years of life
expectancy (age-specific)

{76, 66, 50, 31, 17, 6} (40)

Ipre(0) initial pre-sympt. 0.005n IHME estimates and
Iasym(0) initial asymptomatic 0.005n projections (27)
Isym(0) initial symptomatic 0.01n
R(0) initial recovered 0.09n

v fraction of population
vaccinated daily

0.1/30 informed by comments from
CDC Director to U.S. Senate
Panel (41)

Table 3: Base model parameter values and sources.
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A.3 Parameters for alternative scenarios

Scenario Change from Base scenario parameters Source

Strong NPI θ = 0.5 assumed
Weak NPI θ = 0.75 consistent with 30-70%

of U.S. population always
wearing a mask (14) with
33-58% effectiveness (15)

Weak vaccine εi ∈ {0.4, 0.4, 0.4, 0.4, 0.4} informed by influenza vac-
cine efficiency

Weak vaccine seniors εi ∈ {0.65, 0.65, 0.65, 0.65, 0.5, 0.5} informed by influenza vac-
cine efficiency

Low susceptibility ages
< 20

si ∈ {0.34, 0.4, 1.0, 1.0, 1.0} (16)

Even susceptibility si ∈ {1.0, 1.0, 1.0, 1.0, 1.0} assumed
Ramp up

v(t) =

{
0.05/30, t ≤ 90
0.15/30, t > 90

] informed by comments
from the scientific head of
the U.S. vaccine develop-
ment program (17)

Open schools αschool = 0.7 assumed

Table 4: Parameter values that differ from the Base case for alternative scenarios.
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A.4 Calibration

The relationship between the basic reproduction number, R0, and parameters governing transmission and epidemio-
logical characteristics is given by the so-called next-generation matrix:

R0 = max[eigenval{qDpreτpre(r∆s)∆n+ qσasymDasymτasym(r∆s)∆n+ (14)

q(1− σasym)Dsymτsym(r∆s)∆n}],

where the maximum eigenvalue operator wraps several terms including r, the social contact matrix, s, the age-
specific susceptibility rate, n, a vector of the proportions of the population in each demographic group and ∆, an
operator that signifies multiplying each row of a matrix by the corresponding entry in the vector. For symptom type
m ∈ {asym, pre, sym}, the constants Dm, τm and σm represent the duration, relative infectiousness of an individual
and the probability of type m, respectively.

We first set a baseline R0 = 2.5 as estimated by (37). We then solve for the transmission probability parameter,
q, using Equation 14, assuming a naive (pre-pandemic) population. We then scaled q by a fixed factor θ ∈ [0, 1]
to reflect the impact of non-pharmaceutical interventions (NPI) like masks, hand washing and maintaining distance
when contacts are made.

A.5 Initial conditions

We set plausible baseline values for initial epidemiological conditions that will be present in the U.S. population when
a vaccine arrives using estimates of actual U.S. cases from the start of the outbreak (February 2020) through present
and expected cases projected forward through December 1, 2020 produced by the Institute for Health Metrics and
Evaluation (27). For the share of the population that is symptomatic, Isym(0), we take the estimated case count
for the Dsym = 7 days (the duration of symptomatic infection) ending December 1, 2020, multiply by the share of
cases that are symptomatic (1 − σasym) and then divide by the U.S. population. For the pre-symptomatic share,

Ipre(0), we assume it is consistent with Isym(0) but scaled by its shorter duration: Ipre(0) = Isym(0) ∗
(
Dpre

Dsym

)
. The

asymptomatic share is calculated by scaling Isym(0) to account for differences in duration and the relative share of

asymptomatic to symptomatic cases: Iasym(0) = Isym(0) ∗
(
Dasym

Dsym

)
∗
(

σasym

1−σasym

)
. Finally, we estimate the share of

the population that is recovered, R(0), by taking the cumulative projected case count through December 1, 2020,
divided by the total population.
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A.6 Contact matrices distinguishing essential workers

Estimated contact rates for the U.S. were obtained from (21) who used population-based contact diaries from the
European POLYMOD survey to project to other countries, including the U.S. These included contact rates for 16
age classes in five year increments from ages 0 to 80. We collapsed these to five age groups (0-4, 5-19, 20-39, 40-59,
60-80) using population-weighted sums:

r̂i,j,x =
∑
i∈i

Npop
i

Npop
i

∑
j∈j

ri,j,x

 , (15)

where {i, j} are the subscripts for the five year age bins, {i, j} are the subscripts for the larger age bins, ri,j,x is the
average number of daily contacts a person in group i makes with a person in group j for activity/location x, and
Npop
h is the population size for age group h.

The total number of i-to-j contacts must equal the total number of j-to-i contacts: Npop
i ri,j,x = Npop

j rj,i,x.
Because numerical issues—estimation in (21), bin discretization and rounding—can lead to small differences, we
ensure this condition holds by imposing,

ri,j,x =
0.5(Npop

i r̂i,j,x +Npop
j r̂j,i,x)

Npop
i

, (16)

where the numerator is the mean of the two measures of total contacts between groups i and j and the denominator
transforms the result to per-capita in i.

Setting essential worker contact rates requires additional assumptions and attention to the activity/location. We
define the essential worker indicators e ∈ {n, y} for “no” and “yes”. Our grouping is such that all essential workers
(e = y) are employed but non-essential-workers (e = n) are a mix of employed and not employed. Let e′ represent
the indicator for a second group which can be equal or not equal to the value for e.

In the case of all activities/locations x that are not work, contact rates are given by

r(i,e),(j,e′),x =
Npop

(j,e′)

Npop
j

ri,j,x, ∀ x 6= work. (17)

This follows from the assumption that contacts made by any group (i, e) with any other group (j, e′) are independent
of i’s essential worker status. Thus, we only need to split contacts ri,j,x into those made with essential worker type
e′ = y versus the remainder with type e′ = n, i.e. given the share Npop

(j,e′)/N
pop
j .

Estimating contacts when x = work involves a larger number of steps. We first address contacts made by essential
workers (e = y) before turning to non-essential workers (e = n). For e = y, let the share of the working age population
(20− 59) in group i that is employed be given by pi.

We assume that all of the work contacts are attributable to employed adults resulting in an employed adult
contact rate of ri,j,work/pi. Then the contact rate of essential workers (e = y) in group i with age group j is

r(i,y),j,work =
ri,j,work
pi

. (18)

Let the fraction of working age group i that is employed in an essential worker role be given by pi,y. The average
workplace contact rate for non-essential-workers in group i with group j is given by

r(i,n),j,work = αwork

(
ri,j,work
pi

)(
pi − pi,y
1− pi,y

)
, (19)

where αwork < 1 scales for social distancing and the final term in brackets scales for the share of non-essential workers
that are employed and thus have contacts at work.

Finally, we assume that the average workplace contact rate for an individual of type (i, e) with individuals of
type (j, e′) is given by the partial contact rate r(i,e),j,work times the proportion of total work contacts of individuals
in group j that are made by individuals in sub group e′:

r(i,e),(j,e′),work = r(i,e),j,work

(
N(j,e′) · ri,(j,e′),work

N(j,y) · ri,(j,y),work +N(j,n) · ri,(j,n),work

)
. (20)

Finally we scale the work contacts for age groups that are not separated into essential and non-essential workers
(5-19, 60-80) to match the scaling for prime working age classes.
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ri,j,work =

(
pi,y
pwork

+ α
pwork − pi,y

pwork

)
ri,j,work (21)

A.7 Optimization algorithm

The optimization algorithm used in our analysis is split into two parts. First a genetic algorithm is run to identify
an effective strategy near a global optimum. This solution is then refined via simulated annealing.

Genetic algorithms take inspiration from the natural process of evolution, and work by randomly sampling a
populating of candidate solutions, selecting a set of survivors based on the candidates performance against the
objective function, information from these survivors is then used to generate a new generation of candidates solutions,
and so forth (28). The genetic algorithm executes the following steps:

1. Sample Nt=0 candidate solutions {xn,t=0} from a Dirichlet distribution with parameter α0.

2. Each candidate solution is evaluated with the objective function.

3. The bests Kt=0 candidates {xbestn,t=0} are solved and the distributions parameter α0 is updated to α1 by maxi-
mizing the likelihood of of the {xbestn,t=0}.

4. Steps 1 to 3 are repeated for a fixed number of iterations T and the best candidate solution sampled at any
iteration is returned. The values Nt and Kt are tuned for each step to maximize performance.

Simulated annealing is based on thermodynamic models of cooling metals. Briefly, the algorithm is initialized
by sampling a candidate solution x0, this candidate solution is updated by sampling a new candidate solution xt
from a proposal distribution centered around x0. This solution is either accepted and replaces the current x0 or
it is rejected and a new candidate solution is drawn using the existing value of x0. The proposed solutions xt are
accepted if they perform better against the objective than the incumbent x0, if xt > x0 it is selected with probability
p = exp [−(xt − x0)/Tt]. large values of Tt increase the probability that a new candidate solution will be accepted
allowing the algorithm to explore the solution space and move away from local minima. Tt is reduced over time to
allow the algorithm to start exploring the solution space and then eventually stabilize on a global minimum. The
simulated annealing executes the following steps:

1. Initialize a chain with value x0. Generate a new sample from the proposal distribution xt ∼ tr(N(tr−1(x0), σI))
where the transform tr from Rn to the solution space. Initialize a counter i that tracks the number of iterations.

2. If xt < x0 replace x0 with xt, update i = i+ 1 and repeat from step 1.

3. If xt > x0 sample µ ∼ unif(0, 1). If µ > exp (−(xt − x0)/T (i)) then replace x0 with xt update i and repeat
from step 1. Otherwise save x0 and repeat from step 1. We used T (i) = T0/i as the temperature function.

4. Stop when i > max iter

These algorithms were tuned experimentally to consistently converge on a minimum solution on a test case. We
used the minimum years of life lost under the Base parameter set as our test case.

To quantify the sensitivity of the solutions to deviations in the outcome of interest, we sampled solutions near the
optimal solution using a Markov chain. This algorithm is initialized at the optimal solution identified by simulated
annealing and the genetic algorithm and samples are drawn from a proposal distribution and accepted if they perform
within the desired tolerance (0.25%) of the optimal solution.

B Results for additional scenarios

In this section we present detailed results for each alternative scenario. For simplicity we do not repeat extended
figure captions, which follow those of main text Figures 2 and 3 (except for the stated scenario).
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B.1 Age-only demographic groups (without essential workers)

Figure 5: Alternative scenario—Age-only groups: The optimal allocation of vaccines between age
groups at each decision time point. Each panel shows the solution for a given objective.

Figure 6: Alternative scenario—Age-only groups: The number of infections per 1,000 individuals over
time under each policy (left) and the performance of each policy relative to a a uniform allocation policy
(right).
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B.2 Strong NPI

Figure 7: Alternative scenario—Strong NPI: The optimal allocation of vaccines between age groups at
each decision time point. Each panel shows the solution for a given objective.

Figure 8: Alternative scenario—Strong NPI: The number of infections per 1,000 individuals over time
under each policy (left) and the performance of each policy relative to a a uniform allocation policy (right).
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B.3 Weak NPI

Figure 9: Alternative scenario—Weak NPI: The optimal allocation of vaccines between age groups at
each decision time point. Each panel shows the solution for a given objective.

Figure 10: Alternative scenario—Weak NPI: The number of infections per 1,000 individuals over time
under each policy (left) and the performance of each policy relative to a uniform allocation policy (right).
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B.4 Weak vaccine

Figure 11: Alternative scenario—Weak vaccine: The optimal allocation of vaccines between age groups
at each decision time point. Each panel shows the solution for a given objective.

Figure 12: Alternative scenario—Weak vaccine: The number of infections per 1,000 individuals over
time under each policy (left) and the performance of each policy relative to a uniform allocation policy
(right).
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B.5 Weak vaccine in seniors

Figure 13: Alternative scenario—Weak vaccine in seniors (ages 60+): The optimal allocation of
vaccines between age groups at each decision time point. Each panel shows the solution for a given objective.

Figure 14: Alternative scenario—Weak vaccine in seniors (ages 60+): The number of infections per
1,000 individuals over time under each policy (left) and the performance of each policy relative to a uniform
allocation policy (right).
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B.6 Lower child susceptibility

Figure 15: Alternative scenario—lower child susceptibility (ages < 20): The optimal allocation of
vaccines between age groups at each decision time point. Each panel shows the solution for a given objective.

Figure 16: Alternative scenario—lower child susceptibility (ages < 20): The number of infections
per 1,000 individuals over time under each policy (left) and the performance of each policy relative to a
uniform allocation policy (right).
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B.7 Even susceptibility

Figure 17: Alternative scenario—Even susceptibility: The optimal allocation of vaccines between age
groups at each decision time point. Each panel shows the solution for a given objective.

Figure 18: Alternative scenario—Even susceptibility: The number of infections per 1,000 individuals
over time under each policy (left) and the performance of each policy relative to a uniform allocation policy
(right).
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B.8 Ramp up

Figure 19: Alternative scenario 4—Ramp up: The optimal allocation of vaccines between age groups
at each decision time point. Each panel shows the solution for a given objective.

Figure 20: Alternative scenario 4—Ramp up: The number of infections per 1,000 individuals over time
under each policy (left) and the performance of each policy relative to a a uniform allocation policy (right).
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B.9 Open schools

Figure 21: Alternative scenario—Open schools: The optimal allocation of vaccines between age groups
at each decision time point. Each panel shows the solution for a given objective.

Figure 22: Alternative scenario—Open schools: The number of infections per 1,000 individuals over
time under each policy (left) and the performance of each policy relative to a a uniform allocation policy
(right).
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C Vaccine that is partially effective at the individual level

Vaccines can provide multiple forms of protections against infections. Among these protections is the ability for
vaccines to prevent individuals from becoming infected (the case considered in the main text). In addition, if
vaccinated individuals still become infected they may (1) develop reduced infectiousness and/or (2) exhibit reduced
severity. To allow for these latter two cases we changed the model structure to track vaccinated and infected
individuals. To do this we maintained the protected and uninfected category P and added four categories: vaccinated
and exposed class Pexp, vaccinated and pre-symptomatic Ppresym, vaccinated and asymptomatic Pasym and vaccinated
and symptomatic Psym. The three vaccine efficiencies are modeled by three age specific vectors, V Esucpt, V Etrans,
and V Esym, which represent the amount the vaccine reduces the susceptibility of vaccinated individuals to infection,
the reduction in infectiousness of vaccinated individuals and the reduction in infection fatality rate of vaccinated
individuals. This new model can be described by the following system of equations:

Ṡi = −qsiθ

[∑
j∈J

∑
m∈M

τmrm,i,jSi
Im,j
Nj

+ τmrm,i,jSi
Pm,j(1− V Etrans)

Nj

]
− µiv (22)

Ṗi = −qsi(1− V Esucpt,i)θ

[∑
j∈J

∑
m∈M

τmrm,i,jPi
Im,j
Nj

+ τmrm,i,jPi
Pm,j(1− V Etrans)

Nj

]
+ µiv (23)

Ėi = qsiθ

[∑
j∈J

∑
m∈M

τmrm,i,jSi
Im,j
Nj

+ τmrm,i,jSi
Pm,j(1− V Etrans)

Nj

]
− Ei/Dexp (24)

˙Pexp,i = qsi(1− V Esucpt,i)θ

[∑
j∈J

∑
m∈M

τmrm,i,jPi
Im,j
Nj

+ τmrm,i,jPi
Pm,j(1− V Etrans)

Nj

]
− Ei/Dexp (25)

İpre,i = Ei/Dexp − Ipre,i/Dpre (26)

Ṗpre,i = Pexpi/Dexp − Ppre,i/Dpre (27)

İasym,i = σasymIpre,i/Dpre − Iasym,i/Dasym (28)

Ṗasym,i = σasymPpre,i/Dpre − Pasym,i/Dasym (29)

İsym,i = (1− σasym)Ipre,i/Dpre − Isym,i/Dsym (30)

Ṗsym,i = (1− σasym)Ppre,i/Dpre − Psym,i/Dsym (31)

Ṙi = Iasym,i/Dasym + (1− δi)Isym,i/Dsym + (1− δi (1− V Esym))Psym,i/Dsym (32)

Ḋi = δi(1− V Esym)Psym,i/Dsym + δi(1− V Esym)Isym,i/Dsym (33)

We consider three cases. For comparison with the Base model, we consider the same level of efficacy: V Esym =
V Esucpt = V Etrans = 65%. Next we consider a vaccine that is more effective at reducing the severity of illness
but less effective at preventing infection and transmission. We consider a moderate case where V Esym = 70% and
V Esucpt = V Etrans = 30%. Finally we consider a more extreme case where V Esym = 90% and V Esucpt = V Etrans =
10%. These three scenarios will be referred to as the “All 65%”, “70%-30%”, and “90%-10%” scenarios, respectively.

Iterations of main text Fig. 2 and Fig. 3 for these three alternative scenarios are shown further below. To
compare and contrast cumulative vaccination results, directly below in Fig. 23 we show for the Base model and the
three alternative scenarios the percentage of each group vaccinated after three months (left panel) and six months
(right panel). In general, results are similar between the Base model with 65% of individuals 100% protected when
vaccinated and the alternative where vaccines are 65% effective for all vaccinated. When shifts are apparent at either
three or six months, they typically involve younger essential workers or younger seniors.

Across scenarios, we find that results after three months are sensitive in specific cases. When minimizing deaths
or infections, results are relatively insensitive. A notable exception is for infections under the extreme scenario (90%-
10%), we see a shift away from school-age children to the youngest and oldest. When minimizing YLL, we found
substantial shifts between three groups: younger essential workers, younger seniors and older seniors.

After six months, the sensitivity and shifting lies mostly with younger groups (under 40) when focused on mortality
(deaths or YLL) and conversely with older groups (over 40) when focused on infections (except for the extreme case,
90%-10%).

34

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.22.20199174doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.22.20199174
http://creativecommons.org/licenses/by-nd/4.0/


(a) Three months (b) Six months

Figure 23: The cumulative percent of each demographic group (x-axis) vaccinated after three or six months
under the Base model and three alternative scenarios for partial vaccine efficacy (y-axis) for each objective
(panel). Vaccine supply is sufficient to vaccinate 10% of the population each month.
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C.1 Vaccine reducing mortality and spread equally

Figure 24: Alternative scenario—Partially effective vaccine, reduces susceptibility, transmission
and infection fatality rate by 65%.

Figure 25: Alternative scenario—Partially effective vaccine, reduces susceptibility, transmission
and infection fatality rate by 65%.
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C.2 Vaccine reducing mortality more than spread (moderately)

Figure 26: Alternative scenario—Vaccine reducing mortality more than spread (moderately).

Figure 27: Alternative scenario—Vaccine reducing mortality more than spread (moderately).
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C.3 Vaccine reducing mortality more than spread (strongly)

Figure 28: Alternative scenario—Vaccine reducing mortality more than spread (strongly).

Figure 29: Alternative scenario—Vaccine reducing mortality more than spread (strongly).

38

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.22.20199174doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.22.20199174
http://creativecommons.org/licenses/by-nd/4.0/

