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ABSTRACT 
Background Hearing loss is one of the most common birth disorders in humans with an 

estimated prevalence of 1-3 in every 1000 newborns. This study has investigated the 

molecular etiology of a deaf cohort using a stepwise strategy to effectively diagnose patients 

and the challenges faced to verify genetic heterogenicity and the variable mutation spectrums 

of hearing loss.  

 

Methods In order to target known pathogenic variants, multiplex PCR plus next-generation 

sequencing was applied in the first tier, while undiagnosed cases were further referred to 

exome sequencing. A total of 92 unrelated patients with nonsyndromic hearing loss were 

enrolled.  

 

Results In total, 64% (59/92) of patients were molecularly diagnosed, 44 of which were 

identified in the first tier by multiplex PCR plus sequencing. Of 48 undiagnosed patients from 

the first tier, exome sequencing identified eleven diagnoses (23%, 11/48) and four probably 

diagnoses (8%, 4/48). The rate of secondary findings of exome sequencing in our cohort is 

3.4%. 

 

Conclusion The research presented a molecular diagnosis spectrum of 92 non-syndromic 

hearing loss patients and demonstrated the benefits of using the stepwise diagnostic approach 

in the genetic test of the non-syndromic hearing loss patient cohort. 

 

Key words: nonsyndromic hearing loss, molecular etiology, exome sequencing, stepwise 

diagnose approaches. 

 

INTRODUCTION 
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Hearing loss is one of the most common birth disorders in humans with an estimated 

prevalence of 1-3 in every 1000 newborns.1 Seventy percent of hearing loss cases are 

nonsyndromic, and one of the primary etiologies is attributable to genetic predisposition.1 2 As 

on date, over 100 genes have been associated with nonsyndromic hearing loss (NSHL),3 4 and 

new genes are being discovered with time.5 The timely and effective diagnosis of affected 

individuals is challenged by the genetic heterogenicity. 

 

Despite the high heterogenicity, the most common mutations found in distinctive populations 

are from the GJB2 gene, which encodes the connexin 26 protein and causes 

severe-to-profound autosomal recessive nonsyndromic hearing loss.2 6 Therefore, GJB2 

Sanger sequencing was first performed in previous studies.7 8 Interestingly, the frequency of 

causative genes shows a variation across different populations and ethnicities. The OTOF was 

revealed to be a major and potential contributor to hearing loss, instead of GJB2, in the Saudi 

population.8 The SLC26A4 is another preliminary gene causing nonsyndromic hearing 

impairment with enlarged vestibular aqueduct in Asian, Middle Eastern and Ashkenazi Jews,9 

while mutations in GJB2 accounts for 21% of congenital hearing loss.10 A single Sanger 

sequencing was capable of covering the whole region at an affordable cost as the GJB2 

coding region has only 226 amino acids. The SLC26A4 has 21 exons and the coding 

sequencing spanned 2343bp from exon 2 to exon 21, which requires multiple Sanger tests. 

 

Although exome sequencing has been proposed and used in hearing loss patients as first tier, 
11 12 interpreting WES data is usually laborious and time-consuming. Tiered or stepwise 

diagnose approaches for these patients have been propounded in literature multiple times.5 7 13 

14 Guan et al. provided a two-tier strategy including combined Sanger and targeted deletion 

analyses of GJB2 and STRC and two mitochondrial genes, followed by exome sequencing 

and target analysis of deafness-related genes.7 Li et al. performed hotspot variant screening 

and exome sequencing subsequently in one family with deafness.5  

 

This study proposed a hierarchical approach that firstly targets known pathogenic variants by 

multiplex PCR, followed by exome sequencing and comprehensive analysis of deafness genes 

in a cohort of 92 non-syndromic hearing loss patients. Exome sequencing was referred to 

individuals with inconclusive or negative results in the first tier. An analysis of the diagnostic 

rate in different tiers and the contribution of different genetic factors resulted in a 

cost-effective diagnostic paradigm, providing an example to other populations. 

 

MATERIALS AND METHODS 

Participants 

A total of 92 patients with nonsyndromic hearing loss were recruited. We had obtained Signed 

consent from patients. This study was approved by the Institutional Review Board of BGI.  
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Multiplex PCR 

Genetic mutation detection in all patients was carried out by applying Multiplex PCR 

combined with next-generation sequencing. The commercial multiplex PCR kit (BGI Biotech, 

Wuhan, China) was designed to cover certain pathogenic variants of 22 genes, including 

complete coding region of GJB2 and most coding regions of SLC26A4. Genomic DNA was 

extracted from 2 ml of peripheral blood by using DNA Extraction Kit (BGI Biotech, Wuhan, 

China). Targeted variants were amplified by multiplex PCR using 2×KAPA 2G Fast Multiple 

PCR Mix (KAPA BIOSYSTEMS, Wilmington, MA, USA). The PCR program consists of one 

round of 95� for 3min, then 30 cycles including 95� for 15s, 62� for 30 seconds, and 72� 

for 90s.  
 

Library preparation, sequencing and bioinformatics 

PCR products were pooled to prepare for library. Briefly, ~3.5ug purified products were 

sheared by ultrasonoscope and quality-controlled by Agilent Bioanalyzer DNA 2100 kit 

(Agilent, Santa Clara, CA, USA). Subsequently, the end-repair and A-tailing were performed 

before adapters were ligated to both ends of the fragments. Finally, the adapter-ligated 

products were amplified by 8-cycle PCR and purified using Agencourt AMPure XP beads 

(Beckman Coulter, Fullerton, CA, USA). The prepared libraries were subjected to 

single-strand circularized DNA and DNA nanoballs before being sequenced on the 

BGISEQ-500 sequencer (BGI, Shenzhen, China) with PE50.15 Raw sequence reads were 

mapped to the human reference genome (hg19) using the Bowtie 2.3.3 and using SAMtools 

1.6 to create BAM and index files. For variant calling, Genome Analysis Tool Kit (GATK 

3.7)16 was employed to the alignment data and later subjected to a strategic procedure. 

 

Exome sequencing and data analysis 

Genetically undiagnosed patients by multiplex PCR assay were referred to exome sequencing 

which was performed following standard manufacturer protocols of BGISEQ-500 platform. 

An in-house bioinformatics pipeline was employed to process variant call format (VCF) files. 

To maintain variants of potential clinical usefulness, including (i) variants with minor allele 

frequency (MAF) <1%, (ii) variants in genes with an OMIM disease entry. Consequently, we 

interpreted variants in 130 genes curated by ClinGen Expert with a limited-to-definitive 

relationship to hearing loss17 were interpreted. This interpretation was based on ClinGen 

Expert Specification of the ACMG/AMP Variant Interpretation Guidelines for Genetic 

Hearing Loss.18 

 

Definition of molecular diagnosis 

Patients were then categorized as “positive” or “diagnosed” with homozygous or double 

heterozygous of pathogenic/likely pathogenic variant(s) in a recessive inherited gene, or 
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heterozygous of pathogenic/likely pathogenic variant in a dominant inherited gene. Also, 

patients with a pathogenic/likely pathogenic variant plus a rare VUS in a recessive inherited 

gene were titled “probably diagnosed.” Patients with a pathogenic/likely pathogenic variant in 

a recessive inherited gene were defined as “inconclusive”. 

 

Sanger validation and qPCR 

Sanger sequencing was initiated to validate SNPs/Indels detected by either the multiplex PCR 

or exome sequencing. All PCR products were sequenced on ABI 3730XL DNA Analyzer. 

Confirmed mutations were comparing sequencing data to UCSC human reference 

sequences.19 Verification of Exon level deletions or duplications called by exome sequencing 

was carried out by qPCR. 

 

Results 

Of the 92 non-syndromic hearing loss patients, most (82%; 75/92) were not reported with 

hearing loss family history. The degree of hearing loss varied; severe-to-profound hearing loss 

was observed in the majority (84%, 77/92); prelingual hearing loss was detected in 87% 

(80/92) patients. Of note, 17% (16/92) of patients passed the newborn hearing screens at birth 

but developed hearing loss in the later stage (Table 1). 
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Table 1 Characteristics of the study cohort a 
Characteristic No. (%) 

All 92 (100) 

Sex  

Male 54 (59) 

Female 38 (41) 

Family history  

Yes 17 (18) 

No 75 (82) 

Onset  

Prelingual (≤3 y) 80 (87) 

Post-lingual (>3 y) 12 (13) 

Laterality  

Bilateral symmetric 69 (75) 

Bilateral asymmetric 17 (18) 

No record 6 (7) 

Stability  

Stable 58 (63) 

Fluctuating 24 (26) 

No record 10 (11) 

Aminoglycoside Exposure   

Yes 4 (4) 

No 63 (68) 

Uncertain 25 (27) 

Severity b  

Mild 1 (1) 

Moderate 9 (10) 

Severe 20 (22) 

Profound 57 (62) 

No record 5 (5) 

Rehabilitation  

Hearing aid 41 (45) 

Cochlear Implantation 17 (18) 

Both 22 (24) 

Not applied 12 (13) 

Newborn hearing screening result  

Pass 16 (17) 

Referral 36 (39) 

Not applied / No record 40 (43) 

a, All members in this cohort have bilateral hearing loss; the precise type of hearing loss are 

not always recorded, most recorded cases are sensorineural; b, Severity is determined by the 

hearing level of the better ear; WHO grading rule is adopted (Mild: 26-40dB; Moderate: 

41-60dB; Severe: 61-80dB; Profound: >80dB); 
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Forty-four diagnoses by multiplex PCR 

In the first step, 44 patients were genetically positive when tested using multiplex PCR, eight 

inconclusive and 40 negative (Figure 1). The genotypes of 44 patients were listed in table 2, 

including 27 in GJB2, 16 in SLC26A4, and 1 in MT-RNR1. The index patient who was 

positive with m.1555A>G in the MT-RNR1 gene had aminoglycoside exposure history. The 

homozygote of NM_004004.6:c.235delC in the GJB2 gene was the most prevalent genotype, 

accounting 11% (10/92) of the study cohort. Of the 44 patients with positive genotypes, 

NM_004004.6:c.109G>A in the GJB2 gene was identified in 10 patients, including three 

patients with homozygous state and seven patients with compound heterozygous state, 

respectively. One patient was homozygous for both NM_000441.2:c.919-2A>G in the 

SLC26A4 gene and NM_004004.6:c.109G>A in the GJB2 gene. Considering clinical 

diagnosis with enlarged vestibular aqueduct, a phenotype which is highly specific for 

SLC26A4,18 we thus conclude that NM_000441.2:c.919-2A>G is the causing mutation for this 

patient. 
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Table 2 Genotype of non-syndromic hearing loss patients detected by Multiplex PCR sequencing 

No. Gene Transcript Genotype Inheritance Number of patients  

1 GJB2 NM_004004.5 c.235delC/c.235delC AR 10 

2 GJB2 NM_004004.5 c.235delC/c.299_300delAT AR 3 

3 GJB2 NM_004004.5 c.235delC/c.176_191del AR 3 

4 GJB2 NM_004004.5 c.235delC/c.109G>A AR 3 

5 GJB2 NM_004004.5 c.109G>A /c.109G>A AR 3 

6 SLC26A4 NM_000441.1 c.919-2A>G/ c.919-2A>G AR 3* 

7 GJB2 NM_004004.5 c.176_191del/c. 299_300delAT AR 1 

8 GJB2 NM_004004.5 c.299_300delAT/c.109G>A AR 1 

9 GJB2 NM_004004.5 c.109G>A/c.427C>T AR 1 

10 GJB2 NM_004004.5 c.109G>A/c.428G>A AR 1 

11 GJB2 NM_004004.5 c.109G>A/c.583A>G AR 1 

12 SLC26A4 NM_000441.1 c.919-2A>G/c.1174A>T AR 1 

13 SLC26A4 NM_000441.1 c.1226G>A/c.2000T>C AR 1 

14 SLC26A4 NM_000441.1 c.1229C>T/c.1343C>A AR 1 

15 SLC26A4 NM_000441.1 c.1229C>T/c.1692dupA AR 1 
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16 SLC26A4 NM_000441.1 c.1229C>T/c.1707+5G>A AR 1 

17 SLC26A4 NM_000441.1 c.1229C>T/c.919-2A>G AR 1 

18 SLC26A4 NM_000441.1 c.1336C>T/c.919-2A>G AR 1 

19 SLC26A4 NM_000441.1 c.1343C>T/c.2168A>G AR 1 

20 SLC26A4 NM_000441.1 c.2000T>C/c.2168A>G AR 1 

21 SLC26A4 NM_000441.1 c.589G>A/c.2168A>G AR 1 

22 SLC26A4 NM_000441.1 c.919-2A>G/c.1991C>T AR 1 

23 SLC26A4 NM_000441.1 c.919-2A>G/c.1614+1G>A AR 1 

24 SLC26A4 NM_000441.1 c.919-2A>G/c.668T>C AR 1 

25 MT-RNR1 - m.1555A>G Mi 1 

*One patient is homozygous for both SLC26A4 c.919-2A>G and GJB2 c.109G>A; AR, autosomal recessive; AD, autosomal dominant; Mi, Mitochondrial 
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Fifteen diagnoses/probably diagnoses by exome sequencing 
Two groups of patients (n=58) were referred to exome sequencing. Group 1 were the 48 
patients with inconclusive or negative genotypes tested by multiplex PCR (Figure 1). Group 2 
consisted of 10 patients with either homozygous or compound heterozygous for 
NM_004004.6:c.109G>A in the GJB2 gene. In order to exclude other potential molecular 
etiologies, these 10 patients were referred to exome sequencing owing to variable expressivity 
and incomplete penetration of NM_004004.6:c.109G>A in the GJB2 gene.20 
 
Of 48 patients from group 1, exome sequencing identified eleven diagnoses (23%, 11/48) and 
four probably diagnoses (8%, 4/48) (Table 3). No other causing variants related to hearing 
loss were identified from group 2. It was worth noting that the patient P27 was first identified 
as homozygous for NM_001038603.3(MARVELD2):c.1208_1211delGACA by exome 
sequencing. Considering a non-consanguineous family history, we performed qPCR and 
recovered a deletion covering exon 3 to exon 5 in the MARVELD2 gene. Variant 
c.1208_1211delGACA locates in exon 4, where the other allele was deleted. Thus, we can 
conclude that c.1208_1211delGACA is strictly hemizygous in this case. 
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Table 3 Diagnoses solely made by exome sequencing 

Patient ID Gene Transcript Genotype Inheritance Onset Severity 
Family 
history 

P11 SLC26A4 NM_000441.1 c.1229C>T(p.Thr410Met)#/ c.164+1G>C AR Post-lingual Profound YES 

P15 COL11A2 NM_080680.2 
c.966_967insC(p.Thr323Hisfs*19)/ 

c.1879C>T(p.Arg627*) 
AR Prelingual Severe NO 

P27 MARVELD2 NM_001038603.2 c.1208_1211del (p.Arg403Lysfs*11)/ EX3_EX5 DEL AR Post-lingual Profound NO 

P35 MYO15A NM_016239.3 
c.8791delT(p.Trp2931Glyfs*103)/c.10419_10423del(p.Ser

3474Profs*42) 
AR Prelingual Profound NO 

P44 MITF NM_000248.3 c.763C>T(p.Arg255*) AD Prelingual Profound NO 

P58 MYO15A NM_016239.3 c.7308delA(p.Arg2436Serfs*34)/c.9690+1G>A AR Prelingual Profound NO 

P59 CDH23 NM_022124.5 
c.9389_9390delCT(p.Pro3130Argfs*19)/c.9389_9390delC

T(p.Pro3130Argfs*19) 
AR Prelingual Profound NO 

P76 SLC26A4 NM_000441.1 c.919-2A>G#/c.916dupG(p.Val306Glyfs*24) AR Prelingual Severe NO 

P97 COL11A2 NM_080680.2 c.4135C>T(p.Arg1379*) AD Post-lingual No record YES 

P104 MYO15A NM_016239.3 c.4039-2A>C/c.7720C>T(p.Gln2574*) AR Prelingual Profound NO 

P111 SOX10 NM_006941.3 c.482G>A(p.Arg161His) AD Prelingual Profound NO 

Probably diagnoses 

P52 OTOA NM_144672.3 c.1352G>A(p.Gly451Asp)/c.1265G>T(p.Gly422Val) ## AR Prelingual Moderate NO 

P63 TRIOBP NM_001039141.2  c.4919A>G(p.Asn1640Ser)##/c.5185-2A>G AR Prelingual Severe YES 

P89 TMPRSS3 NM_024022.2 c.551T>C(p.Leu184Ser)/c.235T>C(p.Cys79Arg) ## AR Prelingual Profound NO 
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P102 BSND NM_057176.2 c.88C>T(p.Arg30Trp) 

##/c.318delC(p.Tyr107MetfsTer13) 
AR Prelingual Profound NO 

All patients received a negative or inconclusive result in the multiplex PCR test. Novel variants were in bold. AR, autosomal recessive; AD, autosomal dominant. #variants 
also detected by multiplex PCR; ##variants with uncertain significance. Patient P63 is also a carrier of NM_004004.5(GJB2):c.235delC; Patient P89 is also a carrier of 
NM_000441.1(SLC26A4):c.2168A>G. 
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To conclude, the 2-step approach identified the molecular etiology of 59/92 (64%) 
non-syndromic hearing loss index patients, including 44 (48%) diagnoses by multiplex PCR 
in the first step and 15 (16%) diagnoses/probable diagnoses by exome sequencing (Figure 2). 
Mutations in GJB2 were most frequently detected (27/59), followed by mutations in SLC26A4 
(18/59), MYO15A (3/59), COL11A2 (2/59), MT-RNR1, MARVELD2, MITF, CDH23, OTOA, 
TRIOBP, TMPRSS3, SOX10 and BSND (1/59 each).  
 
Additionally, analysis of the exome sequencing data to discover secondary findings was done. 
The cohort displayed two pathogenic variants among the 59 secondary findings genes 
recommended by the ACMG21 (Supplementary table 1). GLA(NM_000169.3):c.1067G>A was 
identified in patient P21. It is related to Fabry disease, an X-linked inborn error of 
glycosphingolipid catabolism resulting from deficient or absent activity of the lysosomal 
enzyme alpha-galactosidase A.22 The second pathogenic variant was  
RYR1(NM_000540.3):c.6502G>A, may causing malignant hyperthermia. The rate of 
secondary findings in our cohort is 3.4% (2/58), comparable to the rate of previously 
published as 1.8% to 4.6%.23-26  
 
Discussion 
This study applied a tiered, genetic testing approach to explore molecular diagnoses for a 
non-syndromic hearing loss cohort, achieving 64% (59/92) diagnostic yield. Although the 
diagnostic yield varies in different patient cohorts and depends on detection methods, our 
diagnostic yield is comparable to a multi-ethnic cohort tested using exome sequencing.11  
 
This study addressed the etiology of 44 indexes in the first tier by using a commercial 
multiplex PCR kit, designing a rapid molecular diagnosis and saving the cost of exome 
sequencing. The multiplex PCR contains amplicons covering GJB2, SLC26A4 and MT-RNR1 
genes. These three genes are known to have hotspot variants causing non-syndromic hearing 
loss in Asian populations.27 28 Compared to a single gene test of GJB2, which is frequently 
used as the first-tier test to exclude hotspot variants before exome sequencing,7 11 a multiplex 
PCR sequencing approach appears to be efficient and cost-effective as it is more flexible to 
detect hotspot variants across multiple deafness-related genes. 
 
The allelic heterogenicity is common in hearing loss and associated with clinical phenotype 
heterogeneity, with both syndromic and nonsyndromic hearing loss being caused by mutations 
within the same gene.29 In this study, although we only enrolled patients with nonsyndromic 
hearing loss, deafness-related variants were identified in syndromic genes. P44 was 
heterozygous with a disease-causing nonsense variant in the MITF gene and P111 was 
heterozygous with a disease-causing missense variant in the SOX10 gene. Both were 
associated with autosomal dominant inherited Waardenburg syndrome, which is called 
non-syndromic hearing loss mimics. The variability of phenotype challenges the clinical 
diagnosis and variant interpretation in genetic hearing loss.18 
 
The molecular diagnosis of nonsyndromic hearing loss is challenged by the variable 
expressivity and high prevalence of NM_004004.6:c.109G>A in the GJB2 gene.20 In our 
cohort, one patient with enlarged vestibular aqueduct was homozygous for both 
NM_000441.2:c.919-2A>G in the SLC26A4 gene and NM_004004.6:c.109G>A in the GJB2 
gene in the first-tier. The genotype-phenotype consistency led us to determine that 
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NM_000441.2:c.919-2A>G in the SLC26A4 gene was the disease-causing variant. On the 
other hand, 10 patients solely diagnosed with NM_004004.6:c.109G>A in the GJB2 gene in 
the first-tier, were referred to a further exome sequencing. No other potential molecular 
explanations were identified. These results indicate the importance of incorporating 
phenotype and genotype in practice. 
 
Copy number variants are a common cause of nonsyndromic hearing loss.30 Exome 
sequencing data is feasible to analyze CNV, although it is characterized by low sensitivity and 
uncertain specificity.31 In this study, one patient in our cohort was diagnosed by a SNV 
compound with a CNV in the MARVELD2. The homozygous of c.1208_1211delGACA in the 
MARVELD2 gene was initially thought as the causing etiology. The lack of consanguineous 
history led us to reanalyze the cover depth of exons in the MARVELD2 gene, and identified an 
EX3_EX5 Del. It presented the importance to question a CNV deletion in a 
non-consanguineous family when a pathogenic variant was identified in a homozygous state. 
 
Worthy of note, 17% (16/92) of patients passed the “newborn hearing screening” at birth but 
developed hearing loss at a later stage. Of these 16 patients, seven were molecularly 
diagnosed, spanning variants in the GJB2 and SLC26A4 genes (Supplementary Table S2). The 
results were consistent with the recent findings that newborns with positive genotypes could 
be missed by physiologic newborn hearing screens but identified by genetic screens, 
highlighting the necessity of concurrent hearing and genetic screening in newborns.28 32 
 
In conclusion, this work demonstrates the benefits of a stepwise approach to diagnose 
non-syndromic hearing loss patients. Instead of using exome sequencing in the first beginning, 
multiplex PCR targeted hotspot variants across multiple genes can provide molecular etiology 
for 48% of patients in a promptly and effective manner. A further cost-effectiveness analysis 
is assured. 
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Figure legend 
Figure 1. Outline of the study design. Patients suffered from nonsyndromic hearing loss 
were enrolled. A total of 92 patients were recruited in this study cohort. After performing of 
Multiplex PCR plus next generation sequencing on all the patients, the 48 undiagnosed and 10 
patients diagnosed by GJB2 c.109G>A were referred to exome sequencing. 
 
Figure 2. Genetic spectrum of enrolled non-syndromic hearing loss probands. Molecular 
diagnostic results were classified according to genes and detection methods. 
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92 probands with NSHL

Multiplex PCR with next 
generation sequencing • 44 Diagnosed cases

• 27 cases were attributable to variants 
in the GJB2 gene

• 16 cases were attributable to variants 
in the SLC26A4 gene

• 1 case was attributable to variants in 
the in MT-RNR1 gene

48 Undiagnosed cases
• 8 inconclusive genotypes
• 40 Negative genotypes

Exome sequencing

33 Undiagnosed cases

11 Diagnosed cases
4 possible diagnosed cases
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