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ABSTRACT
Data-centric models of COVID-19 have been tried, but have cer-
tain limitations. In this work, we propose an agent-based model of
the epidemic in a confined space of agents representing humans.
An extension to the SEIR model allows us to consider the differ-
ence between the appearance (black-box view) of the spread of
disease, and the real situation (glass-box view). Our model allows
for simulations of lockdowns, social distancing, personal hygiene,
quarantine, and hospitalization, with further considerations of dif-
ferent parameters such as the extent to which hygiene and social
distancing are observed in a population. Our results give qualitative
indications of the effects of various policies and parameters; for
instance, that lockdowns by themselves are extremely unlikely to
bring an end to an epidemic and may indeed make things worse,
that social distancing matters more than personal hygiene, and that
the growth of infection comes down significantly for moderately
high levels of social distancing and hygiene, even in the absence of
herd immunity.

KEYWORDS
COVID-19, SEIR, agent-based modeling, lockdown, hygiene, social
distancing

1 INTRODUCTION
The COVID-19 pandemic has presented humanity with grave social
and economic challenges, and also a whole host of research ques-
tions that are not easily answered using standard statistical and
other methods, in large part on account of the lack of sufficient data
about the novel coronavirus SARS-CoV-2. Of particular interest is
to understand emergent situations that may occur as a consequence
of policy choices (e.g., lockdowns) and individual behaviors (e.g., ob-
servance of social distancing and personal hygiene). Policy-makers
and the public at large can benefit by a better understanding of the
macro-level consequences of the delicate micro-level behaviors of
individuals. These macro-level consequences are emergent proper-
ties that arise from the interactions of a large number of diverse
individuals who are part of the system.

Agent-based models (ABMs) help us consider such possible reali-
ties by creating and studying the effects of suitably designed agents
in an interactive environment. Each agent represents an individual
person with certain specific properties and behaviors. These agent
properties are carefully chosen to model humans realistically, and
agent behaviors are programmed keeping real behaviors in mind.

The code and documentation for this work can be accessed from https://github.com/
ABM-for-Covid/ABM-for-Covid-19. We have also created an interactive application
(https://abmforcovid.org) for anyone to run experiments and test with their own
strategies.

With ABMs, it becomes feasible to study the complex system-level
properties which arise from the interactions of individuals.

Certain specific aspects of our ABM for COVID-19 are a larger
set of possible states that enable distinctions between asymptomatic
and symptomatic infections, and parameters to model different lev-
els of hygiene and social distancing. The model also allows for
different levels of hospital care for differences in severity of illness.
Unlike statistical models which often assume a homogeneous pop-
ulation, our model allows for agents with different levels of health,
immunity, and comorbidity. Using simulations based on this ABM,
we are able to evaluate different possible circumstances and observe
their consequences.

Modeling of infectious disease outbreaks is an endeavor of long
standing [24, 49], but almost all efforts use mathematical (equation-
based)modeling techniques [7]. There have also been specific efforts
at modeling possible flu-like pandemics caused by H5N1 (“bird
flu”) [3] and H1N1 (“swine flu”) [26].

In case of the very real COVID-19 pandemic also, there have been
numerous analytical efforts based on mathematical models [1, 4],
as well as data-driven models and projections [16, 34].

Agent-based models have also been used in epidemiology [21,
33, 35, 47], and to model specific instances such as mosquito-borne
diseases [22] and pandemic influenza [25]. Agent-based models
have some advantages over mathematical models [20], such as
in allowing for consideration of heterogeneity in the population,
discovery of emergent properties that are not readily apparent
from the system description, and study of behaviors for which no
closed-form mathematical description is easily available.

There are also some early efforts at modeling COVID-19 using
agent-based models [10, 44].

The present work is distinct in that we create an extended agent-
based model that allows for qualitative evaluations of the effects
of social distancing, personal hygiene, and lockdowns, while tak-
ing into account epidemiological characteristics of COVID-19 [12]
and the heterogeneity of populations of people who may become
affected. The basic SEIR model and its common extensions are not
entirely adequate to model the spread of the disease, as they do not
take into account the classification of infectious states by types—
asymptomatic, symptomatic (but not hospitalized), hospitalized,
and needing intensive care—that is a concern in reality [2].

In our model, each agent represents a human in society who
interacts with others. Human movements and interactions are cap-
tured by motion and occasional proximity in a two-dimensional
grid. Each agent has certain characteristics (see Section 3.2.1 for
details), and some agents change states based on infections and re-
covery. Our model allows us to understand the difference between
a black-box view of the epidemic and a glass-box view (Section 3.1).
It also allows us to control agent parameters to accord with the
characteristics of different people in a large human population

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2020. ; https://doi.org/10.1101/2020.09.16.20195826doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://github.com/ABM-for-Covid/ABM-for-Covid-19
https://github.com/ABM-for-Covid/ABM-for-Covid-19
https://abmforcovid.org
https://doi.org/10.1101/2020.09.16.20195826
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Section 3.2), and to change the characteristics of the system to
model the effects of different policies and public-health practices
(Section 3.2.2).

Our results are in line with expectations; e.g., it is suggested by
Schueller et al. [42] that lockdowns slow down the spread of COVID-
19 and reduce the peak of infections. Silva et al. [44] propose an
agent-based model that allows the simulation of social distancing
and the use of masks (as a specificmeasure of personal hygiene), and
study their effects in certain scenarios, with similar but incomplete
results.

The following are some of the findings of our work:

(1) Social distancing matters more than personal hygiene (Sec-
tion 4.3).

(2) Social distancing and hygiene together matter more than
lockdowns, for controlling the spread of disease (Section 4.4).
In fact, in their absence a lockdown can hurt more than help—
without social distancing and hygiene, a post-lockdown peak
of cases can be higher than without lockdown, with a similar
effect being also seen with more stringent lockdowns as
compared to more relaxed ones (Figure 7).

(3) When the fraction of the population that is immune to the
disease (either by vaccination or by previous exposure or
recovery) is small, say 20%, the peak of infectious cases can
be nearly as high, in the absence of social distancing and
personal hygiene, as when there is no immunity at all in the
population (Section 4.5). Even in case some 40% of the popu-
lation is immune, there can be a large number of infections
in the absence of social distancing and hygiene (Figure 12b).

(4) Proper herd immunity in the classical sense is said to oc-
cur (in the total absence of social distancing and hygiene)
only when some large fraction of the population becomes
immune [38]. However, when a smaller fraction of 40% of the
population is immune (which we describe by saying the frac-
tional immunity of the population is 0.4), this can be achieved
with some observance of social distancing and hygiene; the
same effect is also possible with an even smaller fraction
of 20% of the population being immune, with a rigorous
observance of social distancing and hygiene (Section 4.5).

(5) Surges in hospital capacity (including critical care capacity)
help reduce the number of severely ill people dying due to
lack of access to medical care, but do not directly affect the
overall number of cases to a significant extent (Section 4.6).

2 DISEASE MODEL
A common way of modeling the spread of infectious diseases is
using the SIR (susceptible-infectious-recovered) model [49], which
is a compartmental model that divides the entire population into
three classes. The susceptible state consists of individuals who may
become infected; the infectious individuals are those currently af-
flicted with the disease; and recovered individuals are ones who
have overcome the disease.

An extension of this is the SEIR model [49] that also allows for
an exposed state where an individual has received a load of the
pathogen, but is not yet infectious or symptomatic. In the SEIR
model it is generally assumed that recovered individuals have life-
long immunity.

Both the SIR and SEIR models are generally based on differential
equations, and allow for various types of qualitative analyses [14,
46].

We modify the usual SEIR model to also include multiple infec-
tious states, and to also show when someone is deceased.

2.1 Modified SEIR
The primary motivation for this modification is the observation
that in COVID-19 (but also in other diseases) the infectious state is
not truly a single state describing all infected individuals. Rather,
there are multiple types of infectious states:

𝐼0 This is the infectious asymptomatic state, where an individual
does not show signs of the disease at all, but can transmit
it to others. It is presently believed that a large number of
infected people recover directly from this state, and that
coming into proximity with such asymptomatic individuals
is responsible for a large fraction of the COVID-19 spread [6].

𝐼1 This is the infectious symptomatic state where an individual
shows signs of the disease, but is not (yet) hospitalized, ei-
ther because the symptoms are considered mild enough, or
because hospital care is unavailable.

𝐼2 This is the infectious hospitalized state, where an individual
shows signs of the disease and receives hospital care.

𝐼3 This is the infectious critical care state, where the individual
is severely afflicted and receives critical care in an ICU or
similar, including with specialized devices such as ventila-
tors.

In addition to this, we add a distinguished state 𝐷 to the model,
showing when a sick individual is deceased as a consequence of
the illness. The modified SEIR model is shown in Figure 1.

This model is slightly similar to the one proposed by Arino et
al. [4] which also considers multiple types of infectious states, but
that model is based on differential equations and thus not directly
applicable in an ABM context.

Figure 1: Modified SEIR model for COVID-19, with multiple
infectious states.
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2.2 State Transitions
The state transitions between different states for an individual are
also as indicated in Figure 1.These are as follows.

𝑆 → 𝐸 The state transition from susceptible to exposed happens
when a susceptible individual comes into close contact with
an infectious individual (someone in any of the states 𝐼0, 𝐼1,
𝐼2, or 𝐼3). Each infectious individual has an infection range,
and if another individual comes within their infection range,
they are said to be in close contact. The state transition from
𝑆 to 𝐸 is considered instantaneous (see Section 3.3.1).

𝐸 → 𝐼0 The state transition from exposed to infectious asymp-
tomatic happens upon the completion of the latent period
of the disease, starting from the instant of exposure (see
Section 3.3.2).

𝐼0 → 𝐼1 The state transition from infectious asymptomatic to
symptomatic happens upon the completion of the incubation
period of the disease, starting from the instant of exposure.
In many individuals, this transition may not happen at all,
and the individual may instead transition to 𝑅 (recovered)
directly (see Section 3.3.2).

𝐼1 → 𝐼2 The state transition from infectious symptomatic to
hospitalized happens in some infected individuals when the
symptoms worsen to the point of requiring hospital care (see
Section 3.3.3).

𝐼2 → 𝐼3 The state transition from hospitalized to critical care
happens in some individuals whose aggravated conditions
require ICU and similar critical care (see Section 3.3.4).

𝐼∗ → 𝐷 The state transitions from 𝐼1, 𝐼2, and 𝐼3 to 𝐷 (deceased)
happen in some individuals. Individuals who are in 𝐼1 and
𝐼2 in need of more advanced care (in 𝐼2 and 𝐼3 respectively)
are at increased risk of transition to 𝐷 when such care is
unavailable. Individuals in 𝐼3 are at increased risk of tran-
sitioning to 𝐷 with increasing time spent in that state (see
Section 3.3.5).

3 AGENT MODEL
In this section, we describe our agent model and its workings.
In Section 3.1, we first encapsulate the difference between black-
box and glass-box views of the spread of COVID-19, which is so
important to understanding why this pandemic has proven so hard
to tackle. Section 3.2 describes the primary characteristics of the
agents as well as the system in which they are placed. Section 3.3
describes the state transitions of agents.

3.1 Black-Box and Glass-Box Views
In terms of modeling the occurrence of COVID-19 or any similar
disease in a population, we find it useful to bring in the distinction
between black-box and glass-box views of the epidemic.

The black-box view of the epidemic corresponds to what is ob-
served about the incidence and spread of the disease in an affected
population without widespread testing and tracing—agents just be-
come ill with disease symptoms, and some need to be hospitalized,
while others apparently stay healthy. Except in case of sympto-
matic cases, it is not known who all may carry the infection. This is
related to, but not the same as, the standard definition of black box
epidemiology: “the use of observational epidemiological methods

and inference to arrive at conclusions about cause-effect relations
between risk factors and disease” [28].

The glass-box view of the epidemic is the idealized condition
where there is perfect knowledge of the extent of the epidemic,
both in terms of what agents are infected, and the exact state that
each agent is in. This too is not the same as the standard white box
epidemiology, such as for example seen in the putative correlation
between night-shift work and an increased risk of cancer [13].

As may be expected, in general far fewer agents are known to
be infected in the black-box view, as asymptomatic infections are
unseen. This leads to the situation depicted in Figure 2, where
Figure 2a shows the black-box view, the limited perspective with
relatively few agents showing symptoms, and Figure 2b shows the
glass-box view, the real situation with many infected and exposed
agents in the population.

Another aspect of the difference between the black-box and glass-
box views may be seen from Figure 3 which shows the apparent
progress of the epidemic over time. The higher line corresponds to
the glass-box view, where a much larger fraction of the population
is seen to get the infection. The lower line corresponds to the black-
box view, where a much smaller fraction of the population develops
symptoms and is known to be infected.

The distinction between the black-box and glass-box views is
made possible by the extended SEIR model depicted in Figure 1,
which shows that the states 𝑆 , 𝐸, 𝐼0, and 𝑅 are all asymptomatic, and
thus agents in these states appear not to be infected. An agent that is
in state 𝐼0 is counted as infected in the glass-box view, but not in the
black-box view. Agents that undergo the transition 𝑆 → 𝐸 → 𝐼0 →
𝑅, i.e., are exposed, infected, and subsequently recover without
showing symptoms, and are not known to have been infected at all.

(a) Black-box view. (b) Glass-box view.

Figure 2: Two views of an epidemic at an early stage.

3.2 Individual and Social Attributes
We model humans in a society as a collection of agents, where each
agent is a computational structure that captures some essential as-
pects of humans that are relevant to disease progression and spread.
Some attributes are at an agent level, such as age, health, etc., while
others are at a social level, such as the lockdown efficacy, social
distancing, etc. We discuss the agent characteristics in Section 3.2.1
and the system parameters in Section 3.2.2.
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Figure 3: The Progress of an Epidemic, Glassbox vs. Black-
box Views

3.2.1 Agent Characteristics. An agent Υ is formally defined as a
five-tuple as follows:

Υ = {𝑎, 𝛽, ℎ, 𝑐, 𝜔}
The agent attributes are:
• 𝑎 is the age, 0 < 𝑎 < 90.
• 𝛽 denotes the level of hygiene, 0 ≤ 𝛽 ≤ 1.
• ℎ denotes the level of overall health, ℎ ∈ {0, 1, 2, 3}.
• 𝑐 denotes comorbidity level, 𝑐 ∈ {−2,−1, 0}.
• 𝜔 denotes the immunity, 𝜔 ∈ {0, 1}.

These five attributes are further used to calculate the recovery
score (𝑟 ) and age score (𝑓 (𝑎)), which are described in the following
paragraphs, and are given by (1) and (2).

Age has been shown to be highly relevant to disease progression,
with the elderly most at risk for worse outcomes [11].

The attribute 𝛽 is included to model hygiene as seen in the real
world in the form of protective masks, sanitizers, PPE’s, etc. This
is particularly relevant in inter-personal transmission of the virus,
which is described in detail in Section 3.3.1. A value of 1 corresponds
to perfect hygiene and 0 corresponds to a complete lack of hygiene,
with higher levels of hygiene correlated with lower chances of
transmission.

We model health (ℎ) as a 4-step discrete parameter from 0 to 3.
A value of 3 denotes an agent in perfect health, and a value of 0
denotes an agent in poor health.

It is known that people with comorbid conditions have a higher
death rate, and the death rate further varies based on the comorbid
condition itself, with some conditions being worse than others [41].
A comorbidity (𝑐) value of 0 implies the agent has no comorbid con-
ditions, and a value of -2 implies the agent has the worst comorbid
condition.

Immunity plays a major role in determining the speed of disease
progression [19]. Weak immune response enables the virus multiply
quickly and quickens the onset of symptoms and infectiousness.
In our model, immunity can take a value of either 0 or 1, with 0
corresponding to an immunosupressed agent, and 1 corresponding
to an agent with strong immune response.

We introduce recovery score (𝑟 ) as an integrated metric that
aggregates all these agent attributes, and directly correlates to the
chances of recovery of an infected agent. Unlike all the other at-
tributes, age has a very long range and therefore becomes difficult
to combine with other attributes. Hence, age has to be transformed
to a similar small range as the other attributes.

The effect of age on susceptibility to infection is quite complex [5,
15]. However, in the case of COVID-19, it is known that younger
segments of the population (those below middle age) are generally
less susceptible to infection, and that such susceptibility increases
in middle age and becomes quite large for the elderly [11]. Based on
this, we come up with a function (𝑓 ) mapping the age of an agent
with the infection risk, as follows:

𝑓 (𝑎) =


0 𝑎 > 60
1 0 < 𝑎 < 1
2 40 ≤ 𝑎 ≤ 60
3 1 ≤ 𝑎 < 40

(1)

The age score function 𝑓 (𝑎) maps age, 𝑎, to a range of 0 to 3
where lower values correspond to higher risks. Using this age score
in place of the actual age, we are able to get all the attributes in a
similar range and direction, i.e., higher values of all attributes are a
good thing, and lower values correspond to a higher risk of worse
outcomes.

The values of these agent attributes are now added to get an
integrated recovery score (𝑟 ), which is a measure of the agent’s
chances of recovery, and is given by:

𝑟 = 𝑓 (𝑎) + ℎ + 𝑐 + 2 (2)
It is offset by 2 to counter the negative values of comorbidity

and ensure the metric remains in the positive range. Hence, it can
be seen that 0 ≤ 𝑟 ≤ 8.

3.2.2 System Parameters. In our model, we have five system-
level parameters as given below:

• 𝛼 denotes the efficacy of social distancing, 0 ≤ 𝛼 ≤ 1.
• ^ denotes the lockdown efficacy, 0 ≤ ^ ≤ 1.
• 𝐿 denotes the lockdown duration, in days. 𝐿 > 0.
• 𝑏 denotes the number of beds per 1000 agents, 𝑏 > 0.
• Π denotes the fractional immunity in the system, 0 ≤ Π ≤ 1.

Social distancing has been widely used as a policy to slow the
spread of disease in many places. There are many interactions
between agents in a simulation, and social distancing is said to
be followed in one such interaction if the agents are outside the
infection ranges of each other. If social distancing is followed in a
particular interaction, then there is no disease transmission due to
the said interaction. We define the social distancing efficacy (𝛼) as
the ratio of the number of interactions where social distancing was
followed to the total number of interactions.

Lockdown has been used as a strategy to various degrees by var-
ious countries to “break the chain" and slow the spread of infection.
In a complete lockdown, all agents are static and their movements
are completely restricted. However, more generally, not all agents
observe lockdown and some continue to move around, and this
is modeled through a lockdown efficacy parameter (^). Another
parameter of a lockdown is the duration, denoted by 𝐿. For example,
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Variable Symbol Range

Hygiene 𝛽 [0,1]
Hygiene popn. mean 𝛽 [0,1]
Age 𝑎 [0,90]
Health ℎ {0,1,2,3}
Comorbidity 𝑐 {-2,-1,0}
Immunity 𝜔 {0,1}
Social Distancing 𝛼 [0,1]
Fractional Immunity Π [0,1]
Lockdown efficacy ^ [0,1]
Transmission constant 𝜌 0.25
Incubation period _ [1,14]
Latent period Φ [1,14]
Recovery score 𝑟 {0, 1, 2, . . . , 8}
Bed capacity b 0 ≤ 𝑏 ≤ 1000
Duration in 𝐼∗ 𝑑𝐼∗ —
Scaling constants 𝑘∗ —

Table 1: Notation. The presence of a dash indicates that there
is no pre-set range for that parameter.

a lockdown with 𝐿 = 30 and ^ = 0.8 implies there is a 30 day lock-
down with 20% of agents still mobile, but the other 80% of agents
are completely static.

To consider cases where a fraction of the population is immune
to the disease, either from previous exposure and recovery, or by
immunization or natural immunity, we define a parameter called
fractional immunity, denoted Π, which gives the fraction of the
agent population that is immune at the outset of a simulation. This
notion of fractional immunity is similar to that seen in studies that
seek to model the effect of a pre-existing or acquired immunity
already present in a significant fraction of the population [17, 37].

Hospitals are considered to have two types of resources—normal
beds and ICU beds. The normal beds are for agents in 𝐼2, and the
ICU beds are for those in the more critical 𝐼3. The bed capacity of
the system, denoted by 𝑏, is the number of beds per 1000 agents in
the system.

3.3 State Transitions
The state transitions are as defined in Section 2.2 and their transition
probabilities are described here. The probability of state transition
from 𝑆 to 𝐸 is computed once for every interaction with an infec-
tious agent as described in Section 3.3.1. However, the rest of the
transition probabilities, given by (4)–(13), are all computed on a
daily basis, and if none of the possible transitions occur on any
given day, then the agent continues in the same state.

3.3.1 Transition from 𝑆 , the Susceptible State. Conventional
methods of estimating disease transmission probability use differ-
ential equations and such tools, and work with populations rather
than considering individual interactions [27, 45]. However, in an
agent-based model, the probability of transmission cannot be con-
stant and uniform across all interactions, and should be based on
the interacting agents’ attributes.

A susceptible agent 𝐴 in state 𝑆 can get exposed to the virus
through an interaction with another infectious agent 𝐵. If social
distancing is followed in this interaction, then agent 𝐴 is not ex-
posed, and continues to remain in 𝑆 state even after the interaction.
However, if social distancing is not practiced, then the chances of
transmission depend on the levels of hygiene (𝛽) of both agents.
The levels of hygiene of 𝐴 and 𝐵 may be denoted by 𝛽𝐴 and 𝛽𝐵
respectively. The probability of infection, denoted by 𝑝 (𝐴, 𝐵) is
given by:

𝑝 (𝐴, 𝐵) = 𝜌 (1 − 𝛽𝐴) (1 − 𝛽𝐵) (3)

where 0 < 𝜌 ≤ 1 is a scaling constant. If either agent practices
perfect hygiene, transmission would not occur, and this holds in
our model as well by (3). Otherwise, the agent 𝐴 now transitions
from 𝑆 to 𝐸 with a probability of 𝑝 (𝐴, 𝐵) due to the said interaction.

3.3.2 Transitions from 𝐸, the Exposed State, and 𝐼0, the Asymp-
tomatic State. The duration between an agent first reaching states
𝐸 and 𝐼1 is termed as the incubation period (_). The latent period
(Φ) refers to the duration between states 𝐸 and 𝐼0. In the case of
COVID-19, the latent period is known to be smaller than or equal
to the incubation period [30]. Accordingly, we fix the latent period
is fixed such that 1 ≤ Φ ≤ _.

The incubation period depends on a number of factors including
host immunity (𝜔) and age (𝑎) [19, 48]. The minimum, maximum
and average values are denoted by _𝑚𝑖𝑛 , _𝑚𝑎𝑥 , and _̄ respectively.
Current studies on COVID-19 indicate that the incubation period
is between 2 and 14 days [9] with a mean of 5 days [29].

To calculate the transition probability for a weak immune agent
with 𝜔 = 0, we use the following expressions. We sample a number
𝑥 from a uniform distribution between 0 and 1. The agent transitions
to 𝐼1 directly from 𝐸 if the below condition is met:

1
_̄
≤ 𝑥 ≤ 1

1 + 𝑓 (𝑎) (4)

This creates a higher probability of transition to the 𝐼1 state if the
age score 𝑓 (𝑎) is lower, since the range in which 𝑥 is allowed to
fall now has larger window based on the age score.

If an agent has strong immunity (𝜔 = 1), it has a lower chance
of directly transitioning into the state 𝐼1, as given by the following:

0 ≤ 𝑥 ≤ 1
𝑘1 × _𝑚𝑎𝑥

(5)

If the agent is in the 𝐸 state, there is a chance of moving to state
𝐼0. For both weak and high immune agents, we use the following
expression. We sample another number 𝑦 from the same uniform
distribution, and calculate the transition for 𝐼0 by:

1
_̄ − 2

≤ 𝑦 ≤ 1
_̄ − 3

(6)

Sakurai et al. [40] indicate that the duration to resolution of
infection for asymptomatic individuals is in the range of 3 to 21, and
indicate that a considerable portion of asymptomatic individuals
recover within 15 days. In our model, if an agent in 𝐼0 does not
transition to 𝐼1 within 12 days, then it is considered recovered and
moves to 𝑅.
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3.3.3 Transitions from 𝐼1, the Symptomatic State. A symptomatic
infectious agent in 𝐼1 can transition to 𝐼2,𝐷 , or 𝑅, as seen in Figure 1.
Multiple factors such as the recovery score (𝑟 ) given by (2), the
number of days spent in 𝐼1 (𝑑𝐼1 ), and the availability of hospital
care, determine the next transition.

If hospital beds are available, the agent transitions from 𝐼1 to 𝐼2
with a probability given by:

𝑝 (𝐼1, 𝐼2) = 1 −
𝑟 − (𝑘2 × 𝑑𝐼1 ) + 2

10
(7)

The probability of transition from 𝐼1 to 𝐼2 depends on the recov-
ery score (𝑟 ) and time spent in state 𝐼1 (𝑑𝐼1 ). If 𝑟 is high, it is less
likely for the agent to move to state 𝐼2. If an agent spends more time
in 𝐼1, then the probability of transitioning to 𝐼2 is greater. So, we
use both parameters to calculate the probability 𝑝 (𝐼1, 𝐼2). We use
a multiplicative constant 𝑘2 to rescale 𝑑𝐼1 to be in the same range
as 𝑟 . As this is a probability, and hence should be between 0 and 1,
the expression is scaled and offset appropriately.

However, if a hospital bed is not available, then the agent proba-
bilistically transitions to death, 𝐷 , as given by:

𝑝 (𝐼1, 𝐷) = 𝑘3 × 𝑝 (𝐼1, 𝐼2) (8)

Also, if the agent remains in 𝐼1 for more than 12 days, then it
recovers and transitions to 𝑅. This is with a small margin over the
10 days of infectivity indicated by the CDC [8].

3.3.4 Transitions from 𝐼2, the Hospitalized State. An agent in 𝐼2
can transition to 𝐼3, 𝐼1, or 𝐷 . These transitions also depend on the
recovery score (𝑟 ), duration in 𝐼2 (𝑑𝐼2 ), and the availability of ICU if
needed. If ICU care is available, then the agent transitions from 𝐼2
to 𝐼3 with a daily probability given by:

𝑝 (𝐼2, 𝐼3) = 1 −
𝑟 − (𝑘2 × 𝑑𝐼2 ) + 2

10
(9)

This equation is very similar to (7), and the scaling is done simi-
larly as well.

If ICU care is not available, then the agent transitions to 𝐷 with
a probability given by:

𝑝 (𝐼2, 𝐷) = 𝑘3 × 𝑝 (𝐼2, 𝐼3) (10)

The daily probability that the agent transitions to 𝐼1 and becomes
better is given by:

𝑝 (𝐼2, 𝐼1) =
𝑟

8 × 𝑑𝐼2
(11)

“Prolonged Length-of-stay (PLOS) [in hospital] is associated
with increased mortality and other poor outcomes” [32]. In line
with this, the probability of an agent in 𝐼2 going back to 𝐼1 should
be inversely proportional to the hospitalized duration (𝑑𝐼2 ), as seen
in (11).

3.3.5 Transitions from 𝐼3, the Critical State. An agent in 𝐼3 can
either transition to 𝐷 or 𝐼2, and this depends on the recovery score
(𝑟 ) and the duration in ICU (𝑑𝐼3 ).

The agent transitions to death with an increased probability as
the time spent in ICU increases; a lower value of recovery score
also implies a higher risk of death. Therefore, the daily probability
of dying is given by:

𝑝 (𝐼3, 𝐷) = 1 −
𝑟 − (𝑘2 × 𝑑𝐼3 ) + 2

10
(12)

This is similar to the worse transitions from 𝐼1 and 𝐼2 and the
same scaling factors are used here as well.

The daily probability of progressing and moving back to 𝐼2 is
given by:

𝑝 (𝐼3, 𝐼2) =
𝑟

8 × 𝑑𝐼3
(13)

Agents with higher recovery score have better chances of recov-
ering, and hence 𝑝 (𝐼3, 𝐼2) is proportional to 𝑟 as seen in (13).

4 EXPERIMENTS AND RESULTS
In this section we discuss the experiments we have performed with
agents and the disease model we have described previously.

4.1 Simulation Environment
Our simulation experiments are performed by circular agents in a
2-D enclosed planer environment. The environment scales based
on the number of agents. We have performed all our simulation
with 20,000 agents. Our simulations run for 160 simulated days,
where 500 simulation cycles corresponds to 1 simulated day, and
thus makes for a total 80,000 cycles for one experiment.

The initial range of values of each agent attribute is presented
in Table 1. It is of course not possible to claim that these (or any
other) simulation settings precisely describe all real scenarios, but
wherever possible, we have calibrated the model to be close enough
to real parameters as known from prior sources [11, 19, 41, 50].

For every experiment a population of agents is initiated and
unique properties are assigned based on the range and distributions
described in Table 1. Most agents are in the susceptible state (𝑆) ini-
tially, but a small fraction of agents are in 𝐼0 and begin propagating
the disease (see Section 4.2).

Each agent has attributes as described in Section 3.2.1 and the
age score and recovery score are calculated using (1) and (2) respec-
tively.

In each simulation cycle, every agent is triggered and follows
Brownian motion (as used to model human crowd movement [23,
39]) and updates its location in the environment. Each agent has an
identical infection range around it. Because of random motion, if
any susceptible agent comeswithin this range of an infectious agent,
there is a chance that infection can be transferred to the susceptible
agent. This chance depends upon the level of personal hygiene 𝛽
for both agents, as calculated by equation (3). Similarly at every
trigger, each agent’s state transition probabilities are calculated and
updated as described in Section 3.3.

Given some policies applied in a given day, some of the agent
behaviors are controlled by said policies. For example, during a
lockdown, the location of the agents is not updated; when social
distancing is observed, an agent’s location is not permitted to be
within the infection range of other agents.

To simulate isolation during quarantine we remove agents from
the environment and keep them in a different quarantine environ-
ment for 14 days. Once they are recovered or upon completion of
this duration, they are again sent back to the main environment.
Deceased agents are removed from the environment completely.
All our simulations not only produce output data, but also can be
visualized as seen in the Figures 2a, 2b.
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We use the MASON [31] simulation library, a Java simulation
toolkit that scales well with a large number of agents and also helps
in generating visuals of environment and agents. We used AWS C3
(compute optimised) Linux VMs with 4-core CPU and 8GB RAM.

4.2 The Base Case
This corresponds to the unrestricted spread of a contagion through
an enclosed, initially completely-susceptible population. Even in
this case, symptomatic infected (𝐼2, 𝐼3) agents are isolated from the
rest of the population. The number of isolated agents depends on
hospital bed and ICU bed availability. Otherwise everything goes
on as usual, with no restrictions on movement, no social distancing
and no lockdowns.
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Figure 4: Baseline

One way to instantiate the base case is to admit a fixed number
of infected agents into the population. The agents’ ages are sampled
from a triangular distribution with a peak of 25, and a range of 0 to
90. The mean hygiene level of the population is 0.6. At random, 3%
of the population is assigned weak immunity in line with a study
conducted in the US [18]. To start the onset of infection, we begin
with .005% of infected agents already in the system. The incubation
period is kept to a maximum of 14 days.

In the baseline as well as in other cases, the default hospital
bed availability is 2 beds/1000 population [50]. We assume the
availability of 1 ICU bed per 20 hospital beds.

Figure 4 shows the percentage of agents in each infectious state
versus time, for the base case. We can see that the peak of asymp-
tomatic (𝐼0) cases is reached just before day 60. Similar peaks are
seen for 𝐼1, 𝐼2, and 𝐼3 cases but with a delay, as observed in reality.
The load on the public health infrastructure and the peak demand
of critical care can be understood from the 𝐼2 and 𝐼3 curves. On day
120, the demand for hospitalization peaks, and roughly 1% of the
entire population requires hospitalization at this stage.

Figure 5 shows the cumulative numbers of infected, recovered,
and deceased, also for the base case. Without any social distancing
or other measures, the disease spreads fast, and nearly every agent
in the population is eventually infected, and most subsequently
recover by day 160. It can also be seen that only about 30% of the
agents show symptoms even though the entire population was

infected at one time or another. This shows that most agents ( 70%)
progress to the 𝐼0 (asymptomatic) state but no further, as seen in
reality as well [36].
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Figure 5: Cumulative figures of infection, recovery, and
death

4.3 Hygiene and Social Distancing
It has been repeatedly said that maintaining personal hygiene and
social distancing are the key to slow down the spread of COVID-19.
In this experiment, we compare the effects of two strategies—(i)
a a high value of average personal hygiene with moderate social
distancing (𝛽 = 0.9, 𝛼 = 0.7); and (ii) a high average social distancing
with moderate personal hygiene (𝛽 = 0.7, 𝛼 = 0.9).

Through simulation, we find that social distancing is more im-
portant than personal hygiene. As seen in Figure 6, the higher social
distancing scenario reduces the peak load by about 50% when com-
pared to the higher personal hygiene scenario. However, it is seen
that both these cases are much better than the baseline.
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Figure 6: Comparing high hygiene and high social distanc-
ing.

Varying both mean personal hygiene and social distancing ef-
ficacy in the range of 0.4 to 0.9, we ran 10 simulations for each
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pair to understand the peak values and when they occurred. The
average peak values and the median of days on which these peaks
occur are shown in Table 2. With increasing mean hygiene 𝛽 , the
peak days are delayed for all infectious states. It can be seen that
increasing both 𝛽 and 𝛼 reduces the number of deaths, as expected.
However, there is a bigger reduction in the number of deaths for
every 0.1 increase in 𝛼 as compared to the same 0.1 increase in 𝛽 . A
similar trend is seen in the peak values also. The number of deaths
is negligible for high values of 𝛼 such as 0.8 and 0.9 even with lower
values of 𝛽 , but similar high values of 𝛽 with lower 𝛼 do not reduce
the deaths to the same extent. Once again, this shows that social
distancing is more important than personal hygiene.

𝛽 𝛼
Peak values (%) Median peak day

𝐷 (%)
𝐼1 𝐼2 𝐼3 𝐼1 𝐼2 𝐼3

0.40 0.40 3.12 0.97 0.24 76 148 138 0.53
0.40 0.60 1.73 0.60 0.12 119 157 152 0.18
0.40 0.80 0.02 0.01 0.01 25 43 27 0.00
0.40 0.90 0.01 0.00 0.00 14 – – 0.00

0.60 0.40 2.60 0.88 0.21 83 157 146 0.46
0.60 0.60 1.14 0.41 0.10 135 158 148 0.13
0.60 0.80 0.02 0.01 0.00 20 18 – 0.00
0.60 0.90 0.01 0.00 0.00 14 – – 0.00

0.80 0.40 2.33 0.76 0.17 107 158 149 0.29
0.80 0.60 0.56 0.18 0.05 158 155 152 0.06
0.80 0.80 0.01 0.00 0.00 16 3 – 0.00
0.80 0.90 0.01 0.00 0.00 10 4 – 0.00

0.90 0.40 2.39 0.76 0.15 118 158 149 0.25
0.90 0.60 0.51 0.16 0.04 153 152 154 0.04
0.90 0.80 0.02 0.00 0.00 13 6 – 0.00
0.90 0.90 0.01 0.00 0.00 11 3 – 0.00

Table 2: Peak values and deaths for different values of hy-
giene and social distancing.

4.4 Lockdowns
Lockdown is another strategy that has been used in some form
across many countries to combat the spread of COVID-19. In a
set of experiments to study its effects, when lockdown is applied,
agents are immobile. In practical settings, perfect lockdowns are
impossible (due to some people being essential workers, or defiant
of the lockdown policy), so we simulate partial lockdowns using a
parameter of lockdown efficacy (^), which is the fraction of agents
who follow the guideline fully and stay completely immobile during
this period. But even immobile agents can always come in contact
with other agents who are mobile and not observing the lockdown
policy. We experiment with different values of ^ to see its effects
on the infection spread.

We run experiments of imposing a 30-day lockdown, starting on
day 10, with varying efficacy. In Figure 7 we can see that during
a 30-day lockdown period the infection rises faster with ^ = 0.7
compared to tighter and strict lockdown with efficacy 0.9.

It also becomes apparent that once the lockdown is lifted, without
any other policy such as increased hygiene level or social distancing,
we get a worse peak than the baseline. This implies that a lockdown
is not a solution solution, can possibly only provide time to prepare
for a later peak of infections. We can clearly see lockdowns are
effective at delaying the peak. Even with ^ = 0.7 which means 30%
of agents are not following any guideline, we did not see a high
peak during the lockdown period.

If a partial lockdown is observedwith (and followed by) higher so-
cial distancing and hygiene there is some improvement. In Figure 8,
we see that the proportion of infected agents stays at a moderately
high level, but there is not a much higher peak unlike Figure 7.

We also present the the effect of social distancing post lockdown.
In Figure 9 we show the effects of varying levels of social distancing.
Social distancing is a much more sensitive parameter compared to
hygiene, so a small change in social distancing changes the number
of infections significantly. We can see that with a higher value of 𝛼
(0.8), the proportion of infected agents is much lower than with a
moderate value (0.6).
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Figure 7: Effects of varying lockdown efficacy
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Figure 8: Effects of different levels of hygiene during and
after lockdown with ^ = 0.8;𝛼 = 0.7.
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Figure 9: Effects of different levels of social distancing dur-
ing and after lockdown with ^ = 0.8; 𝛽 = 0.6.

4.5 Fractional Immunity
This set of experiments studies an initial state with some fraction of
the population already immune to the virus (which can be achieved
by natural immunity, post infection recovery, or by vaccination).
We describe this as fractional immunity in certain population.
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Figure 10: Effects of varying the levels of fractional immu-
nity

In one set of experiments we start the simulation with baseline
conditions (no hygiene or social distancing), but varying Π, the
fractional immunity of the agent population, from 0.2 to 0.8 (cor-
responding to 20% through 80% of the population being immune).
Figure 10 shows that even when 20% and 40% of population is im-
mune to the virus, we can have significant peaks in the infection in
the absence of hygiene and social distancing. Even at 0.6 fractional
immunity, there are a significant number of infections. It is only
when there are 80% immune agents that we really see an effective
control on the spread of infection.

We experimented with varying levels hygiene and social distanc-
ing with 20% and 40% of population being immune.
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Figure 11: Comparing the effects of 𝛼 at two different levels
of Π.

Figure 11 shows the effect of varying social distancing, keeping
𝛽 constant at 0.6, for Π at 0.2 and 0.4. As expected, the proportion
of infected agents is lower with a higher value of Π (Figure 11a
vs. Figure 11b). With a fractional immunity of 0.4 and moderate
hygiene and social distancing, the value of the peak reached here is
a fraction, roughly one-fourth, of the peak value seen for the same
Π in Figure 10.

Similarly, Figure 12 shows the effects of varying hygiene with
the social distancing efficacy kept constant at 0.6. We see a similar
trend with the number of infections decreasing with increasing
hygiene.

4.6 Surges in Hospital Beds and ICUs
In this experiment, different levels of surge capacity are considered
(50% increase, 100% increase in the bed capacity). On the day-50,
these surge capacities are added to existing capacity. This is meant
to reduce the rate of death on account of inadequate hospital ca-
pacity.

Figure 13 shows the percentage of deceased agents. We can see
that a surge does reduce the number of deceased agents, but not
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Figure 12: Comparing the effects of 𝛽 at two different levels
of Π

in a linear fashion. The number of deceased agents drop by 10%
by adding 50% more hospital and ICU beds, and further reduces by
20% when the number of beds and ICU units is doubled.

5 CONCLUSION
Data-driven approaches and purely statistical models for COVID-19
exist, but have some significant limitations [43]. This is in large part
due to the mostly unfamiliar nature of the novel coronavirus SARS-
CoV-2, and the fact that traditional equation-based models fail to
capture the dynamics of systems that are heavily dependent on
factors such as population distributions and agent characteristics.
Such top-down models are also ill-equipped to show the emergent
consequences that arise from fine changes in individual behaviors,
and policy choices that cannot be readily expressed in mathematical
form [20].

We therefore use an agent-based model for a qualitative assess-
ment of the COVID-19 pandemic in an enclosed population where
agents represent humans. This model is thus a bottom-up approach
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Figure 13: Common parameters across all three experi-
ments: 𝛽 = 0.6, 𝛼 = 0. Baseline (𝑏 = 2), 50% surge (𝑏 = 3),
100 % surge (𝑏 = 4)

to capture the unpredictable interactions between members of a so-
ciety, and understand the manner in which COVID-19 may spread
under different conditions.

As COVID-19 is a new disease and its properties are still being
discovered, it is possible that some assumptions of our model, which
are in line with existing knowledge about the disease, may have
to change. Even so, we believe that this work demonstrates some
important emergent properties and helps analyze what-if scenarios.

Even with a moderate level of personal hygiene and social dis-
tancing being widely observed, the epidemic can be effectively
contained even with a relatively small fraction (such as 20–40%) of
the population being immunized by vaccination or prior exposure
and recovery. This means that dire prognostications that COVID-19
will eventually infect a majority of the population are fortunately
unlikely.

Prior agent-based models for COVID-19, such as by Silva et al.
[44] and Cuevas [10], deal in a narrower set of possible circum-
stances. Our work is the first to give conclusions about lockdowns
and behavioral choices such as personal hygiene and social distanc-
ing, and indicate the likely progress of the disease under specific
conditions. It is our hope and expectation that this work will serve
to illuminate certain aspects of the spread of the disease and show
the value of certain types of control measures that may be applied.
It should thus be of use to policy makers and authorities as well as
the public at large.
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