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Although COVID-19 has caused severe suffering globally, the efficacy of non-pharmaceutical inter-
ventions has been greater than typical models have predicted. Meanwhile, evidence is mounting that
the pandemic is characterized by superspreading. Capturing this phenomenon theoretically requires
modeling at the scale of individuals. Using a mathematical model, we show that superspreading
drastically enhances mitigations which reduce the overall personal contact number, and that social
clustering (”social bubbles”) increases this effect.

During the ongoing COVID-19 pandemic, news sto-
ries have frequently appeared detailing spectacular events
where single individuals – so-called superspreaders – have
infected a large number of people within a short time-
frame [1–3]. By now, there is substantial evidence that
these are not just singular events, but that they reflect
a marked transmission heterogeneity [4–6], a signature
feature of the disease. In a well-mixed population, such
heterogeneity has little bearing on the trajectory of an
epidemic, but when public sphere contacts are restricted,
heterogeneity takes on a decisive role, as shown in [7].
In that study it was demonstrated that superspreaders
make the epidemic particularly sensitive to a reduction
in random contacts as encountered in for example bars
or large parties. In this report we investigate the effects
of transmission heterogeneity – i.e. superspreading – on
mitigation strategies which rely on a general reduction
in social network size, and probe the influence of social
clustering on such interventions.

The origins of superspreading can be diverse, depend-
ing on the characteristics of the pathogen in question.
Superspreading events may occur due to circumstances
and behaviour as well as biology. Even medical proce-
dures, such as intubation and bronchoscopy, which fa-
cilitate the production of aerosols [11], can lead to su-
perspreading events in respiratory diseases. However,
the most straightforward model of superspreading is that
some individuals simply shed the virus to a much greater
extent than the average infected person. For COVID-
19, this ”biological superspreader” phenomenon has some
traction, and is supported by the observation that house-
hold transmission is limited, despite the relatively high
average infectiousness of COVID-19 [12–14].

Superspreading is not a phenomenon which is par-
ticular to SARS-CoV-2, but has been observed in con-
nection with several other pathogens, including coron-
aviruses such as SARS [15, 16] and MERS [9], as well as
in diseases such as measles [8] and Ebola virus disease
[17, 18]. Pandemic influenzas such as the 1918 Spanish
flu, on the other hand, are believed to be far more “demo-
cratic” [10]. The heterogeneity of transmission is usually
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quantified using the Gamma distribution [8]. This is the
origin of the dispersion parameter or k value, which deter-
mines the fraction of infectious individuals who account
for the majority of infections (Fig. 1). Smaller k means
greater heterogeneity – in fact, when k is small (|k| � 1)
it approximates the fraction of infected individuals who
give rise to 80% of infections. For COVID-19, which is
believed to have a k value of perhaps 0.1 [4–6], the most
infectious 10% of individuals thus cause approximately
80% of infections.

The fundamental difference between a homogeneously
spreading disease and a highly heterogeneous one is re-
flected in the infection networks they give rise to, as visu-
alized in Fig. 1. When only a small fraction of individuals
cause the bulk of infections, a reduction in social net-
work connectivity amounts to decreasing the likelihood
that a superspreader infects another superspreader and
thus propagates the disease. Consequently, in a network
characterized by superspreading (Fig. 1a), the outbreak
can be stopped by cutting only a few select edges. Not
so for the network in Fig. 1c.

In this report, we present a model of superspreading
phenomena which assumes that the driving force is a bi-
ological heterogeneity in infectiousness. We implement
this as an agent-based model with contact networks, and
are also able to capture much of the phenomenology in
analytical formulae. In the model, N agents are placed as
the nodes in a contact network. We investigate different
types of network, but our base case is the Erdös-Renyi
network, which is characterized by a Poisson degree dis-
tribution and an absence of clustering.

At initialization, the infectious potential of each indi-
vidual is drawn from a Gamma distribution [8]. As such,
it is an innate property of each individual. The possi-
ble states of each individual are Susceptible, Exposed,
Infected and Recovered (see Suppl. Info. for details).
At each timestep, each individual randomly selects one
of its contacts to interact with, meaning that only a sub-
set of the network is active at any given time. While a
link between an infectious and a susceptible individual is
active, there is a constant probability of infection per unit
of time, as determined by the individual infectiousness.

This basic setup also lends itself to analytic calcula-
tions, as long as saturation effects can be ignored. Con-
sider a single infected person who has c contacts. First,
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FIG. 1. The characteristics of superspreading. a) Simulated infection network characterized by superspreading, with
a dispersion parameter k = 0.1, within what has been observed for COVID-19 [4, 5]. Superspreaders appear as hubs, while
most individuals are “dead ends” meaning that they do not transmit the disease. The epidemic mainly grows by spreading
from one superspreader to the next. b) The dispersion parameter k provides a measure of superspreading, with lower k values
corresponding to a greater heterogeneity. With a k value of 0.1 for COVID-19, approximately 10% of the population has the
infectious potential to cause 80% of transmission. SARS and MERS are also characterized by a significant heterogeneity [8, 9],
while pandemic influenza is believed to be more homogeneous [10]. c) Simulated infection network without superspreading (all
individuals have equal infectious potential). Here, most individuals spread the disease to a few others, leading to a branched
structure.

the infectious potential r of the individual is drawn from
a gamma distribution PI(r) with dispersion parameter k
and mean µ. The distribution of the reproductive num-
ber R of an individual with a known infectiousness r and
degree (i.e. connectivity) c is given by

P (R; r, c) =

(
c

R

)(
1− e−r/c

)R (
e−r/c

)(c−R)

. (1)

Taking the variability in infectiousness into account, the
overall distribution of R becomes:

P (R; c) =

∫ r=∞

r=0

dr PI(r)P (R; r, c). (2)

In the limit of infinite connectivity, corresponding to a
well-mixed population, this becomes a negative binomial
distribution. That particular case has been studied in [8].
Given a contact network, and a corresponding degree dis-
tribution PC(c) – for example a Poisson distribution in
the case of an Erdös-Renyi network – the connectivities
can be summed to yield a distribution of individual re-
productive numbers, P (R) =

∑
c PC(c)P (R; c).

As reflected in the equations above, the actual number
of secondary infections depends not only on biological in-
fectiousness. In Fig. 2a-b, we explore how the number of
personal contacts affects the resultant distribution of in-
fections. Without superspreading (2a), a reduction in the
contact number has a very modest effect and the distribu-
tions overlap. When the heterogenity is at a COVID-like

level (2b), it is quite a different story. Here, a decrease
in mean connectivity has a considerable effect, and miti-
gation suddenly looks feasible.

To quantify the sensitivity of the epidemic to social
network size, we consider the basic reproductive num-
ber R0, meaning the average number of infections that
each infected person causes in a situation where all con-
tacts are still susceptible. In Fig. 2c, the R0 is given
as a function of the dispersion parameter k and the av-
erage contact number. The epidemic is evidently much
more sensitive to reductions in average contact number
when the transmission heterogeneity is high. A mitiga-
tion in which the average number of contacts goes from
being unrestricted, down to about 10, causes a reduction
in R0 which lowers both the peak and total number of
persons infected during the course of the epidemic (the
attack rate). The overall trajectory of a homogeneous
disease is largely unaffected by social connectivity (Fig.
3a), whereas a heterogeneous epidemic is very sensitive
(Fig. 3b). We find a particularly large sensitivity to a
reduction of contact number from 15 down to 10 (Fig.
3b), indicating a critical threshold for disease spreading
occuring at a contact number ∼ 1/k.

Crucially, a reduction in contact time is not neces-
sary when the disease is characterized by superspread-
ing. What counts is rather a reduction in contact diver-
sity, meaning the number of different persons with whom
you come into contact during the time you are infectious
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FIG. 2. The reproductive number. Distributions of in-
dividual reproductive number R and value of R0 for different
dispersion parameters and number of social contacts during
an infectious period. a) Distribution of R for a disease where
all individuals have equal infectious potential. b) Distribution
of R for a disease characterized by superspreading (dispersion
parameter k = 0.1). c) Basic reproductive number R0 as a
function of social connectivity and dispersion. The dashed
line represents R0 = 1.
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FIG. 3. The epidemic trajectory of a heterogeneous
disease is highly sensitive to mitigation. Epidemic tra-
jectories as a function of the number of people that each per-
son interacts with during an infectious period. a) Time evo-
lution in the absence of any infection heterogeneity. b) Time
evolution for a disease with dispersion parameter k = 0.1,
roughly representative of COVID-19.
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FIG. 4. Final attack rate (total fraction of the population
infected) as a function of network connectivity and transmis-
sion heterogeneity. In panel a) we investigate the same Erdös-
Renyi network as in Fig. 2. Panel b) explores a network
where each person is assigned to two groups of people, lead-
ing to a highly clustered network. The black regions indicate
conditions where the disease cannot spread in the popula-
tion. On the right-hand side, small fragments of the networks
in question are shown.

[7]. This differs fundamentally from SIR models, where
contact time and diversity are not differentiated between
[19, 20].

So far, our analysis has been based on the Erdös-Renyi
network, which is largely devoid of clusters. This was
chosen as a clean setting in which to probe how social
network affects superspreaders. However, any realistic
social network will involve clusters of people who know
each other [21–23] – after all, your colleagues know each
other, as well as knowing you. It is thus natural to ask
whether such cliquishness impacts superspreading. In
Fig. 4, we compare a cluster-free network to one charac-
terized by a high degree of clustering [24].

The attack rate of the disease is clearly lowered
by clustering in general (Fig. 4), but the effect is
especially significant when heterogeneity is high. The
mechanism behind this is that of local saturation. If
a superspreader infects a significant portion of his
network, there is a risk that one of these individuals
will turn out to be another superspreader. However, if
there is clustering, a large part of this second super-
spreader’s network will already have been exposed, and
the second superspreader does comparatively little harm.

Superspreading is now a well-established phenomenon
for a number of diseases [8], including COVID-19 [4, 5].
In spite of this, the extent to which circumstance and
person-specific properties contribute to the observed
overdispersion in COVID-19 is still not clear. Super-
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spreading can also have a social component, exempli-
fied by highly social individuals, who come into contact
with a large number of people in a limited time-frame.
However, such individuals would also be superreceivers,
a trait which impacts the epidemic even in the absence of
mitigation [20, 25]. In any case, ability as well as oppor-
tunity is necessary for superspreading to occur. In our
model, we have focused on inter-individual variation in
ability to produce and transmit virus. This simplification
is supported by cases of one person infecting many people
at different times and locations [26], and by the obser-
vation that most infected people do not even infect their
spouse [12–14]. However, more complex models could in-
corporate realistic social heterogeneity as well as large
temporal variations in viral load [27] – effects which we
have not probed. Furthermore, studies which address
event-driven superspreading as well as contact tracing in
the presence of superspreaders are also clearly needed.

Regardless of the origin of superspreading, we empha-
size the particular fragility of a disease in which a major

part of infections are caused by the minority. If this is the
case, the disease is vulnerable to mitigation by reducing
the number of different people that an individual meets
within an infectious period. The significance is clear;
Everybody can still be socially active, but generally only
with relatively few – on the order of ten persons. Im-
portantly, our study further demonstrates that repeated
contact with interconnected groups (such as at a work-
place or in friend groups) is comparatively less damaging
than repeated contacts to independent people.
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