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Abstract6

We construct a recursive Bayesian smoother, termed EpiFilter, for estimating the effective reproduction number,7

R, from the incidence of an infectious disease in real time and retrospectively. Our approach borrows from Kalman8

filtering theory, is quick and easy to compute, generalisable, deterministic and unlike many current methods, requires9

no change-point or window size assumptions. We model R as a flexible, hidden Markov state process and exactly10

solve forward-backward algorithms, to derive R estimates that incorporate all available incidence information. This11

unifies and extends two popular methods, EpiEstim, which considers past incidence, and the Wallinga-Teunis method,12

which looks forward in time. We find that this combination of maximising information and minimising assumptions13

significantly reduces the bias and variance of R estimates. Moreover, these properties make EpiFilter more statistically14

robust in periods of low incidence, where existing methods can become destabilised. As a result, EpiFilter offers15

improved inference of time-varying transmission patterns that are especially advantageous for assessing the risk of16

upcoming waves of infection in real time and at various spatial scales.17

Key-words: Bayesian filters, reproduction numbers, epidemic models, COVID-19, infectious diseases.18

Author Summary: Inferring changes in the transmissibility of an infectious disease is crucial for understanding19

and controlling epidemic spread. The effective reproduction number, R, is widely used to assess transmissibility.20

R measures the average number of secondary cases caused by a primary case and has provided insight into many21

diseases including COVID-19. An upsurge in R can forewarn of upcoming infections, while suppression of R can22

indicate if public health interventions are working. Reliable estimates of temporal changes in R can contribute23

important evidence to policymaking. Popular R-inference methods, while powerful, can struggle when cases are24

few because data are noisy. This can limit detection of crucial variations in transmissibility that may occur, for25

example, when infections are waning or when analysing transmissibility over fine geographic scales. In this paper26

we improve the general reliability of R-estimates and specifically increase robustness when cases are few. By27

adapting principles from control engineering, we formulate EpiFilter, a novel method for inferring R in real time28
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and retrospectively. EpiFilter can potentially double the information extracted from epidemic time-series (when29

compared to popular approaches), significantly filtering the noise within data to minimise both bias and uncertainty30

of R-estimates and enhance the detection of salient changepoints in transmissibility.31

INTRODUCTION32

During an unfolding epidemic, one of the most commonly available and useful types of surveillance data is the33

daily (or weekly) number of newly reported cases. This time-series of case counts, also known as the incidence34

curve, not only measures the epidemic size and burden, but also provides information about trends or changes in35

its transmissibility [1], [2]. These trends are captured by the time-varying effective or instantaneous reproduction36

number, denoted Rs at time s, which defines how the number of secondary cases generated per primary case varies37

across the outbreak [3]. Broadly, when Rs > 1 we can expect and prepare for growing incidence, whereas sustained38

Rs < 1 signifies that the epidemic is waning and likely to enter a more controlled phase [4].39

Inferring changes in Rs given an observed incidence curve is therefore crucial, both to understanding trans-40

missibility and to forecasting upcoming case loads, especially for an ongoing epidemic, where it can help inform41

policymaking and intervention choices or predict healthcare demands [1], [5]. Real-time and retrospective Rs42

estimates have been used to characterise rates and patterns of spread in various diseases such as malaria [6]43

and Ebola virus disease [7]. Such estimates have proven valuable throughout the COVID-19 pandemic, providing44

updating synopses of global transmission [8] and evidencing the impact of past control actions (e.g. lockdowns and45

social distancing) [9] or the likelihood of a resurgence in infections when those controls are relaxed [10].46

Most studies that infer Rs or related quantities either apply the Wallinga-Teunis (WT) method [2] or the Cori et47

al method, known as EpiEstim [11]. Both methods take complementary viewpoints on how incidence data inform48

on transmissibility and hence have diverse use-cases. The WT method reconstructs the average number of new cases49

caused by infectious individuals at s and so requires incidence data beyond time s for its estimate. It computes50

the case or cohort reproduction number, Rcs, which is a function of Rs+j for future times j ≥ 0, and is suited51

for retrospective analyses [12]. Alternatively, EpiEstim infers how past infections propagate to form the incidence52

observed at s, only requiring data prior to time s. EpiEstim directly computes instantaneous reproduction numbers,53

Rs, and is preferred for real-time investigations [3].54

While both methods provide useful and important estimators of transmission, they are not perfect. Two main55

limitations exist. First, each suffers from data censoring or edge-effects [3]. Because the WT method is forward-56

looking i.e., depends on data later than s, its estimates are right censored when s is close to the last observed time57

point [12]. In contrast, EpiEstim looks backward in time and suffers edge-effects when s is near the first observed58

time point [11]. Estimates in the vicinity of the start and end of the incidence time-series are therefore unreliable59

under EpiEstim and the WT method, respectively. Techniques have been proposed to limit this unreliability [5],60
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[13], but the problem is intrinsic, and inevitable near the actual start and end times of an epidemic, where there is61

necessarily no or sparse data.62
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Fig. 1: EpiFilter algorithm and relationship to other methods. In the left panels we consider three ways of
inferring the instantaneous or effective reproduction number at time s, Rs, from the incidence curve, It1 (blue dots).
The filtering solution produces the posterior distribution ps from all data prior to time s. EpiEstim approximates
this solution by using the subset of data in a window of size k into the past. Reverse-filtering considers the
complementary part of the incidence curve, leading to rs, which utilises data beyond s. The WT method, with
future window k, approximates this type of solution. Smoothing uses all information from It1 to generate qs, which
is precisely computed by EpiFilter. Blue windows show the portions of It1 that inform on Rs for each of ps, rs and
qs while red windows highlight the subsets used by EpiEstim and the WT method. Double arrows indicate data
used for constructing various posterior distributions, while square arrows pinpoint instances of those distributions
at the edges of It1. In the right panels we summarise the construction of EpiFilter. We outline the main assumptions
(the model box) and computations (the algorithm box) necessary for realising EpiFilter, which allow us to obtain
the most informative (and minimum MSE) smoothing posterior distribution qs. See the main text for the specific
equations employed in our implementation [14].

This leads into the second key limitation: inference in periods of small incidence. This presents a fundamental63

challenge for any Rs estimation approach and effectively creates additional edge-effects. When few or no case64

counts are available to constrain inference, methods are largely driven by their inherent prior distributions and65

assumptions. This can result in misleading or unreliable estimates and mask subcritical (i.e., Rs < 1) transmission66

patterns [11], [15]. Small incidence may occur during sustained periods of interventions, when pathogens invade67

new susceptible regions and also naturally arise by division when analyses are performed at smaller spatial scales68
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(e.g., regional or community levels). Understanding how to best mediate the trade-off between prior assumptions69

and data when incidence is small is of both statistical and epidemiological significance.70

Following a period of low incidence, two important outcomes are possible: either the epidemic continues to71

exhibit small or zero case counts until it goes extinct, or a resurgence in infections, also termed a second wave,72

occurs. Inferring, in real time, which of these conditions is likely presents a key challenge for infectious disease73

epidemiology given the information bottleneck at low incidence [16]. Better inference of transmission under these74

conditions is currently considered central to designing data-informed COVID-19 intervention exit or relaxation75

strategies [17]. With many countries facing multiple resurgent waves in this pandemic, estimating fluctuations in76

transmission during suspected epidemic troughs could be essential to achieving sustained control [10].77

Here we present and develop a novel method, termed EpiFilter, for reliably estimating Rs in real time, which78

ameliorates the above limitations. We take an engineering inspired approach and construct an exact, recursive79

and deterministic (i.e., EpiFilter produces the same output for fixed input data and requires no Monte Carlo80

steps) inference algorithm that is quick and easy to compute both across an unfolding outbreak and in retrospect.81

Our method solves what is called the smoothing problem in control engineering [14]. This means we compute82

instantaneous reproduction number, Rs, estimates that formally integrate both forward and backward looking83

information. This unifies the WT method and EpiEstim, and largely nullifies their edge-effect issues.84

Further, EpiFilter only makes a minimal Markov assumption for Rs, which allows it to avoid the strong prior85

window size and change-point assumptions that existing methods may apply to infer shifts in transmission [9], [11].86

Using simulated and empirical data, we show that EpiFilter accurately tracks changes in Rs and provides reliable87

one-step-ahead incidence predictions. Moreover, we find that EpiFilter is appreciably more robust and statistically88

efficient than even optimised versions of EpiEstim [13]. Specifically, it does not easily destabilise when performing89

real-time inference in periods of low incidence, such as in lulls between epidemic waves, and generally it minimises90

the mean squared error of Rs estimates, while maintaining good coverage and predictive performance.91

We illustrate the practical utility of EpiFilter on the COVID-19 incidence curve of New Zealand, which exhibits a92

second wave that was seeded during a prolonged low incidence period. We find stark improvements in the transmis-93

sion patterns EpiFilter uncovers. Our method, which is outlined in Fig. 1, provides a straightforward yet formally94

optimal (in mean squared error sense [18]) solution to real-time and retrospective instantaneous reproduction number95

estimation. Because it couples minimal prior assumptions with maximum information extraction, it more gracefully96

handles periods with scarce data. Hopefully our approach will serve as a useful inference tool for investigating the97

risk of resurgence in COVID-19 and other epidemics. Matlab and R implementations of EpiFilter are available at98

https://github.com/kpzoo/EpiFilter and its mechanics are explored and validated in the S1 Appendix.99
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METHODS100

Renewal models and inference problems101

We consider an infectious disease epidemic observed over some time period 1 ≤ s ≤ t in a homogeneous and102

well-mixed population. While epidemics actually spread on dynamic networks involving stratified contact structures,103

homogeneous models can provide useful real-time insight into key transmission patterns and are more easily fit and104

verified with routine surveillance data such as incidence curves [19]. If the incidence or number of newly infected105

cases at time s is Is then the set It1 = {I1, I2, . . . It} is the incidence curve of the epidemic. We assume that106

incidence is available on a daily scale so that It1 is a vector of t daily counts but weeks or months could be used107

instead. A common problem in infectious disease is the inference of the transmissibility of the epidemic given this108

curve. The renewal model [1], [20] presents a general and popular framework for investigating this problem and109

its estimates, in some instances, can even approximate those from detailed network models [21].110

The renewal model posits that epidemic transmissibility, summarised by the effective or instantaneous reproduction

number, Rs, generates the observed incidence as in Eq. (1). We assume incidence counts are Poisson distributed

with Pois indicating Poisson noise. Here d
= signifies equality in distributions and | means ‘conditioned on’.

P(Is |Rs, Is−11 )
d
= Pois(ΛsRs) (1)

While Eq. (1) does not directly model how susceptible individuals become infected, these effects are encoded in111

the reproduction number Rs, which measures the secondary cases generated per effective primary case at s [3].112

The quantity Λs :=
∑s−1

u=1 Is−uwu, known as the total infectiousness, counts how many effective past cases are still113

infectious at s i.e., it describes the number of circulating cases that can actively transmit.114

The generation time distribution of the epidemic, ws−11 = {w1, w2, . . . ws−1}, controls how past incidence115

influences Λs, with wu as the probability that a primary case takes between u−1 and u days to generate a secondary116

case [1]. We make the standard assumption that w∞1 is well approximated by the serial interval distribution of the117

epidemic of interest, which is known [11]. The serial interval is the time between symptom onset of a primary118

and its secondary case. While onset times are more practically measurable than actual infection times they do not119

include asymptomatic or subclinical cases. This approximation can limit inference (for example, serial intervals120

often have larger variances than generation times), but methods are being developed to improve its quality [22].121

We focus on inferring the complete set of Rs values, denoted Rt1 = {R1, R2, . . . Rt}, given the incidence curve122

It1 with t as the last recorded time. Estimating Rt1 is important because changes in the values of instantaneous123

reproduction numbers often signify key transitions in epidemic transmissibility, which might be due to the imposition124

or relaxation of interventions. Instantaneous reproduction numbers are also the basis of other transmissibility metrics,125

such as cohort reproduction numbers or growth rates [3]. We define three main inference problems, based on how126
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information in It1 is recruited to construct every Rs estimate. We represent these problems in terms of the posterior127

distribution their solutions induce over possible Rs values. Estimates are functions of these posteriors.128

The first is called filtering, where we sequentially compute the filtering posterior ps = P(Rs | Is1) for every s ≤ t129

[23]. Filtering only uses incidence data up to time s, Is1 , for inferring Rs. Solving this problem is fundamental130

to real-time inference [24]. Filtering solutions are commonly employed for inferring instantaneous reproduction131

numbers. The second problem, which we call reverse-filtering, is the complement of the first. The reverse-filtering132

posterior rs = P(Rs | Its), is important for retrospective or backward-looking estimates and infers Rs from incidence133

beyond s i.e., Its [25]. Practical Rs calculations do not involve reverse-filtering. Instead, the information used by134

rs is implicit to deriving cohort reproduction numbers, Rcs =
∑t−s

j=0Rs+jwj+1 [12]. Later we show that estimates135

from EpiEstim and the WT method are related to the ps and rs distributions, respectively.136

The last problem, which is termed smoothing, is our main interest. It asks the question: how can we construct137

an Rs, at every s ≤ t, that integrates all available incidence information from It1. To solve this problem we must138

formulate the smoothing posterior distribution qs = P(Rs | It1) [14]. Functions of this posterior would then yield139

maximally informed instantaneous reproduction number estimates (and cohort reproduction number estimates by140

extension). Note that ps, rs and qs depend on the choices of state space model, which describes the dynamics of141

Rs across time, and observation model, which explains how changes in Rs lead to trends in observed incidence data142

[18]. These models encode our assumptions about the epidemic of interest and determine how estimates trade off143

assumptions against data. We next explore how posterior distribution selection determines performance, especially144

when data are scarce, and examine how EpiEstim and the WT methods fit within this framework.145

Inference methods and low incidence146

We mostly detail EpiEstim as instantaneous reproduction number, Rs, estimates are the main focus of this147

work. EpiEstim assumes that the estimate of Rs at time s depends on a rolling past window of data, τ(s) =148

{s, s − 1, . . . , s − k + 1}, of size k [11]. Consequently, at time s, only size k subsets of the incidence, Iss−k+1,149

and total infectiousness, Λss−k+1 = {Λs, Λs−1, . . .Λs−k+1}, are considered informative about Rs. Their sums over150

this window are iτ(s) =
∑

u∈τ(s) Iu and λτ(s) =
∑

u∈τ(s) Λu. When k = 1, EpiEstim only uses the most recent151

case count, Is, (and Λs) to estimate Rs. While this maximises flexibility, it usually results in over-fitting and so152

larger windows are often employed to trade off estimate variance with bias [11], [26].153

EpiEstim therefore effectively solves a filtering problem, as discussed in the previous section. The filtering

posterior distribution produced by EpiEstim is restricted to the informative window τ(s) and denoted pτ(s) =

P(Rs | Iss−k+1). This is parametrised by the shape-scale gamma posterior distribution in Eq. (2).

pτ(s)
d
= Gam(a+ iτ(s), (c+ λτ(s))

−1) (2)
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The posterior pτ(s) results from combining a gamma prior distribution on Rs, P(Rs)
d
= Gam(a, c−1), with a154

Poisson observation likelihood for the incidence (see Eq. (1)), as detailed in [11], [13]. We never explicitly include155

Λs terms in our notation (e.g., we could write pτ(s) as P(Rs | Iss−k+1, Λss−k+1)) since they appear naturally when156

using Eq. (1) and the key difference among our inference problems relate to Is terms.157

The posterior mean estimate from Eq. (2) is constructed as R̃τ(s) =
∫
pτ(s)Rs dRs = E[Rs | Iss−k+1] = (a +158

iτ(s))(c+λτ(s))
−1. The variance around this estimate is (a+ iτ(s))(c+λτ(s))

−2. The observation model is given by159

Eq. (1) but the state space model of EpiEstim is not explicit. However, if Rτ(s) is the assumed average reproduction160

number in τ(s) (which is used to estimate Rs) then λτ(s)Rτ(s) =
∑

u∈τ(s) ΛuRu [13]. Thus, EpiEstim somewhat161

incorporates a linear moving average state space model, and assumes that the filtering distribution ps ≈ pτ(s) by162

deeming data outside τ(s), Is−k1 , as effectively uninformative [12]. Since pτ(s) can be computed sequentially across163

an ongoing epidemic, EpiEstim provides real-time inference.164

The WT method takes a complementary approach to EpiEstim, computing transmissibility over a forward-looking165

window γ(s) = {s, s + 1, . . . , s + k − 1} [2]. Often k = t− s + 1 i.e., the window extends to the last observed166

incidence. The WT method uses the observation model of Eq. (1) and has an implicit moving average state167

model Rγ(s) =
∑

u∈γ(s)Ruwu−s+1, which leads to its cohort reproduction number estimates [3]. As this method168

effectively uses future information [12], it implicitly involves approximating the reverse-filtering distribution (see169

previous section) as rs ≈ rγ(s) = P(Rs | Is+k−1s ). We illustrate the information windows employed by the WT170

method and EpiEstim, as well as the complete filtering and reverse-filtering windows in Fig. 1. The goodness of171

the windowed distributions pτ(s) and rγ(s) as approximations to the general posterior distributions ps and rs will172

depend on k and the appropriateness of the state model underlying each method [13].173

While EpiEstim and the WT methods are powerful tools for inferring transmissibility in real-time and in retrospect,174

they have two main and related limitations, which necessarily reduce the reliability of their outputs [12]. First, their175

performance degrades as s gets close to 1 for EpiEstim and t for the WT method [11]. These edge or censoring176

effects correspond, at the extreme, to p1 = pτ(1) = P(R1 | I1) and rt = rγ(t) = P(Rt | It), which are weakly177

informed posterior distributions. As a result, at the beginning of the incidence curve EpiEstim can be unreliable178

(and even unidentifiable). The WT method suffers similarly at the end of that curve [1] (see Fig. 1).179

The second limitation occurs in phases of the epidemic where incidence is low for a prolonged period of time180

[17], [26]. In these periods data are sparse and the quality of estimates depend on how well the method of choice181

mediates between the little available information and its inherent assumptions [15]. We illustrate this with EpiEstim,182

using the mean and variance of the posterior estimate from Eq. (2), R̃τ(s), which are defined above. If incidence183

is small over the window τ(s) then the sum of incidence, iτ(s), and the total infectiousness λτ(s) shrink, meaning184

that the prior hyperparameters, a and c, strongly influence the resulting estimate mean and variance. This contrasts185
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the data-rich scenario when an epidemic is large, where iτ(s) and λτ(s) overpower a and c.186

Further, should a sequence of n ≥ k zero-incidence days occur, then iτ(s) = 0 and λτ(s) → 0 as n increases,187

with a rate controlled by the serial interval of the epidemic. Here the shape parameter of pτ(s) is exactly that of188

the prior distribution P(Rs). As λτ(s) decays, pτ(s) → P(Rs) (see Eq. (2)), Rs becomes statistically unidentifiable189

from the window of data and inference is completely prior driven [26], [27]. While lack of data is a fundamental190

limitation, the point at which we lose inferential power is not fixed, and depends on the window size, k. Studies that191

formally optimised k for estimate reliability, found that small k is needed to infer sharp changes in transmissibility192

(e.g. due to lockdowns) [13], indicating that these issues can be acute. Analogous effects occur in the WT method193

if there are few incident cases across its forward-looking window γ(s) [12].194

These prior-driven scenarios are realistic for epidemics in waning or tail phases, and can precede either elimination195

(i.e., epidemic extinction) or resurgence [28]. While some estimate degradation is guaranteed for any Rs inference196

method when faced with either edge-effects or low incidence, robustness can still be improved. Edge-effects can be197

largely overcome by constructing the smoothed posterior distribution for estimating the instantaneous reproduction198

number Rs, denoted qs. Solving the smoothing problem melds the advantages of the opposite looking windows199

of EpiEstim and the WT method, removing the vulnerability near the ends of the incidence curve It1. This follows200

as q1 = r1 and qt = pt (see Fig. 1). Further, by maximising the information used for inferring every Rs and201

by minimising our state model assumptions, we can ameliorate the impact of low incidence. We next develop a202

method, termed EpiFilter, to realise these improvements.203

Bayesian (forward) recursive filtering204

We reformulate the inference problem of estimating instantaneous reproduction numbers Rs from past incidence205

Is1 as an optimal Markov state filtering problem. Filtering describes a general class of engineering problems aimed206

at optimally, usually in a mean squared error (MSE) sense, inferring some hidden state in real time from noisy207

observations [14], [18]. Given some functions fs and gs, which describe the state (Rs in our case) space dynamics208

and the process of generating noisy observations (the Is here), the filtering problem tries to construct the posterior209

distribution ps (see previous section) [23], which EpiEstim approximates. The conditional mean estimate R̃s =210

E[Rs | Is1 ] leads to the minimum MSE of E[(Rs − R̃s)2] [23], which depends on all the past information.211

The famed Kalman filter [24] was the genesis of these methods. Here we focus on Bayesian recursive filters for

models with noisy count observations. These generalise the Kalman filter [23] and have been successfully applied

to similar problems in phylodynamics and computational biology [29], [30], [31]. We reconsider our renewal model

inference problem within this engineering state-observation framework, as described in Eq. (3) [14].

Rs = fs(Rs−1, εs−1), Is = gs(Rs, νs) (3)
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Here Rs is the hidden Markov state that we wish to infer. It dynamically depends on the previous state Rs−1 and212

a noise term εs−1 via fs. Observation Is is then elicited due to Rs and a noise term νs, according to gs [32].213

We develop our filter under two very mild assumptions. First, we define some closed space, R, over which

Rs is valid. For a given resolution m, extrema Rmin and Rmax, and grid size δ = m−1(Rmax − Rmin) then

R := {Rmin, Rmin + δ, . . . , Rmax}. This means the instantaneous reproduction number Rs must take a discrete

value in R, the ith element of which is denoted R[i]. We formalise this notion in Eq. (4a).

∑m
i=1 P(Rs = R[i]) = 1, 1 ≤ s ≤ t (4a)

Rs = Rs−1 + (η
√
Rs−1) εs−1 (4b)

This is not restrictive since we can compute our filter for large m if needed and usually we are only interested214

in Rs on a coarse scale (e.g., policymakers may only want to know if Rs ≤ 1 or not). Other approaches, which215

depend on MCMC or related sampling methods (e.g., [9] and some implementations of EpiEstim), all implicitly216

assume some discretisation [29]. In the S1 Appendix (Fig. A1) we show that often convergence occurs at small m.217

Second, we propose a linear model for fs, as defined in Eq. (4b). There εs−1 is a standard white noise term i.e.,218

P(εs−1)
d
= Norm(0, 1) with Norm signifying a normal distribution and η as a free parameter. We assume that a219

noisy linear projection of states over consecutive time-points provides a good approximation of the state trajectory.220

Not only is this assumption standard in engineering [23] and epidemiology [33] but it is also more flexible than the221

state model inherent to EpiEstim and the WT method. We scale the noise of this projection by a fraction, η < 1,222

of the magnitude of Rs−1. This parameter controls the correlation among successive instantaneous reproduction223

numbers (and hence the state noise) but ensures Rs is a-priori non-negative.224

Our observation model, gs, is implicit and leads to the probability law in Eq. (1). As a result, both our observations225

and state models are discrete (see Fig. 1 for summaries). Because the state model governing Rs in Eq. (4b) is226

stochastic, Eq. (1) actually describes an over-dispersed (doubly stochastic) Poisson incidence curve. Consequently,227

η, allows us to better model some of the heterogeneity in transmissibility, and may increase robustness to violations228

of the well-mixed assumption inherent to renewal models [21]. We can optimise our choice of η value by minimising229

the incidence one-step-ahead predictions that result from our observation model [13].230

We now define the Bayesian recursive filtering procedure, which is a main contribution of this work, and can be231

solved exactly, in real-time and with minimal computational effort. We adapt general recursive filtering equations232

from [14], [18], [32], [25], which are valid for various types of observation and state models, to our renewal model233

inference problem. The proof of the equations we employ can be found in these works. While we solve discrete,234

univariate problems (our state model is one dimensional), extensions to continuous-time, multivariate problems also235

exist [23], [30]. These recursive equations can also be approximately solved using particle filters [14], [32].236
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Recursive filtering involves two steps: prediction and correction. The first, given in Eq. (5a), constructs a sequential

prior predictive distribution, ps = P(Rs | Is−11 ). This is informed by past incidence data Is−11 and the last state

Rs−1. The second step then corrects or updates this prior prediction into a posterior filtering distribution, ps, which

constrains ps using the latest observation, Is, according to Eq. (5b).

ps =

∫
P(Rs |Rs−1, Is−11 )ps−1 dRs−1 (5a)

ps ∝ P(Is |Rs, Is−11 ) ps (5b)

Here P(Rs |Rs−1, Is−11 )
d
= Norm(Rs−1, η

2Rs−1) is the state model from Eq. (4b), P(Is |Rs, Is−11 ) is the obser-237

vation model from Eq. (1) and the constant of proportionality for Eq. (5b) is simply a normalising factor.238

Solving Eq. (5) iteratively and simultaneously over the grid of R leads to our novel real-time estimate of the time-239

varying effective reproduction number. We initialise this process with a uniform prior distribution over R for p1 and240

note that ps and ps are m element vectors that sum to 1, with ith term corresponding to when Rs = R[i]. Eq. (5)241

forms the first half of EpiFilter, is flexible and can be adapted to many related problems [14]. A key difference242

between EpiFilter and the EpiEstim-type methods [11], [13] is that the latter approximate the distributions P(Rs | Is1)243

and P(Rs | Is−11 ) with P(Rs | Iss−k+1) and P(Rs), respectively. Estimators based on these approximations can be244

suboptimal, especially when data (i.e., cases) are scarce.245

Bayesian (backward) recursive smoothing246

While Eq. (5) provides a complete real-time solution to the filtering problem, it is necessarily limited at the247

starting edge of the incidence curve, where past data are sparse or unavailable. Further, because it does not update248

past estimates as new data accumulate, it cannot provide optimal retrospective estimates. Here we develop the second249

half of EpiFilter, which involves solving the optimal smoothing problem i.e., computing the smoothing posterior250

distribution qs = P(Rs | It1), which provides maximally informed estimates of the instantaneous reproduction251

number Rs, given the complete incidence curve It1. To our knowledge, smoothing has not yet been explicitly252

considered in infectious disease epidemiology (either exactly or approximately).253

We specialise the general methodology from [14], [25] to obtain the recursive smoother of Eq. (6a). This equation

uses the filtering distribution, ps = P(Rs | Is1) and the predictive distributions ps+1 = P(Rs+1 | Is1), which we obtain

from Eq. (5). Our state model means that P(Rs+1 |Rs, Is1)
d
= Norm(Rs, η

2Rs).

qs = ps

∫
P(Rs+1 |Rs, Is1)qs+1 p

−1
s+1 dRs+1 (6a)

qs ∝ rs ps P(Rs)
−1, if rs ≈ P(Rs | Its+1) (6b)

We realise Eq. (6a) exactly by taking a forward-backward algorithmic approach (this is the backward pass whereas254
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Eq. (5) is the forward one). We solve this equation by noting that qt = pt and iterating backwards in time to obtain255

the first smoothing distribution q1. The integrals become sums over our grid R and distributions are m element256

vectors. Eq. (6a) sequentially updates our earlier filtering solutions to include future data, forms the second half of257

EpiFilter and can also be approximately solved using particle smoothers [14].258

This approach neatly links the filtering and smoothing distributions ps and qs. If we assume that the reverse-259

filtering distribution rs is reasonably approximated by P(Rs | Its+1) then we can also apply the two-filter smoothing260

solution of [25] to get Eq. (6b). If either future (Its+1) or past (Is−11 ) incidence is uninformative then either rs or261

ps will reduce to the prior P(Rs), leading to qs ∝ ps or qs ∝ rs, respectively. The end and beginning of the262

epidemic provide important examples of each of these scenarios. Consequently, Eq. (6b) shows how smoothing263

connects EpiEstim and the WT methods, and explains why EpiFilter, which can be used for both real-time and264

retrospective inference, better overcomes edge-effects and periods of low data.265

Further, the smoothed posterior qs yields the conditional mean estimate R̂s = E[Rs | It1], which is known to266

significantly improve on the MSE of the filtered equivalent R̃s (see previous section) [23]. While filtering provides267

the minimum MSE estimator of every instantaneous reproduction number Rs given past knowledge, smoothing268

provides the minimum given all knowledge. This relationship is formal, with filtered and smoothed MSE values269

mapping to the amount of mutual information that It1 provides about Rt1 [34]. Extracting the maximum information270

from the incidence curve It1 should engender estimates that are more robust and statistically efficient in periods of271

low incidence. We summarise the EpiFilter algorithm in Fig. 1.272

While our main interest is on optimised and rigorous real-time and retrospective estimates of transmissibility,

which are completely defined by the smoothing distribution qs, we may also want to predict future incidence, for

informing epidemic preparedness plans and for validating past Rs estimates [13], [35]. We compute the filtered

one-step-ahead posterior predictive distribution as in Eq. (7) (integrals are over R) [14].

P(Is+1 | Is1) =

∫
P(Is+1 |Rs, Is1)ps dRs (7)

We assume, as in [36], that P(Is+1 |Rs, Is1)
d
= Pois(Λs+1Rs). Replacing ps with qs yields the smoothed equivalent273

of Eq. (7). We will use Eq. (7) to compare EpiFilter against APEestim, which is the prediction-optimised version274

of EpiEstim, developed in [13]. Since predictions depend strongly on ps or qs, optimising these distributions can275

be important, for example, when forecasting second waves of infection.276

Last, we comment on how we represent uncertainty in our estimates and predictions. Often we will provide 95%277

equal tailed Bayesian credible intervals. These are computed directly from the 2.5th and 97.5th quantiles of the278

relevant posterior distribution and used to assess performance statistics such as coverage of true values.279
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RESULTS280

Improved estimation at low incidence281

The reliable estimation of time-varying effective reproduction numbers, Rs, at low incidence, Is, is a key challenge282

limiting our understanding of transmission [17]. Periods with small counts of new cases contain little information283

and so present necessary statistical difficulties [26]. Here we compare EpiFilter, which allows exact inference over284

a state grid R, with EpiEstim and APEestim at these data-poor settings. We use EpiEstim with weekly and monthly285

windows. Weekly windows are the default recommendation in [11]. We include monthly ones as long windows can286

improve robustness at low incidence [28]. APEestim, developed in [13], optimises the window choice of EpiEstim287

to minimise one-step-ahead prediction errors. The assumptions and choices inherent in estimation methods become288

important and visible when data are scarce, and can bias inference or support spurious predictions [15].289

We generate epidemics using the Poisson noise model of Eq. (1) under the serial interval distribution of Ebola290

virus disease described in [37]. We examine three diverse scenarios in Fig. 2. These describe (A) rapidly controlled291

epidemics (Rs step changes from 2 to 0.5 at s = 100), (B) small outbreaks with exponentially rising and falling292

Rs (change-point at s = 30 and rates of 0.02 and -0.008 per time unit) and (C) medium outbreaks that are initially293

controlled (Rs changes from 4 to 0.6 at s = 40) then resurge (Rs rebounds to 2 at s = 80) into large epidemics,294

before finally being suppressed (Rs = 0.2 from s = 150). These scenarios are similar to ones investigated in295

[12], [28] and describe various epidemic dynamics that culminate in elimination. We simulate 200 incidence curves296

for each scenario and apply APEestim (optimal window k∗), EpiEstim (k = 7 and 31) and EpiFilter (state noise297

η = 0.1) to estimate Rs and sequentially predict Is (given data up to s− 1) for each curve.298

For the first two methods we compute mean one-step-ahead incidence predictions (Ĩτ(s)) as in [13] and instanta-299

neous reproduction number estimates (R̃τ(s)) from Eq. (2) with τ(s) delimiting the window times used. We obtain300

smoothed EpiFilter estimates (R̂s) and filtered predictions (Ĩs) from Eq. (6) and Eq. (7). We could use smoothed301

predictions (Îs), which implicitly include data beyond s− 1, to assess fit but as we want to test model adequacy Ĩs302

is more appropriate [38]. Our main focus is on real-time performance so we do not investigate the WT method. See303

[11], [12] for comparisons of the WT method and EpiEstim. Panels A-C of Fig. 2 provide representative single runs304

(we only show k = 31 for EpiEstim as k = 7 is often similar to APEestim) while panel D presents reproduction305

number MSE and one-step-ahead predicted incidence MSE (PMSE) distributions from the 200 runs.306

In the Methods we showed that since EpiEstim-type methods group data over some window into the past, they307

revert to their prior distribution as the total cases in this window becomes small. During low incidence periods, e.g.,308

when the epidemic is waning, using long windows makes sense [28]. However, this reduces predictive accuracy as309

fluctuations in Rs are underfit. This is the use-case for APEestim, which optimises for prediction. The consequences310

of these trade-offs are made clear in A-C of Fig. 2 where APEestim provides the best one-step-ahead Is predictions311
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but quickly reverts to its prior (seen as wide credible intervals) when cases are few. Longer window EpiEstim312

improves on this destabilisation but cannot track salient fluctuations in Rs. Panel D of Fig. 2 verifies these trends.313

APEstim has the smallest PMSE but often worse MSE than the larger k EpiEstim choices.314

Fig. 2: Small or waning epidemics. We compare reproduction number estimates (R̃τ(s) or R̂s) and one-step-ahead
incidence predictions (Ĩτ(s) or Ĩs) from APEestim with optimal window k∗, EpiEstim with window k and EpiFilter
with state noise η. We simulate 200 epidemics with low daily case numbers or long tails (long sequences of
zero cases) using the standard renewal model (Eq. (1)) for three scenarios, representative examples of which are
given in A-C. The true Rs and Is are in black. All mean estimates or predictions are in red and blue with 95%
credible intervals. APEestim and EpiEstim use a Gam(1, 2) prior distribution and EpiFilter a grid with m = 2000,
Rmin = 0.01 and Rmax = 10. In D we provide statistics of the MSE of these estimates (relative to Rs) and the PMSE
of these predictions (relative to Is) for all 200 runs. We find that EpiFilter is more robust to small incidence (better
uncertainty), whereas the other approaches can quickly decay to their prior distribution. It achieves significantly
smaller MSE (2-10 fold reductions) and comparable PMSE to APEestim (which is optimised for prediction).

Interestingly, EpiFilter is able to jointly optimise both instantaneous reproduction number tracking and incidence315
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Fig. 3: Temporal statistics of small or waning epidemics. We expand on the results from Fig. 2D by decomposing
the MSE and one-step-ahead PMSE statistics across the 200 simulated trajectories for every scenario in Fig. 2. We
do not consider the k = 31 EpiEstim example given its poor performance. We observe that EpiFilter significantly
improves on MSE throughout the epidemic trajectory (and not only in periods of low incidence) while maintaining
comparable prediction accuracies. Coverage statistics for these scenarios, which are given in the S1 Appendix (Fig.
A3), confirm that EpiFilter also consistently contains the true Rs and Is values within its credible intervals.

predictions (computed via Eq. (7)). In A-C of Fig. 2 we see that EpiFilter maintains stable and accurate estimates316

of Rs and only slowly reverts to its prior (which has the same support as that of EpiEstim and APEesim). However,317

unlike long window methods it does not sacrifice prediction fidelity. The improvement in MSE shown in panel D318

of Fig. 2 is stark (the numerical reduction in MSE when compared to the next best method is on average at least319

2-fold and often 10-fold). The PMSE, while larger than that of APEestim (which is optimised for predictions) is320

still good. These points are reinforced in Fig. 3, which expands on the statistics of scenarios A-C.321

There the MSE and PMSE computed over the 200 replicate simulations are plotted with time. We observe a clear322

and significant reduction in MSE at most time points (both at low and large incidence) for EpiFilter, with similar323

PMSE performance, as compared to EpiEstim and APEestim. This confirms the benefits of smoothing solutions.324

Moreover, the coverage of both the true Rs and Is of EpiFilter (i.e., the probability that Rs or Is is contained325

within estimated or predicted 95% equal tailed credible intervals) is more consistent than all other approaches. This326

is shown in the S1 Appendix (Fig. A3). Thus, EpiFilter combines the advantages of APEestim and long-window327
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EpiEstim and, further, is able to reliably detect transmission change-points automatically.328

Improved estimation between epidemic waves329

Maintaining robust instantaneous reproduction number, Rs, estimation when incidence, Is, becomes small is not330

just statistically important. Two possible outcomes may follow periods of small Is: either the epidemic goes extinct331

(elimination occurs, as in the previous section), or an additional wave of infection surfaces (resurgence) e.g., due332

to imports or unmonitored local transmission. Predicting which outcome is likely, in real-time, is of global concern333

as countries aim to relax interventions during the ongoing COVID-19 pandemic, while also minimising the risks of334

further resurgence [17], [39]. As changes in instantaneous reproduction numbers signal variations in transmission335

and hence incidence, reliably identifying and inferring Rs trends in the trough preceding potential new peaks can336

be crucial for preparedness, providing evidence for timely and effective epidemic interventions [10].337

Reliable estimation of Rs between epidemic waves depends on the prior assumptions of the inference method338

used and on how that method relies on those assumptions when data are scarce [40], [41]. Here we examine this339

dependence and investigate cases where resurgence follows a low-incidence period. As in the above section, we340

compare EpiFilter (η = 0.1) with APEestim (optimal window k∗) and EpiEstim (weekly, k = 7, and monthly,341

k = 31, windows) over 200 simulated epidemics under the serial interval of Ebola virus. We explore scenarios342

depicting (A) epidemics that are initially controlled (Rs falls from 2.5 to 0.5 at s = 70) but which resurge just as343

quickly (Rs returns to 2.5 from s = 230), (B) periodic or seasonal transmission (Rs is sinusoidal with magnitude344

1.3 ±1.2 and period of 120 time units) and (C) outbreaks with exponentially rising and then falling transmissibility345

(change-points at s = 40 and 190 and exponent rates 0.03, -0.015 and 0.02).346

These examples are similar to some in [13] and describe diverse epidemics with multiple peaks and troughs. We347

provide representative runs of each scenario in A-C and collect MSE (for Rs) and PMSE (relative to Is) distributions348

over the 200 runs of every scenario in D of Fig. 4. We also provide these statistics across time in Fig. 5. We observe349

a similar pattern in performance among the methods as in our previous analyses of Fig. 2 and Fig. 3. APEestim350

is best able to predict upcoming incidence and achieves the best PMSE as expected. While the monthly window351

EpiEstim is less useful in these cases (since prior reversion does not occur as often, though could be an issue for352

more extended troughs), the weekly window version loses predictive fidelity for minor MSE improvements.353

EpiFilter once again combines the advantages of the other approaches. For every scenario in Fig. 4 it provides354

accurate tracking of changes in Rs with stable credible intervals and a MSE that is at least 1
2 and sometimes even355

1
10 that of the next best method. The improvement in MSE is clear and maintained at almost every time point of356

each scenario, regardless of whether incidence is small or large. Concurrently, the incidence PMSE of EpiFilter357

rivals that of APEestim and it attains the most consistent coverage of the true Rs and Is values, as shown in the S1358
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Fig. 4: Epidemics with multiple waves. We compare reproduction number estimates (R̃τ(s) or R̂s) and one-step-
ahead incidence predictions (Ĩτ(s) or Ĩs) from APEestim with optimal window k∗, EpiEstim with window k and
EpiFilter with state noise η. We simulate 200 epidemics with multiple waves of infection using the standard renewal
model (Eq. (1)) for three scenarios, representative examples of which are given in A-C. The true Rs and Is are in
black. All mean estimates or predictions are in red and blue with 95% equal tailed credible intervals. APEestim and
EpiEstim use a Gam(1, 2) prior distribution and EpiFilter a grid with m = 2000, Rmin = 0.01 and Rmax = 10. In
D we provide statistics of the MSE of these estimates (relative to Rs) and the PMSE of these predictions (relative
to Is) for all 200 runs. We find EpiFilter is best able to negotiate troughs between epidemic peaks and hence infer
resurging infectious dynamics, achieving significantly smaller MSE (2-10 fold reductions) and comparable PMSE
to APEestim (which is optimised for prediction).
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Fig. 5: Temporal statistics of epidemics with multiple waves. We expand on the results from Fig. 4D by
decomposing the MSE and one-step-ahead PMSE statistics across the 200 simulated trajectories for every scenario
in Fig. 4. We do not consider the k = 31 EpiEstim example given its poor performance. We observe that
EpiFilter significantly improves on MSE throughout the resurgent epidemic trajectory while maintaining comparable
prediction accuracies. Coverage statistics for these scenarios, which are given in the S1 Appendix (Fig. A4), confirm
that EpiFilter consistently contains the true Rs and Is values within its credible intervals.

Appendix (Fig. A4). EpiFilter is therefore a powerful tool for detecting resurgence. We also find that the η = 0.1359

parameter value seems to be an all-purpose heuristic, meaning that usage of EpiFilter can be simpler than EpiEstim360

and other window or change-point based methods. The improvements of EpiFilter likely result from its minimal361

assumptions (see Eq. (4)) and its increased information extraction. We next test our method on empirical data.362

COVID-19 in New Zealand and H1N1 influenza in the USA363

The previous sections confirmed EpiFilter as a powerful inference and prediction tool, especially in data-poor364

conditions, using simulated epidemics. We now confront our method with empirical data from the 1918 H1N1365

influenza pandemic in Baltimore (USA) [42] and the ongoing COVID-19 pandemic in New Zealand (up to 17366

August 2020) [43]. The H1N1 dataset has been well-studied and so we first use this to benchmark EpiFilter. We367

clean this dataset by applying a 5-day moving average filter as recommended in [42]. Previous work [11] analysed368

this dataset with EpiEstim and found that sensible instantaneous reproduction number, Rs, estimates are obtained369
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when a weekly window (k = 7) is applied. However, more recent work, using APEestim [13], showed that while370

k = 7 provides stable estimates for this epidemic, it is a poor predictor of the incidence data. Instead, an optimised371

window of 2 days (k∗ = 2) yields good predictions but the resulting Rs estimates are noisy.372

We reproduce the instantaneous reproduction number estimates (R̃τ(s)) and incidence predictions (Ĩτ(s)) from373

both studies in Fig. 6 and compare them against EpiFilter with η = 0.1 (R̂s and Ĩs). Top and middle rows of374

Fig. 6 illustrate the aforementioned trade-off between estimate stability and prediction accuracy. The bottom row375

confirms the power of EpiFilter. Our Rs estimates are of comparable stability to those of EpiEstim at k = 7, yet our376

prediction fidelity matches that of APEestim. Our improved inference again benefits from using more information377

(i.e., the backward pass in Fig. 1) and making less restrictive prior assumptions. We see the latter from the Rs378

credible intervals over 40 ≤ s ≤ 60. There EpiEstim seems overconfident, and this results in a rigid overestimation379

of incidence. However, EpiFilter mediates its estimate uncertainty to a level similar to APEestim.380

Fig. 6: H1N1 influenza transmission in Baltimore (1918). We compare APEestim (top), EpiEstim with
recommended weekly window (middle) (both with Gam(1, 2) prior distribution) and EpiFilter (with m = 2000,
η = 0.1, Rmin = 0.01 and Rmax = 10) on the H1N1 influenza dataset from [42]. We use a 5-day moving average
filter, as in [42], to remove known sampling biases. Estimates of reproduction numbers, Rs, and corresponding
95% equal tailed credible intervals are in red. One-step-ahead predictions of incidence, Is, (with 95% credible
intervals) are in blue with the actual incidence in black. We find that EpiFilter combines the benefits of APEestim
and EpiEstim, achieving both good estimates and predictions.

We explore COVID-19 transmission patterns in New Zealand using incidence data up to 17 August 2020 from381

[43]. New Zealand presents an insightful case study because officials combined swift lockdowns with intensive382

testing to achieve and sustain very low incidence levels that eventually led to local elimination of COVID-19 [44].383

However, an upsurge in cases in early August inspired concerns about a second wave (which led to new interventions384
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and is why we do not consider data beyond 17 August). Here we investigate the time-varying transmission in New385

Zealand to see if this uptick suggests that the epidemic was resurfacing in mid-August. We believe smoothing can386

confer important inferential advantages in exactly these types of low incidence scenarios.387

We make the common assumptions that case under-reporting is constant [11], which seems reasonable given the388

intensive surveillance employed by New Zealand [45]. We ignore reporting delays, which are known to be small389

[46] and use the COVID-19 serial interval distribution from [47]. We do not explicitly distinguish imported from390

local cases in our analysis. The latter could bias our study [28], [39] but our focus is on demonstrating differences391

between filtering and smoothing on instantaneous reproduction number, Rs, trends and not on providing detailed392

Rs estimates during this period. We plot the results of our exploration in Fig. 7.393

Fig. 7: COVID-19 transmission in New Zealand. We compute smoothed and filtered reproduction number
estimates, R̂s (red) and R̃s (blue) respectively, from the COVID-19 incidence curve for New Zealand (available at
[43]) in the left panels. We use EpiFilter with m = 2000, η = 0.1, Rmin = 0.01 and Rmax = 10 with a uniform
prior distribution over the grid R. The top of 7A shows conditional mean estimates and 95% credible intervals
for R̂s (red) and R̃s (blue). Vertical lines indicate the start and end of lockdown, a major intervention that was
employed to halt transmission. The additional ‘future’ information used in smoothing has a notable effect. The
bottom of 7A provides smoothed one-step-ahead predictions Îs (blue, with 95% credible intervals) of the actual
reported cases Is (black). The inset gives the estimated probability of Rs ≤ 1. We observe a clear trend of subcritical
transmission that eventually seeds a second wave by August. In 7B we compare EpiFilter with EpiEstim (using
weekly windows) and APEestim (both with Gam(1, 2) priors) with all left subfigures presenting Rs estimates and
right ones providing filtered Is predictions. We observe that both APEestim and EpiEstim lead to largely unusable
estimates that mask transmission trends, in sharp contrast to EpiFilter.

We apply EpiFilter and obtain filtered (R̃s, blue) and smoothed (R̂s, red) conditional mean estimates together394

with their 95% confidence intervals. These are in the left panels of Fig. 7 and computed from Eq. (5) and Eq. (6)395

respectively. The times of lockdown and release are included for reference. Interestingly, we see a notable difference396

in the quality of inference between R̃s and R̂s. The former, as expected, is unreliable at the beginning of the397
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incidence curve and features wider uncertainty and noisier trends. The smoothed R̂s, by using both forward and398

backward-looking data largely overcomes these issues and clarifies transmission dynamics. In the right panels we399

compare EpiFilter with EpiEstim (weekly windows) and APEestim. The difference is striking. Neither APEestim400

nor EpiEstim recovers a clear trend and both are appreciably worse than even the filtered estimate R̃s.401

Our smoothed analysis suggests that Rs has resurged and supports the re-implementation of measures around402

14 August. We recover suppression of the initial wave in April, likely associated with the implementation of key403

interventions, including lockdown [46]. Following this, we infer a prolonged period of subcritical transmission,404

where P(Rs ≤ 1) ≈ 1. Low and then zero incidence over this period strikingly destabilises both APEestim and405

EpiEstim and conceals the rise in Rs that occurs after July. EpiFilter signals this upsurge, which continually grows406

until August, where a second wave becomes likely. We also provide one-step-ahead predictions (which are from407

the smoothed R̂s hence the notation Îs) and their equal tailed 95% credible intervals against the reported incidence408

from [43]. These verify that R̂s reasonably describes the data (we also present Ĩs when comparing methods). We409

find that P(Rs ≤ 1) ≈ 0 around July, further supporting this resurgence hypothesis.410

While the analyses of the H1N1 and COVID-19 data above illustrate the advantages of EpiFilter, these estimates411

can be further improved. We used case data and not actual infection times (which relates to the approximation of412

the generation time by the serial interval distribution) and did not account for introductions, case ascertainment413

fractions and reporting delays. For more practical analyses it may be necessary to first compensate for these biases414

to obtain the best possible incidence curve. Methods from [6], [12], [48] can be applied if relevant incubation415

period, reporting distributions and contact tracing data are available to diagnose and correct for these issues. The416

resulting pre-processed incidence curve can then be input to EpiFilter to obtain more realistic Rs estimates.417

DISCUSSION418

Estimating time-varying trends in the instantaneous or effective reproduction number, Rs, reliably and in real-419

time is an important and popular problem in infectious disease epidemiology [5]. As the COVID-19 pandemic420

has unfolded, the interest in solving this problem has only elevated with Rs playing a central role both in aiding421

situational awareness [8] and informing policymaking [49]. Initially, interest was on understanding how changes422

in Rs may correlate with interventions such as lockdowns and social distancing [9], [10]. However, as countries423

have entered waning phases of the pandemic and vaccine deployment has begun, focus has shifted to charactering424

how existing interventions can be relaxed with minimum risk [50]. The literature on intervention exit strategies is,425

however, still in development, and several challenges remain to modelling transmission.426

One key challenge lies in understanding and inferring transmissibility during periods when the incidence of new427

cases is small [17]. Such periods may occur under sustained control measures and necessarily contain limited428

data, which make inferences difficult. Moreover, it is in these lulls that information on transmission may be429

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 19, 2021. ; https://doi.org/10.1101/2020.09.14.20194589doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.14.20194589
http://creativecommons.org/licenses/by-nc-nd/4.0/


21

crucial, helping to determine if the removal of interventions will lead to resurgence or if elimination is realistic by430

maintaining controls [28], [39]. While reproduction numbers are not the only analytic for assessing these outcomes,431

they do provide an important real-time diagnostic since upticks in Rs generally precede elevations in case loads.432

Unfortunately, current approaches to estimating Rs become underpowered, unstable or prior-constrained in these433

data-limited conditions [11], [26], [50]. These problems are only magnified when finer-scale analyses (where cases434

are fewer by division) are of interest (e.g., regional versus national level estimation).435

In this paper we re-examined existing methodology for inferring instantaneous reproduction numbers, Rs, from an436

engineering perspective. We observed that two of the most useful and popular inference approaches, EpiEstim [11]437

and the WT method (this computes cohort reproduction numbers, which are functions of Rs) [2], only capitalise438

on a portion of the data available, deeming either upcoming or past incidence to be informative (see Fig. 1) [12].439

This informative portion is directly controlled by prior assumptions on the speed of possible Rs changes, which440

are often characterised by a window of size k. Other methods also apply similarly strong change-point or state441

assumptions on Rs, explicitly linking its variations with specific dates or events, for example [9], [26]. When data442

are scarce these assumptions can unduly control or skew inference.443

In control engineering a common problem, known as filtering, involves optimally (in a MSE sense) estimating444

hidden Markov states, in real-time, from noisy and uncertain observations [18]. A related problem termed smoothing445

provides accompanying and optimal retrospective inferences [14]. By reinterpreting Rs as a Markov state (Eq. (4))446

observed through a noisy renewal process (Eq. (1)) and defining Rs on a predetermined grid R, we were able447

to construct exact filtering (Eq. (5)) and smoothing (Eq. (6)) solutions. This led to EpiFilter, which is our central448

contribution. Generally, filtering and smoothing can be involved and require sophisticated sequential Monte Carlo449

techniques [32]. However, because we make only minimal assumptions about Rs, modelling it as a simple diffusion,450

we were able to solve these problems exactly and without complex sampling algorithms [29].451

Our solutions are computationally simple, often executing in a few minutes (see S1 Appendix, Fig. A1), and452

deterministic i.e., precisely reproducible given the same data and settings. Our method replaces strong change-453

point or window size assumptions with one free parameter, η, which allows us to model some heterogeneity in454

transmission and sets the correlation among successive Rs values. We find that η = 0.1 serves as a general heuristic,455

providing good estimates and automatically detecting change-points and salient Rs dynamics over diverse scenarios456

(see Fig. 2, Fig. 4 and S1 Appendix, Fig. A2). This heuristic is also statistically justified by its good one-step-ahead457

predictive performance and consistent coverage of true simulated values (see S1 Appendix, Fig. A3-4) [13].458

Importantly, EpiFilter is able to look both forward and backward through the incidence data, and so maximise the459

information extracted at every time point [34]. This property means it combines advantages from both EpiEstim and460

the WT method (see Fig. 1) and largely ameliorates their edge-effect issues [12]. These benefits, which also hold461
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at large incidence, make EpiFilter a useful and robust tool for both real-time and retrospective Rs inference. We462

confirmed the advantages of EpiFilter by comparing it to EpiEstim and APEestim (a prediction optimised analogue463

to EpiEstim) on many simulated examples with periods of low incidence and epidemic resurgences (Fig. 2 and464

Fig. 4). Interestingly, we found EpiFilter was able to achieve significant 2-10 fold reductions in the MSE of Rs465

estimates without compromising predictive power or coverage of the true Rs and Is values.466

EpiFilter was especially better at negotiating periods of low incidence, offering a graceful degradation to its467

prior distribution or assumptions without sacrificing predictive accuracy. When incidence is low, it can be beneficial468

to use longer windows with EpiEstim [28]. This keeps Rs estimates reasonably stable but often leads to poor469

predictions [13]. APEestim, which optimises window size for prediction fidelity, showed that in many of the470

simulated scenarios short windows are necessary for describing transmission patterns. Consequently, we have a471

trade-off between estimate robustness and prediction accuracy. We found that EpiFilter overcomes this trade-off,472

concurrently achieving good estimates and predictions. In doing so, it revealed subcritical transmission trends and473

unmasked important signals of resurgence from noisy data in those periods.474

We verified the practical utility and performance of EpiFilter on empirical data from the H1N1 pandemic of 1918475

(see Fig. 6) and COVID-19 in New Zealand (see Fig. 7). In the first, which is a standard dataset that has been used476

to test previous Rs methods, we found that EpiFilter integrated the benefits of EpiEstim and APEestim to achieve477

simultaneously good estimates and predictions. A key use-case for EpiFilter is in signalling resurgence during low478

incidence. The COVID-19 epidemic in New Zealand featured precisely those dynamics [46]. While EpiEstim and479

APEestim were destabilised and unable to extract clear transmission trends, EpiFilter inferred subcritical Rs values480

and forewarned of resurgence by signalling an uptick in Rs just before a second wave become apparent. Recent,481

more involved COVID-19 analyses [39], have confirmed EpiFilter as a useful outbreak analytics tool.482

Balancing the assumptions inherent to a model against the data it is applied on, to produce reliable inference is a483

non-trivial problem that is still under active investigation in several fields [15], [40], [41]. EpiFilter, by maximising484

the information extracted from available incidence data and minimising its state space model assumptions, appears485

to strike this balance as an estimator of instantaneous or effective reproduction numbers. Consequently, it performs486

strongly on a wide range of problems, including those involving sparse data, where other methods might struggle.487

Given its demonstrated advantages, straightforward formulation and theoretical underpinning, we hope that EpiFilter488

will be useful as a diagnostic tool for reliably signalling second waves of infection over multiple scales and more489

generally for assessing dynamical patterns in transmission both in real time and retrospectively. EpiFilter is freely490

available at https://github.com/kpzoo/EpiFilter.491
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