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Abstract  
 
Background: The dynamics of the COVID-19 epidemic vary due to local population density 
and policy measures. When making decisions, policy makers consider an estimate of the 
effective reproduction number �� which is the expected number of secondary infections by a 
single infected individual.  
Objective: We propose a simple method for estimating the time-varying infection rate and 
reproduction number �� . 
Methods: We use a sliding window approach applied to a Susceptible-Infectious-Removed 
model. The infection rate is estimated using the reported cases for a seven-day window to obtain 
continuous estimation of ��. The proposed adaptive SIR (aSIR) model was applied to data at the 
state and county levels. 
Results: The aSIR model showed an excellent fit for the number of reported COVID-19 positive 
cases, a one-day forecast MAPE was less than 2.6% across all states. However, a seven-day 
forecast MAPE reached 16.2% and strongly overestimated the number of cases when the 
reproduction number was high and changing fast. The maximal �� showed a wide range of 2.0 
to 4.5 across all states, with the highest values for New York (4.4) and Michigan (4.5). We 
demonstrate that the aSIR model can quickly adapt to an increase in the number of tests and 
associated increase in the reported cases of infections. Our results also suggest that intensive 
testing may be one of the effective methods of reducing ��. 
Conclusion: The aSIR model provides a simple and accurate computational tool to obtain 
continuous estimation of the reproduction number and evaluate the efficacy of mitigation 
measures. 
 
Introduction 
 
 We are in the middle of a global COVID-19 pandemic caused by the SARS-CoV-2 virus. 
As of September 2, 2020, over 6 million individuals in the United States have been reported 
positive for SARS-CoV-2. Modeling studies are key for understanding factors that drive the 
spread of the disease and for developing mitigation strategies. Early modeling efforts forecasted 
very large numbers of infected individuals which would overwhelm healthcare systems in many 
countries [1–3]. These forecasts served as a call to action for policy makers to introduce policy 
measures including social distancing, travel restrictions, and eventually lockdowns to avoid the 
predicted catastrophe [4–6]. The mitigating policy measures have been successful in changing 
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the dynamics of the epidemic and “flattening the curve” so that fewer people needed to seek 
treatment at any given time and as such not overwhelm the healthcare system. 
 One of the most fundamental metrics that describes the epidemic’s dynamics is the 
reproduction number �� which is the expected number of secondary infections by a single 
infectious individual [7]. The idea that the course of an epidemic is determined by the rate of 
contact between susceptible and infectious individuals was proposed by William Hamer in 1906 
[8]. Later, Kermack and McKendrick [9] showed that epidemics stop not when there are no 
susceptible individuals left, but rather when each infected individual can infect on average fewer 
than one more person. The reproduction number �� depends on three factors: 1) the likelihood of 
infection per contact, 2) the period during which infectious individuals freely interact with those 
susceptible to contract the disease, and 3) rate of contact. The likelihood of infection per contact 
(factor 1) is determined by pathogen virulence and also by protective measures such as social 
distancing or wearing masks. Free interactions between infectious and susceptible individuals 
(factor 2) occur until the infectious individual is self-quarantined or hospitalized, either when the 
individual tests positive or symptoms become severe. Finally, the rate of contact (factor 3) is 
strongly affected by public health measures to mitigate risk [10], such as lockdowns during the 
COVID-19 epidemic. Thus, the reproduction number is determined by the biological properties 
of the pathogen and multiple aspects of social behavior. When ��>1 the number of cases is 
expected to grow exponentially. The epidemic is contained when �� decreases and remains 
below 1. Real-time estimation of �� is critical for determining the effect of implemented 
mitigation measures and planning for the future. 
 We propose a method for the continuous estimation of infection rate and reproduction 
number �� that reflects the effects of mitigation measures as well as immunity acquired by those 
who recover from the disease. We estimate �� using a Susceptible-Infectious-Removed (SIR) 
model [9] that describes the dynamics of population compartments as follows: individuals start 
as Susceptible, are infected with the virus and become Infectious, and then move to the Removed 
compartment once they are quarantined or hospitalized, recover, or die. The SIR model is one of 
the simplest epidemiological models that still captures the main properties of an epidemic 
[11,12] and it has been widely used in epidemic modeling studies. In the majority of SIR 
modeling studies, the model parameters were constant. An SIR model with constant parameters, 
however, cannot be applied to the COVID-19 epidemic because various mitigating measures 
were introduced as the epidemic progressed. The effect of policy changes on COVID-19 
dynamics has been modeled using a combination of an SIR model and Bayesian inference 
[13,14]. In these modeling studies, the infection spreading rate was assumed to be piece-wise 
linear between the three dates of policy changes. In another approach, continuous estimation of 
the reproduction number and the effect of mitigation measures were obtained based on estimates 
of the distribution of the serial interval between the symptom onset in the primary and secondary 
cases [15–17]. The Bayesian inference methods as well as methods based on estimations of the 
serial interval include multiple parameters whose values are not estimated from the data. In 
contrast, we propose an adaptive SIR model (aSIR) in which only one parameter, the removal 
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rate, is taken from the literature, while the second parameter, the infection rate, is continuously 
estimated from the data using a sliding window. A continuous estimate of the reproduction 
number �� is then calculated using the infection rate estimate. The SIR model is described as a 
system of differential equations, and the key idea in our proposed method is that the initial 
conditions for each window are taken as values estimated for the previous window. The only 
additional hyperparameter is the length of the sliding window. The proposed method retains the 
conceptual and computational simplicity of SIR-type models and can be easily extended through 
the introduction of additional compartments supported by data. 
 
Data 
 
 The data on daily and cumulative confirmed cases between February 29, 2020 and 
September 2, 2020 were obtained from John Hopkins University (JHU) and the dates of 
interventions by states (e.g. state of emergency, stay-at-home order) were obtained from 
Wikipedia (Wikipedia, 2020). The JHU data were available at two levels of aggregation: county 
and state. JHU considers many sources for reporting these data; county level information is 
extracted from the website of the state’s departments of health (Johns Hopkins University, 2020) 
and state level data are extracted directly from the Centers for Disease Control website.  
 
Model 
 
 The SIR model is a system of ordinary differential equations: 
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Here, S is the number of susceptible individuals; I is the number of infectious individuals who 
freely interact with others and can transmit the infection; R is the number of individuals removed 
from the other two compartments because they are quarantined or hospitalized, recover and 
acquire immunity, or die. Several COVID-19 government data sources provide the daily number 
of newly confirmed cases as well as a cumulative number of confirmed cases. Careful 
consideration is required to determine if these numbers should be attributed to the I or R 
compartment. In the US, once an individual has been confirmed COVID-19 positive that person 
is expected to be either self-isolated or hospitalized. Therefore, we assigned the data on 
confirmed cases to the R compartment, and we fit the model on the cumulative number of 
confirmed cases. 
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 The infection rate � is  � � � � � , where � is the probability of infection during contact 
with an infectious individual, and � is the average number of contacts per day. We have no data 
that would allow us to estimate � and � separately, so we directly estimate � as is usually done 
when using SIR models. 

The removal rate � determines the rate with which the infected are removed from I to the 
R compartment. In the context of the COVID-19 epidemic, � is determined by the time it takes 
for severe symptoms to appear so the person gets tested and is self-quarantined or hospitalized. 
Therefore, we will assume the duration of the infectious period as the average time it takes for 
the infected person to become isolated, not the overall time to recover. We assume that the 
person is infectious from the day they get infected before the symptoms appear [18–20]. The 
average time to develop symptoms has been reported as 5 to 6 days [21–23]. We assume the 
infectious period before developing severe symptoms is 6 days, so � � 1/6. 
 
Time-variant Parameter Estimation 
 

The aSIR model contains two parameters, � and �,  with � � 1/6 taken from the 
literature and � estimated using the reported data for each region of interest. The time-variant 

���� was estimated using a sliding window of τ =7 days and step of s =1 day, with the estimated 
values for S and I from the previous window used as the initial conditions for the next window.  
The reproduction number was calculated as ����� � β���/γ. 

1. For the first window, we determined the date when the number of confirmed cases began 
to increase exponentially. This is important because for many states or counties, very few 
confirmed cases were initially reported for a number of days or even weeks, which 
suggests that either the epidemic had not started or the true number of infected people 
was not known. It is not reasonable to apply a SIR model for this initial period. We took 
the onset of the epidemic as the first of the four consecutive days in which the number of 
reported confirmed cases rose in at least three days. The initial conditions for system (1) 
for window 0 were S0(0) = N, where N is the population in the region of interest, I0(0) = 
1, and R0(0) = 0. Infection rate βi and S(t), I(t) for t ∈ [0, τ−1] were estimated given the 
initial conditions and actual R.  

2. Slide the window by s=1 point. For the new i+1 window, take the initial conditions as the 
estimated values from the previous window Si+1(0) = Si(s), Ii+1(0)= Ii(s), and actual 
Ri+1(0)=R(s). Use actual values of R(t), estimate infection rate βi+1 and Si+1(t), Ii+1(t). 

3. For each window, calculate ��.� �  ��/� , assign the ��.�  to the last time point of the 
window. To get a smooth estimate of �� we used a rolling average of 5 points.  

 
Results 
 

We fit the model for each state and county in the United States. The model performance 
was evaluated by calculating the quality of fit as the root mean squared error between the actual 
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and fitted P data for all windows concatenated (wRMSE). The fit was excellent with wRMSE < 6 
across all states. We also calculated a 1-day forecast, 3-day forecast, and 7-day forecast of R 
after each window (Fig. 1A). The mean absolute prediction error (MAPE) for the forecasts is 
given in Table 1. The 1-day forecast error did not exceed 2.6% across all states while the 7-day 
forecast error was large and reached 16.2% for the state of New York. In particular, the 7-day 
forecast strongly overestimated the number of cases when the reproduction number was high and 
changing fast (Fig. 1). 
 The estimated time course of �� for the state of New York and for Nassau county, one of 
the most affected in the beginning of COVID-19 epidemic, are shown in Figure 1. The estimated 
daily number of infectious individuals rapidly increased and then gradually declined after the 
lockdown was introduced on March 22, 2020 (Fig. 1A). The estimated reproduction number also 
declined after the lockdown began (Fig. 1B). The time course of �� shows weekly seasonality 
which likely reflects the effect of social interactions and possibly the effect of fluctuations in 
case reporting on weekdays vs. weekends. For New York state and Nassau county, �� exhibited 
an initial increase which may reflect the fact that the epidemic in the New York region was 
continuously seeded by travelers arriving to JFK airport until a ban on international travel was 
introduced on March 12, 2020. It may also reflect the fact that not all severe cases were initially 
recognized and reported as COVID-19. In Florida, �� decreased close to 1 by mid-April but then 
began increasing at the end of May (Fig. 1B). In June 2020, Florida authorities introduced more 
stringent measures to control the epidemic which is reflected in decreasing �� in the second half 
of July 2020. The opening of multiple states since June 2020 has been accompanied by �� rising 
above 1 (not shown here), and close monitoring of reproductive number is needed to contain 
another wave of the epidemic.   
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State: New York 

 
State: New York , County: Nassau 

 
State: Florida 

 
Figure 1. A) Estimated Infectious and forecasted Removed. B) Estimated reproduction 
number . The shaded region indicates the dates of the lockdown. While the 1-day and 3-day 
forecasts are accurate, the 7-day forecast exhibits large errors when >1 and is changing fast. 

B) A) 
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 We also compared aSIR with the model by Cori and colleagues [15] implemented as R 
package EpiEstim and a model implemented by Kevin Systrom and Thomas Vladeck available 
from a popular and influential COVID-19 data tracking website rt.live (Fig. 2). In EpiEstim, we 
assumed equal probability of infection within the infectious period of 6 days, the  estimate 
was smoothed with a 7-point rolling average window, same as in aSIR. While all three models 
show similar estimates when is close to 1, their estimates differ considerably in in the 
beginning of the epidemic. In particular, the rt.live model returned  lower max  than the other 
two models, and estimated that  already decreased to 1 by the time the lockdown was 
announced in NY state on March 22, 2020 (Fig. 2, shaded region). The EpiEstim and the aSIR 
models estimated similar peak values of , and both models estimated that  dereased close to 
1 in the first week of April, 2020. Although both models show a rapidly decreasing  in March,
the aSIR model shows a lagged change. We are not aware of ground truth data however to 
determine which model produces a more accurate estimate. 
 

State: New York 

 
Figure 2. Comparison of models that generate 
continuous  estimates. The three estimates 
differ widely in the beginning of the epidemic. In 
particular, the estimated by rt.live model 
decreased to 1 by the lockdown onset on March 
22 (shaded region). 

 
Next, we investigated the effect of an abrupt increase in testing on the  estimate (Fig. 

3). We assumed a step-wise 50% increase in testing that persisted after April 12 (Fig. 3, left 
panel). Both aSIR and EpiEstim models exhibited a spike in . It can also be argued that if 
testing increases then infectious individuals may be detected and quarantined sooner, resulting in 
a shorter infectious period and larger removal rate , in turn lowering . We did not model a 
possible increase in . Instead, we assumed that the underlying dynamics of the epidemic did not 
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change, and within 2 weeks both models returned to the  time course estimated without the 
testing increase. 

State: New York 

 
Figure 3. The effect of a step-wise 50% increase in testing (left panel, dashed line). The 1-day 
forecast by the aSIR model adapts within a week. For  estimate, both EpiEstim and our 
aSIR models produced a spike followed by a decrease (right panel, dashed lines) before 
returning to the unperturbed time course (solid lines). 

 
Discussion 
 

We have developed a simple approach to adaptively estimate time-varying parameters of 
the SIR model using reported data on the number of confirmed cases. This approach adds to the 
already large literature on COVID-19 modeling in two ways. First, we estimate the parameters of 
the SIR model using a sliding window of a limited duration, 7 days, to account for fast changes 
in transmissibility and contact patterns in response to changes in social behavior and government
mitigation measures. The window duration is a hyperparameter that can be changed as needed, 
the trade-off being the accuracy of the parameter estimates versus rapid reaction to changes in 
the underlying epidemic. Because the proposed model is so simple, a number of scenarios can be 
explored as needed.  
 Second, we attribute the data on reported cases to the Removed compartment rather than 
Infectious. This modeling decision is based on the realities of the COVID-19 epidemic in the US 
where confirmed positive individuals are supposed to self-isolate or are hospitalized. Although 
these individuals remain infectious and can infect other family members or caretakers even when 
self-isolated or hospitalized, they are not freely interacting with the susceptible population as 
would be required to attribute them to the I compartment. It has been proposed to add a new X 
compartment in the SIR model to model symptomatic quarantined infectious individuals [24]. 
We have no data to independently estimate this additional parameter of quarantine rate, however. 
For the same reason, we did not use the Susceptible-Exposed-Infected-Removed (SEIR) model 
because we are not aware of reliable data about the duration of the exposed period during which 
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an infected person is not yet infectious. Moreover, it has been found that the SIR model 
performed better than an SEIR model in representing the information contained in the 
confirmed-case data on COVID-19 [25]. 
 The reported numbers of positive cases represent a fraction of infected individuals 
because of the limited availability of testing in March and April of 2020 with the result that only 
those who developed severe symptoms were tested. Up to 80% of the infected individuals may 
be asymptomatic or develop mild symptoms [26] and were not tested, so for that period our 
model applies only to the small sub-population who developed severe symptoms. This sub-
population, however, is of particular interest because it represents those most at risk, and the 
reproduction number estimated from this limited data can be used to guide policy decisions 
aimed at protecting the most vulnerable population [27]. At the same time, as the numbers of the 
tested individuals increase, the short sliding window approach makes our model adaptable to an 
ever-larger proportion of the population (Fig. 3). 
 Across all US states, the maximal �� values of were estimated for New York (4.4) and 
Michigan (4.5) (Table 1) which is close to the mean value of 4.34 estimated for Italy [28] but 
higher than that obtained by a stochastic transmission model [29,30]. The wide range of maximal 
values of �� from 2.0 to 4.5 (Table 1) likely reflects the differences in contact rates due to 
population density [31,32]. Increased social distancing is required to contain the spread of the 
epidemic [33], with more stringent mitigation measures, including lockdown, considered 
necessary to decrease the contact rate in high-density states and counties. Another measure to 
lower �� is to increase the removal rate � by intensive testing and quarantine of individuals 
tested positive. This targeted intervention would strongly decrease the interaction between the 
infectious and susceptible individuals and keep �� <1 until a vaccine becomes available. Our 
model will allow researchers as well as policy makers to monitor the reproduction number in 
different geographical regions of the US, better understand the effect of government policies on 
the dynamics of the epidemic, and develop further mitigation strategies as we continue to battle 
COVID-19 [34,35]. 
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Table 1. Reproduction numbers �� and forecast accuracy for 50 states. 

State �� 
Max 

MAPE 
1-Day 

Forecast 

MAPE 
3-Day 

Forecast 

MAPE 
7-Day 

Forecast 
Alabama 2.9 1.5% 4.2% 10.0% 

Alaska 2.8 1.6% 3.7% 11.3% 

Arizona 3.3 1.3% 2.9% 10.1% 

Arkansas 2.8 1.5% 4.0% 12.6% 

California 2.5 1.7% 2.9% 6.3% 

Colorado 2.6 1.1% 2.9% 7.3% 

Connecticut 4.1 2.0% 3.1% 9.3% 

Delaware 2.4 1.7% 2.9% 7.9% 

District of Columbia 2.1 0.8% 1.8% 4.4% 

Florida 3.6 2.0% 4.4% 9.3% 

Georgia 3.0 1.8% 3.7% 7.4% 

Hawaii 2.7 2.0% 3.6% 9.7% 

Idaho 3.4 2.4% 4.8% 13.6% 

Illinois 4.0 1.3% 2.5% 8.5% 

Indiana 3.8 1.4% 4.0% 10.4% 

Iowa 2.8 1.8% 3.6% 8.0% 

Kansas 3.0 1.6% 3.5% 8.6% 

Kentucky 3.0 2.6% 4.9% 11.2% 

Louisiana 3.7 1.8% 4.0% 12.1% 

Maine 2.0 1.2% 2.8% 6.7% 

Maryland 3.3 1.2% 2.8% 6.2% 

Massachusetts 3.4 1.3% 3.6% 9.7% 

Michigan 4.5 1.6% 3.5% 12.8% 

Minnesota 2.7 1.3% 2.9% 8.0% 

Mississippi 2.9 1.2% 3.0% 9.3% 

Missouri 3.6 1.8% 3.3% 11.4% 

Montana 3.3 1.6% 3.7% 11.9% 

Nebraska 2.5 2.0% 4.1% 9.7% 

Nevada 2.9 2.3% 3.8% 10.0% 

New Hampshire 2.3 1.7% 3.3% 8.5% 

New Jersey 4.1 1.5% 2.3% 7.8% 

New Mexico 2.3 2.2% 3.4% 7.3% 

New York 4.4 1.5% 4.2% 16.2% 

North Carolina 3.2 1.3% 2.4% 7.2% 
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North Dakota 2.4 1.8% 4.8% 12.6% 

Ohio 3.3 1.2% 3.4% 9.8% 

Oklahoma 3.1 1.4% 3.5% 10.2% 

Oregon 2.5 1.3% 2.8% 6.6% 

Pennsylvania 3.2 1.7% 2.9% 6.3% 

Rhode Island 2.4 1.5% 3.1% 6.8% 

South Carolina 3.5 2.1% 4.3% 10.6% 

South Dakota 2.1 1.3% 3.2% 8.7% 

Tennessee 3.5 2.2% 4.8% 12.5% 

Texas 3.6 2.0% 3.9% 9.3% 

Utah 3.2 1.4% 3.1% 8.3% 

Vermont 2.9 0.8% 2.4% 7.7% 

Virginia 2.5 1.1% 2.1% 5.1% 

Washington 3.0 2.0% 4.8% 8.6% 

West Virginia 3.5 1.6% 3.9% 14.0% 

Wisconsin 3.6 1.5% 3.2% 10.0% 

Wyoming 2.9 1.9% 4.7% 14.2% 
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