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Key points 

Question: Is the leukcoyte differential count a feature of pre-diagnostic Parkinson’s disease?  

Findings: In the UK Biobank, a longitudinal cohort study with over 500,000 participants,  

lower lymphocyte count was associated with a 23% increased odds of incident PD, a 

significant difference. Mendelian randomisation revealed a convincing causal effect for low 

lymphocyte count on PD risk. 

Meaning: Pre-diagnostic Parkinson’s disease is associated with lower lymphocyte counts; 

the suggestion of causal effect may shed light on PD pathogenesis. 
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Abstract 

Importance: Biomarkers for the early detection of Parkinson’s disease (PD) are needed. 

Patients with PD display differences in peripheral blood biomarkers of immune function, 

including leukocyte differential counts and C-reactive protein (CRP), compared to controls. 

These differences may be useful biomarkers to predict PD, and may shed light on PD 

pathogenesis. 

Objectives: To identify whether peripheral immune dysregulation is a pre-diagnostic feature 

of PD, and whether it plays a causal role. 

Design: Cross-sectional association analysis of the relationship between differential 

leukocyte count and other markers of acute inflammation at enrolment, and incident cases of 

PD in UK Biobank. We used Mendelian randomization to establish whether differences in 

leukocyte differential counts have a causal influence on risk of PD. 

Setting: UK Biobank; a population-based cohort with over 500,000 participants aged 40-69 

recruited in the UK between 2006 and 2010. 

Participants: PD cases were defined as individuals with an ICD-10 coded diagnosis of PD. 

Cases were defined as ‘incident’ if their age at diagnosis was greater than their age at 

recruitment to UKB. ‘Controls’ were defined as individuals without a diagnosis of PD. After 

applying exclusion criteria for pre-existing health conditions that can influence blood counts, 

507 incident PD cases and 328,280 controls were included in the analysis. 

Exposure: Blood cell markers (absolute and relative counts) and other markers of 

inflammation were obtained from blood tests of participants taken at the initial visit. 
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Results: Lower lymphocyte count was associated with increased odds of incident PD (odds 

ratio [OR] 0.77, 95% confidence interval [CI] 0.65-0.90). There was weaker evidence of 

association between lower eosinophil and monocyte counts, lower CRP, and higher 

neutrophil counts on risk of incident PD. The association between lymphopenia and incident 

PD remained robust to sensitivity analyses. Mendelian randomization analyses suggested that 

the effect of low lymphocyte count on PD risk was causal (OR 0.91, 95% CI 0.85 - 0.99). 

Conclusions and relevance: In this large, prospective setting, lower lymphocyte count was 

associated with higher risk of subsequent PD diagnosis. Furthermore genetic evidence 

supported a causal role for lymphocyte count on PD risk. 
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Introduction 

Parkinson’s disease (PD) affects 2% of the population over 65.1 The diagnosis is made once 

motor signs appear, however by this stage ~50% of nigrostriatal neurons have been lost.2 

There is an urgent unmet clinical need for earlier identification of PD and development of 

therapies which could slow, prevent, or reverse the progression of the disease. 

 

Immune dysregulation may play a key role in the pathogenesis of PD. The white blood cell 

(WBC) differential is a crude marker of immune function but is amenable to explore in large-

scale observational studies. Studies reveal lower lymphocyte counts in PD patients compared 

with controls, driven by reductions in helper-CD4+, rather than cytotoxic-CD8+, T-cell and B-

cells counts; hypothesized to represent a cytotoxic immune signature.3-7 Case-control studies 

have also identified higher neutrophil and lower lymphocyte counts in patients with 

established PD compared with controls.8  

 

Genetic, epidemiological, and cytokine profiling studies have refined this area of study.9 

Human Leukocyte Antigen variants (HLA-DRB1/DRB5) have been identified as risk loci for 

PD in genome-wide association studies (GWAS).10,11 Large-scale polygenic risk score 

analyses suggest this pathway contributes to PD heritability.12 In vitro, alpha-synuclein-

derived peptides are preferentially displayed on major histocompatibility (MHC) molecules 

associated with PD risk, driving proinflammatory T-cell responses.13,14 Variants in the 

leucine-rich repeat kinase 2 (LRRK2) gene, a target for proinflammatory signals, confer 

effects in the same direction on risk for PD and Crohn’s disease, suggesting common genetic 

links.15  Observational studies have reported reduced risk of PD and reduced penetrance in 

LRRK2-associated PD with use of immunosuppressants and non-steroidal anti-inflammatory 

drugs.16,17 The prospective ICICLE-PD cohort study found that a baseline ‘pro-inflammatory’ 
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cytokine serum profile in PD patients was associated with faster motor deterioration than an 

‘anti-inflammatory’ profile.18  

 

Whether immune dysregulation occurs as an early feature of PD and may be a source of 

biomarkers, or immune dysregulation has a causal role in driving PD initiation and 

progression, remains unclear. We studied the relationship between differential leukocyte 

count and biochemical markers of acute inflammation at enrolment, and incident cases of PD 

in the UK Biobank (UKB) (https://www.ukbiobank.ac.uk), a large longitudinal cohort with 

~500,000 participants. We followed-up signals detected to determine whether differences in 

leukocyte subsets exerted a causal influence on PD risk using Mendelian randomization 

(MR).  

 

  



 7 

Methods 

Population 

UKB recruited ~500,000 individuals aged 40-69 between 2006-2010; prospective follow-up 

data, including census data, blood tests, and healthcare records, are regularly obtained.19 

   

PD cases were defined as individuals with an ICD-10 diagnosis of PD (code G20) derived 

from Hospital Episode Statistics or a self-reported diagnosis of PD. Date at PD diagnosis was 

determined using the UKB data field ‘Date of Parkinson’s Disease report’. Age at diagnosis 

was derived using this field, age at recruitment, and birth year. Cases were defined as 

‘incident’ if their age at diagnosis was greater than at recruitment. ‘Prevalent’ PD cases, i.e. 

with a diagnosis of PD at baseline, were excluded from analyses. ‘Controls’ were defined as 

all other individuals in the dataset after applying these exclusions.  

 

Various pre-existing health conditions can influence blood counts. To minimize bias from 

unbalanced comorbidities among cases and controls we excluded individuals with ICD-10 

diagnoses of malignant neoplasms, disease of the blood and blood-forming organs, 

autoimmune disease, thyrotoxicosis, demyelinating disease of the central nervous system, 

inflammatory respiratory conditions (asthma and bronchiectasis), non-infective enteritis, 

inflammatory dermatological conditions (atopic dermatitis and psoriasis), inflammatory 

polyarthropathies, spondylopathies, and eating disorders (supplementary table 1). 

 

Blood cell markers 

Blood cell markers (absolute and relative counts) and other markers of inflammation (CRP 

and albumin) were obtained from baseline blood tests of UKB participants taken at the initial 
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assessment visit. Details of data processing can be found on the UKB website 

(http://biobank.ndph.ox.ac.uk/showcase/showcase/docs/haematology.pdf). 

 

Statistical analysis 

We determined associations of blood cell and inflammatory markers with incident risk of PD 

using logistic regression. As our primary analysis, we conducted multivariable logistic 

regression, modelling incident PD diagnosis as the outcome and adjusting for age, sex, 

Tonwsend deprivation score, and ethnicity (dichotomized as ‘White’ background vs all other 

ethnicities). Models were of the form: Incident PD~Age+Sex+Deprivation+Ethnicity+blood 

cell marker. The strength of association was determined using the likelihood ratio test, 

comparing the full model to a null model consisting of the confounding covariates only 

(Incident PD~Age+Sex+Deprivation+Ethnicity). 

 

We then undertook a variety of sensitivity analyses. First, we included additional covariates 

in the models: body mass index (BMI) at recruitment, smoking status (“ever” vs “never”), 

and alcohol consumption (“ever” vs “never”). Second, we excluded individuals within serial 

time windows of PD diagnosis (<1, <2, <3 years from diagnosis etc.) to determine whether 

the effects from the primary analysis were restricted to individuals who would go on to 

develop PD sooner. Third, we repeated the analysis in a matched case:control analysis, 

individually matching controls by age and sex to PD cases 4:1. 

 

To determine associations between blood markers and time until PD diagnosis, we 

constructed linear models for the inverse-normal-transformed time to PD diagnosis on age, 

sex, Townsend score, ethnicity, and blood cell marker. Model fit was quantified using the 

likelihood ratio test.  
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Mendelian randomization 

We used MR to determine whether the observational association between lower lymphocyte 

count and incident PD represents a causal relationship. For MR, SNPs associated with the 

exposure of interest are used as instrumental variables to estimate the causal effect of the 

exposure on the outcome.20,21 The random allocation of genetic variants from parent to 

offspring and lifelong exposure mean there are advantages over traditional observational 

studies in reducing confounding and reverse causation.22 We performed two-sample MR 

using the TwoSampleMR R package.23,24  For the exposure instrument, we used summary 

statistics from the largest published GWAS on blood cell traits from 

ftp://ftp.sanger.ac.uk/pub/project/humgen/summary_statistics/UKBB_blood_cell_traits/.25 

This GWAS of 408,112 European UK Biobank participants used as its outcome measure the 

absolute lymphocyte count adjusted by confounding covariates (age, sex, principal 

components, study-specific factors), and rank inverse-normalised. Thus a one unit increase in 

the beta coefficient represents a 1 standard deviation increase in adjusted and normalised 

lymphocyte count per additional effect allele.  

We applied the following to develop a genetic instrument for lymphocyte count: 

1.  Removed SNPs not typed/imputed in the outcome GWAS; 

2.  Restricted to biallelic single nucleotide variants; 

3.  Removed SNPs within the super-extended MHC region due to the complex pleiotropy 

of this region (hg19, chr6:25,000,000-35,000,000); 

4.  Restricted to SNPs strongly associated with standardized lymphocyte count (p-

valueadjusted<5e-08); 

5.  Clumped SNPs using stringent default parameters (LD window=10,000 kb, r2=0.001). 



 10

6. Removed SNPs explaining more variance in the outcome than the exposure through 

Steiger filtering.26 

  
Outcome data for PD were taken from the most recent and largest case-control GWAS of PD 

published by the IPDGC and 23andMe.27 Overlap in the controls in the exposure and 

outcome data can result in bias, so we used summary statistics from the PD GWAS that 

excluded participants from UKB. 

 

We harmonized exposure and outcome SNPs to ensure effect estimates were aligned for the 

same effect allele. As our primary analysis, we used the inverse-variance weighted (IVW) 

MR estimate, which provides an accurate causal estimate when MR assumptions are valid.28 

As secondary sensitivity analyses, we applied the Mixture of Experts approach, which applies 

different MR estimators and methods for SNP instrument selection (heterogeneity and 

directionality filtering), and predicts which method has the highest probability of accurately 

estimating the true causal effect based on the data characteristics.23 Power calculations were 

performed using Stephen Burgess’ online calculator (https://sb452.shinyapps.io/power/). 

 

Data and code availability 

UK Biobank data are available via application (https://www.ukbiobank.ac.uk/). Code is 

available at https://github.com/benjacobs123456/PD_FBC_UKB. PD GWAS summary 

statistics which exclude UKB are from Nalls et al. 2019 and an application to 23andMe 

https://research.23andme.com/dataset-access/.27 Blood cell trait GWAS summary statistics 

have been made publicly available by the authors at 

ftp://ftp.sanger.ac.uk/pub/project/humgen/summary_statistics/UKBB_blood_cell_traits/. 

 

 



 11

Results 

Demographics 

After applying the exclusion criteria, 507 incident PD cases and 328,280 controls remained in 

the main (unmatched) analysis. Participant demographic data are shown in table 1.  

  

Association of blood cell and inflammatory traits with incident PD 

In a multivariable logistic regression model adjusting for age, sex, deprivation score, and 

ethnicity, there was evidence of association (false discovery rate [FDR] Q<0.05) between 

lower lymphocyte count and incident PD (odds ratio [OR] 0.77, 95% confidence interval [CI] 

0.65-0.90, table 2, figure 1). There was evidence of association (FDR Q<0.05) between lower 

eosinophil count and incident PD but with wide CIs (OR 0.33, 95% CI 0.14-0.76, table 2). 

There was weaker evidence (FDR Q<0.10) of associations between lower CRP, lower 

monocyte count, higher neutrophil count and increased risk of incident PD (table 2).  

 

To determine whether these associations could be driven by confounding, we constructed 

models in which we also controlled for variables which can impact both PD risk and blood 

cell indices: BMI, smoking, and alcohol consumption. The effect estimates from these 

models were less precise but of a similar magnitude to the primary analysis (lymphocyte 

count OR 0.78, 95% CI 0.66-0.92; eosinophil count OR 0.38, 95% CI 0.16-0.87; CRP OR 

0.97, 95% CI 0.94-1.01; monocyte count OR 0.60, 95% CI 0.34-1.06; neutrophil account OR 

1.08, 95% CI 1.01-1.15 on risk of incident PD) (supplementary table 2).  

 

To examine the possibility that reverse causation could be driving our findings - i.e. that early 

PD could be driving lower lymphocyte counts - we excluded individuals who underwent 

blood draw within 5 years of PD diagnosis. Despite the loss of power resulting from this 
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restriction, we obtained similar effect estimates (supplementary table 3). To examine whether 

the association between lower lymphocyte count and higher PD risk persisted through the 

pre-diagnostic period, we repeated this analysis excluding individuals within serial time 

windows of diagnosis (within 1, 2, 3, 4, 5, 6, 7, and 8 years of diagnosis). Despite lower 

numbers of cases with increasing time pre-diagnosis, there was a consistent signal in all 

groups (supplementary table 4). We obtained similar results for the association between 

lower lymphocyte count and risk of incident PD with the matched case-control analysis (OR 

0.78, 95% CI 0.65-0.93) (supplementary table 5). Lymphopenia considered as a binary trait 

(defined as absolute lymphocyte count<1x109 cells/L), was strongly associated with a higher 

risk of PD (OR 1.93, 95% CI 1.26-2.97, p=0.006). Exclusion of extreme lymphocyte counts 

(mean ± >3SD, leaving an inclusion lymphocyte count range 0.05-3.85x109 cells/L) did not 

substantially alter the observed association (OR 0.76 per 1-SD increase in lymphocyte count, 

95% CI 0.64-0.90). 

 

To assess whether inflammatory and blood cell markers were associated with time until PD 

diagnosis, we constructed linear models adjusting for age, sex, deprivation score and 

ethnicity. There was no strong evidence that any blood markers were associated with time 

until PD diagnosis (FDR >0.05, supplementary table 6).   

 

Mendelian randomization 

To generate an instrument for lymphocyte count, we excluded SNPs not typed/imputed in 

both the exposure and outcome datasets, SNPs with p≥5e-08, SNPs lying within the super-

extended MHC (chr6:25,000,000-35,000,000 on genome build hg19), and palindromic SNPs 

with intermediate effect allele frequencies. We performed LD clumping using default 
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parameters and Steiger directionality filtering, yielding a genetic instrument of 510 

independent non-MHC autosomal SNPs associated with lymphocyte count (supplementary 

table 7). Collectively these SNPs explained 5.37% of the variance in lymphocyte count in this 

sample and could be considered a strong instrument (F statistic=45.3). 

The primary MR analysis (IVW) showed evidence of a causal effect of lymphocyte count on 

PD risk commensurate with the size of the observational effect (OR 0.91, 95% CI 0.85-0.99, 

p=0.023). There was no evidence that unbalanced horizontal pleiotropy (whereby variants 

influence the outcome via pathways other than through the exposure) was biasing the IVW 

result (MR-Egger intercept 0.0006, p=0.76). There was evidence of substantial heterogeneity 

in the IVW estimate (Cochran’s Q=642, p=5.29e-05), however heterogeneity filtering did not 

alter the magnitude of the effect (OR 0.91, 95% CI 0.85-0.97, p=0.0034), and in fact 

increased the precision of the estimate. Standard sensitivity analyses and the ‘mixture of 

experts’ approach yielded similar causal effect estimates with varying degrees of precision, 

collectively providing evidence of a causal effect of genetically-determined lymphocyte 

count on PD risk (figure 2, supplementary table 8). 
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Discussion 

In this prospective cohort involving >320 000 individuals, lower lymphocyte count was 

associated with increased risk of incident PD; marginal associations were observed for lower 

eosinophil and monocyte counts, and higher neutrophil counts. The association between 

lymphopenia and incident PD risk remained robust to several sensitivity analyses. Follow-up 

MR analyses revealed evidence supporting the hypothesis that lower lymphocyte count may 

be a causal risk factor for developing PD later in life.  

 

Only one study has explored the link between leukocyte subsets and risk of incident PD. In 

the Swedish Apolipoprotein-Related Mortality Risk cohort, lower lymphocyte count was 

associated with a lower risk of incident PD (HR 0.74, 95% CI 0.59-0.94).29 However, pre-

existing health conditions which can influence blood counts were not excluded or adjusted 

for so the possibility of residual confounding remained; we applied stringent exclusion 

criteria capturing comorbidities which influence leukocyte counts, such as autoimmune 

disease and cancer.  

 

Several studies have assessed changes in leukocyte populations in PD after diagnosis. 

Established PD is associated with lymphopenia, driven by absolute reductions in CD4+ T-

helper cells, CD19+ B-cells and Treg cells.4,5,30,31 In a study of 123 newly diagnosed PD 

patients, the percentage of neutrophils and lymphocytes had positive and negative 

correlations, respectively, with UPDRS motor scores.32 This has been interpreted as evidence 

to support an autoimmune/inflammatory component in PD pathogenesis.33  

 

Reductions in the absolute number of naïve-T/B-cells is also a feature of age-related immune 

dysregulation, leading to the hypothesis that PD is a state of premature ageing.34-36 Flow 
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cytometric analysis has demonstrated that leukocyte apoptosis is higher in PD patients than 

controls and is associated with dopaminergic deficits on SPECT.37 However, studies to date 

have examined immune markers in established PD and cannot determine whether 

dysregulated adaptive immunity causally influences PD risk or represents a downstream 

consequence of PD pathology. Moreover, most PD cases in these studies are receiving 

dopaminergic medication, which could confound immunophenotypic patient/control 

differences.38-40 We demonstrate that lower lymphocyte count may be a feature of PD at least 

8 years before diagnosis, before the initiation of dopaminergic therapy, extending the 

observations made in patients with established PD into the pre-diagnostic phase. 

 

The observed association between lymphopenia and incident PD may be driven by a causal 

effect, residual confounding or reverse causation. Our MR analyses suggest a causative effect 

of low lymphocyte count on PD risk. Specifically, the IVW estimate suggests a weak causal 

effect of lymphocyte count on PD risk such that each 1-SD increase in adjusted lymphocyte 

count decreased the odds of PD by 9%. The MR-Egger regression intercept, which quantifies 

the degree to which net unbalanced horizontal pleiotropy may bias the IVW estimate, was 

close to null, suggesting that the IVW estimate provides a robust estimate of the true causal 

effect. Sensitivity analyses using a variety of MR estimators and heterogeneity filtering 

supported the magnitude of the IVW estimate, albeit with varying precision. These data lend 

weight to the view that low lymphocyte count is not purely an effect of PD and its prodromes 

(reverse causation) or confounding, but may be involved in a causal chain of events 

contributing to the development of PD.  

 

To address confounding in the observational study, we corrected for potential confounders in 

the primary analysis and undertook sensitivity analyses (further addition of covariates and a 
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matched analysis). However residual confounding, that is pre-diagnostic PD affects 

lymphocyte count, may remain. Although the effect persisted after excluding individuals who 

underwent blood draw within 8 years of diagnosis, pre-diagnostic features of PD including 

constipation may predate clinical diagnosis by 20 years.41,42 The gut has been proposed as the 

site of initiation of PD and fecal microbiome changes are also noted in prodromal PD.43 In 

turn, manipulation of intestinal microbiota in mice has been shown to directly modulate 

lymphopenia-induced autoimmunity.44 Lymphopenia may be a feature of pre-diagnostic PD, 

and reflect early pathological changes in peripheral tissues.  

 

Higher CRP was marginally associated with reduced risk of PD. A meta-analysis of 23 case-

control studies found significantly higher levels of CRP in the serum, cerebrospinal (CSF), 

and whole blood of manifest PD subjects compared with controls.45 CSF CRP levels tend to 

increase over time from PD diagnosis and the development of PD-dementia.46,47 These 

findings suggest that systemic inflammation impacts or occurs as a consequence of disease 

progression, but does not shed light on whether it influences disease initiation.9  

 

Strengths of our study include the large sample size derived from UKB. Despite low response 

rates potentially leading to more favorable risk factor profiles, exposure-outcome associations 

in the UKB seem to be generalisable.48 The comprehensive phenotyping of individuals in the 

cohort allowed us to correct for multiple potential confounding factors. In contrast to 

previous work utilizing cohorts with manifest PD, the availability of baseline blood tests and 

longitudinal assessment of PD diagnosis enabled us to examine the association between 

leukocyte subsets and risk of incident PD. 
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Limitations of our study include the lack of adjustment for medication which could impact 

leukocyte subsets, although exclusion for comorbidity will have captured a significant 

proportion of this confounding. Due to lack of flow cytometric data in UKB, we could not 

establish whether the observed association was driven by reductions in T-cells and/or B-cells. 

MR analysis precludes the identification of non-linear exposure-outcome associations, 

although non-linear mechanisms are not seen in other conditions in which lymphopenia 

influences outcome.49,50 

 

In conclusion we report that lower lymphocyte count was associated with higher risk of 

subsequent diagnosis of PD in a large UK cohort. The association remained robust to a range 

of sensitivity analyses and persisted at 8 years pre-diagnosis. MR analyses suggested that this 

relationship may be causal and this in particular warrants further exploration. It is also 

plausible that lymphopenia may be a consequence of pre-diagnostic PD which, although 

lacking specificity in isolation, could enhance efforts to identify those in the earliest stages of 

PD.51 Further work is required to replicate these findings in other cohorts, address the 

mechanisms by which lymphopenia may causally intersect with the pathobiology of PD, and 

evaluate whether lymphopenia improves algorithms aiming to predict who will develop PD 

in prospective cohort designs.  
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Figure legends 

Figure 1: Association of blood cell marker and inflammatory markers with incident PD in 

UKB. Betas and 95% CIs are shown from multivariable logistic regression models of the 

form PD ~ Age + Sex + Ethnicity + Townsend deprivation score + blood biomarker. 

Estimates shown here are for Z-score standardised variables (x-mean / sd) to allow 

comparison between effect sizes.  

Figure 2: Mendelian randomisation analysis of the effect of lymphocyte count on PD risk. A: 

scatter plot showing SNP associations with lymphocyte count from our GWAS (x) and with 

the per-allele log(OR) for PD (estimates from the largest PD GWAS published, Meta5, 

excluding UKB participants). The model fit lines indicate MR estimates (of the ‘causal 

effect) from different MR methods. B: MR estimates from various methods using the 

‘Mixture of Experts approach’. The y axis shows different MR methods and different 

approaches for filtering SNPs to be included in the genetic instrument (heterogeneity 

filtering, HF;  directionality filtering, DF). Estimates are coloured and ordered by the ‘MOE’ 

statistic, which is similar to an area under the curve statistic in that it quantifies that ability of 

a given MR method to distinguish a true effect from the absence of a true effect. MOE 

statistics closer to 1 indicate a higher likelihood that the given MR method will give an 

accurate estimate for the given dataset.  
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