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ABSTRACT

Artificial intelligence (AI) has an emerging progress in diagnostic pathology. A
large number of studies of applying deep learning models to histopathological
images have been published in recent years. While many studies claim high
accuracies, they may fall into the pitfalls of overfitting and lack of generalization
due to the high variability of the histopathological images. We use the example of
Osteosarcoma to illustrate the pitfalls and how the addition of model input
variability can help improve model performance. We use the publicly available
osteosarcoma dataset to retrain a previously published classification model for
osteosarcoma. We partition the same set of images into the training and testing
datasets differently than the original study: the test dataset consists of images
from one patient while the training dataset consists images of all other patients.
The performance of the model on the test set using the new partition schema
declines dramatically, indicating a lack of model generalization and overfitting.
We also show the influence of training data variability on model performance by
collecting a minimal dataset of 10 osteosarcoma subtypes as well as benign
tissues and benign bone tumors of differentiation. We show the additions of more
and more subtypes into the training data step by step under the same model
schema yield a series of coherent models with increasing performances. In
conclusion, we bring forward data preprocessing and collection tactics for
histopathological images of high variability to avoid the pitfalls of overfitting and
build deep learning models of higher generalization abilities.

INTRODUCTION

Artificial intelligence (AI) has been successfully applied to many tasks including
image detection and classification, sound processing and natural language
processing. In the area of image classification and detection of everyday objects,
AI algorithms like deep learning have been tremendously successful. Nowadays,
smartphone cameras can detect user faces and surrounding objects accurately.

There has been an exponential growth in the application of AI in the health and
medical fields. Deep learning algorithms have been built to segmentation organs
from X rays, CT and MRI images. Recently, physicians and computer scientists
have jointed work in building deep learning algorithms to diagnose COVID-19
pneumonia features[1]. Up to September 2020, FDA has approved 76 AI
algorithms in the field of diagnostic radiology, according to data science institue
of american college of radiology[2].

In the field of diagnostic pathology, we have also seen deep learning applications
in histopathological images. Many of these applications are specifically aimed at
Hematoxylin and Eosin (H&E) stained images and have the potential of
transforming diagnostic pathology, like what has already been happening in the
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field of radiology[3]. Progresses have been made in areas like prostate cancer
biopsy diagnosis[4], evaluation of cervical cytology[5] etc,. Research group in
University of Pittsburg Medical Center claimed that they have developed a deep
learning model for prostate cancer surveillance with high performance, and have
deployed the model in routine work of Maccabi Healthcare Services in Israel [6].

There is no doubt that AI has tremendous power and has great potential in
application in diagnostic pathology. With the emerging progress of AI in pathology
images, there will be great progress in the near future. However, deep learning
models are not without challenges. As described in book Deep Learning [7], “The
central challenge in machine learning is that we must perform well on new,
previously unseen inputs — not just those on which our model was trained. The
ability to perform well on previously unobserved inputs is called generalization.”

As a deep learning model development routine, researchers usually use methods
like a train/test split or k-fold cross-validation. The models are developed on
training data sets and the generalization abilities are estimated on the test or
validation data sets.

The most common pitfall of a deep learning model is overfitting. Over-fitting
means the model goes through too much learning and the model performs well on
the training data set, but poorly on the new data. This arises from the lack of
variability of the test or validation data set and the data in the real world. [8]

A large number of studies of applying deep learning models to histopathological
images have been published in recent years, and many of these studies have very
similar schema: authors collect sets of images of different categories, like normal
tissue, benign tumor and malignant tumor, different stages of tumors or
metastatic tumor. The images are randomly splitted into train and test datasets.
Deep learning model is trained on the training dataset and model performance is
reported from the test dataset. Authors usually claimed high model performances
in terms of high accuracy, high sensitivity and specificity. Model accuracies were
often claimed to be higher than 0.99. Many studies even claimed that the models
have higher performance than experienced pathologists in the specific test sets.

However, it is likely that some of these studies fall into the pitfall of over-fitting.
The models surely perform very well on the specific test sets used in the author's
study, but because the training and testing data sets lack variability compared
with the real world data, the trained models will fail on the new real world data
that is of the same diagnosis, but different image presentations.

Here we looked at the performance and generalization of a deep learning model
in a previously published paper[9]. The authors used osteosarcoma biopsy images
to build a classification model for benign tissue, viable tumor and non viable
tumor. We rebuilt the deep learning model using the same image data sets and
the same model schema that the authors have made publicly available at The
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Cancer Imaging Archive[10,11]. We achieved comparable model performance using
the same train/test schema as stated in the paper. We then use the same set of
data but a different train/test split schema for a new model: all images that come
from one of the patients were used as the test data set and the images of all other
patients were used as training set. This re-fitted new model using the same deep
learning schema shows good performance on the training data set but poor
performance on the test set of 1 patient data left out, indicating a possibility of
over-fitting. We suspect that the over-fitting comes from the similarity among
images of the same patient, the overfitting problem is exposed after we restrict
the test dataset to patient images that are not included in the training dataset. In
other words, the new model is not generalizable to the one patient left out.

Histopathological images are notoriously highly variable. Even experienced
pathologists sometimes do not have consensus diagnosis. The variation comes
from many levels, like specimen preparation and artifacts, patient level variations,
tumor stages, tumor types/subtypes, and tumor heterogeneity. Some tumor
types are especially highly variable. Osteosarcoma, for example, has around 10
different morphologic subtypes[12]. Some subtypes are very similar in morphology
to benign bone tumors like osteoma and osteoid osteoma[13]. It is our hypothesis
that lack of variability in the training data can be a main obstacle in building a
robust diagnosing model.

To illustrate the effects of lacking variability in deep learning models. We build a
series of deep learning models for classifying osteosarcoma vs benign tissue or
benign bone tumors using different combinations of training data sets. We
collected histopathological images for each of the osteosarcoma subtypes as well
as benign bone tumors that should be differentiated with osteosarcoma including
osteoma and osteoid osteoma as well as benign tissues that may appear in bone
biopsies, like normal bone, soft bone, muscle and connective tissues. The test
dataset we built is fixed for all models, it is composed of all subtypes of
osteosarcoma and all types of benign tissues and tumors. While for the training
data sets, the usage of each of the subtypes of osteosarcoma and add-up of
different subtypes are used. We find that while the model performances on the
training datasets are consistently high, the performances on the fixed test set
composed of all osteosarcoma subtypes increase as more and more subtypes are
included in the training dataset. Our hypothesis is that higher variability in
training dataset is beneficial for a robust model that is applicable to the real world
data. Tumor subtype classification, in a way, is the human intelligence in
clustering the tumor based on their variability. The hypothesis that the inclusion
of multiple tumor subtypes is one of the most efficient ways to boost the data
variability thus improving the robustness of the models has also been observed
and supported in other studies[14].

Thus, using the example of osteosarcoma subtypes, we demonstrate the effects
of lacking variability in training data on the model generalization ability. We also
propose a methodology to check the issue of over-fitting of the deep learning
models. Our study proposes a possible reference for development of highly robust
deep learning models for diagnostic pathology in the future.
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METHODS

TCIA Dataset

MISHRA et al has made the osteosarcoma data they used to train the
classification model publicly available. We downloaded the data from the cancer
Imaging Archive TCIA website [10-11].

The dataset is composed of 1144 H&E stained osteosarcoma histology images,
from the 4 patients who had been treated at Children’s Medical Center, Dallas,
between 1995 and 2015. Table 1 shows the crosstab table of different tumor
types and different patients.

Out of these images, 536 (47%) non-tumor images, 263 (23%) necrotic tumor
images and 292 (25%) viable tumor tiles. A total of 53 images have unclear status
between viable and non-viable, they were emitted in model fitting.

The images are of 1024*1024 pixels each, they are splitted into 128*128 image
tiles. The same data preprocessing steps including RBG channel to Lab color
space conversion, addition of original 1024*1024 images to training data,
removal of images containing only white pixels or empty background pixels are
followed.

Data augmentation including vertical and horizontal flip, height and width shift is
applied using Keras ImageDataGenerator class.

We tried 2 different methods to generate the train and test datasets. The first
method is the conventional random split of the whole dataset by 0.7/0.3 ratio
similar to the method used in the original journal. As the entire data set is
composed from images of 4 patients. We suspect that there is lack of variability in
the training data set and the high performance reported by the authors probably
comes from overfitting. To illustrate that, in the second method, we use all the
images of patient “case4” as the test dataset while the images of the rest 3
patients are used as the training set. The patient “case4” of this dataset contains
all 3 types of the tumor, thus making it a good test set.

All subtypes dataset and benign dataset

Osteosarcoma subtypes include conventional variants, surface types and other
variants like small cell, extra-skeletal and secondary osteosarcoma like
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complicating Paget’s disease. Conventional variants include osteoblastic,
chondroblastic, telangiectatic and fibroblastic subtypes [15], and surface
osteosarcomas include periosteal and parosteal and high-grade surface types [16].
In Figure 1, we show the different subtypes of osteosarcoma.

To maximize the diversity in the training data for diagnosing osteosarcoma, we
collected histopathological images of osteosarcoma by subtypes. As the aim of
this study is to illustrate the effects of data variability on model performance
instead of building a robust classification model for osteosarcoma instead of
building a robust classification model, minimal numbers of histopathological
images were collected for ease of training.

Images were collected from online sources and have been reviewed by
experienced pathologists. Osteoblastic (41.7%) ) and chondroblastic (20.8%)
subtypes were reported to be the more common subtype, thus we collected
relative more images for these subtypes. However, we do not claim that the
composition of the images reflect the ensemble osteosarcoma in the real world
due to its complex nature. Its effects are discussed in the discussion part.

The design of the benign dataset is also aimed to maximize the variability, but
within a reasonable range. We collect the benign tissue types that commonly
appear in bone biopsy, including bone, soft bone, muscle, tendon, connective
tissue proper.

We also collected histopathological images for benign bone tumors that should
commonly be differentiated with osteosarcoma, including osteoma and osteoid
osteoma. Sample images of the benign dataset are included in Figure 2.

The images in the subtype and benign datasets are of various sizes. Images tiles
of size 128*128 pixels were extracted starting from the top left corner, towards
the right and bottom edges. Tiles that cross the right and bottom edges were
discarded. The images are rotated 90, 180, 270 degrees, and images tiles are
collected to prevent the learning of position-dependent features by models.

The collected images and their sources are available at
https://github.com/haimingt/osteosarcoma_subtype_modeling/tree/master/subty
pes.

Model training and evaluation

Keras implementation of the same convolution neural network schema was used
for all experiments. While there are numerous variations of schema, we use the
schema that was included in the previous published paper, which is extended
from the classic LeNet5 schema by adding more convolution layers. The model
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details can be found in supplemental materials. Each of the training processes
consisted of 25 epochs.

A series of experiments were performed in our study, they are listed in Table 2.
Experiment A and B use the TCIA data sets to train and test models. Experimental
C and D applied the models in A and B to the test set composed of all
osteosarcoma subtypes, benign tissues, osteoma and osteoid osteoma.
Experiment E uses just 1 type of osteosarcoma to train but predict data that
contains all osteosarcoma subtypes. Experiment F uses combinations of the
different subtypes in the training data in an add-up manner, for each step, an
additional subtype was added to the training data, while the test data set remains
the same as compared to experiment F. The step by step add-up follows the
ranked performance of each subtype in experimental E, subtypes with smaller
AUC are added first to the combination models.

The model performance is evaluated using metrics including the area under curve,
accuracy, precision and recall.

As the TCIA dataset models predict 3 categories, benign, nonviable and viable,
but the test data of our subtype models only have 2 categories. Predictions of
Experimental C and D were manually converted by combining the predictions of
benign and viable tumors as non-osteosarcoma. The predicted probability of
osteosarcoma is equal to the probability of non-viable tumor, while the probability
of benign tissue or tumor is equal to the probability of benign and viable tumors
combined.

RESULTS

Over-fitting caused by lack of variability in TCIA training data

In experiment A, we follow the routine way of splitting data into training and
testing data. The model performance is good on the testing data, with AUC = 0.83.
However, in experiment B, while the training data contains only images from the
3 patients, and the model is tested on the 4th patient, the performance dropped to
an average AUC of 0.70. It proves that the model trained on the 3 patients cannot
predict the 4th patient well.

In addition, as shown in Figure 3. The training process of experiment A shows the
performance on the train and test sets are consistent with each other and remain
relatively stable over the epochs. The performance of experiment B shows
discordant trends between train and test sets, the training set has an upward
trend through epochs while the test set has a downward trend. It means that the
more training is performed and the better the performance of the model on the
training set, the worse the performance is on the test set. This is the typical
over-fitting of the training data and lacks the generalization of the training data
on the new data.
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We then applied the models in experiment A and B to the newly collected tests
sets that consist of 10 different subtypes of osteosarcoma, benign tissues and 2
benign bone tumors. As examined by the pathologist, the osteosarcoma images
in the TCIA datasets all belong to the Osteoblastic type. Thus, the test data set
contains far more variability than the training data used in experiment A and B. It
is not surprising that the models of A and B will lack generalization towards these
new data. And the performance confirms our hypothesis, the model in
experimental A has an AUC of 0.57, while the model in experiment B has an AUC
of 0.40 (Figure 4).

Over-fitting caused by only 1 subtype of osteosarcoma in training data

In experiment E, training data contains only 1 subtype of Osteosarcoma and all
the benign tissues and benign bone tumors, while the testing data contains all 10
subtypes. We designed this experiment to roughly represent the situation in real
life, when the training data only reflects a part and sometimes a very small part of
the complexities of the real world data.

We expect the models to perform badly in the over-fitting way. We illustrate this
issue by the case of using chondroblastic subtype to train as in Figure 3. The
performance on the training data improves epoch by epoch, showing better and
better fit of model upon each step. But the performance on the test dataset shows
large fluctuations, indicating that the features learned by the training data are not
the “correct” features to differentiate the osteosarcoma vs non osteosarcoma
bone tissues. The model metric plots for the models using other subtypes can be
found in supplemental materials.

Figures 6 summarizes the performances of experiment E for each of the subtypes
used. It shows the boxplot of the area under curve of the 25 epoches for each of
the models using only 1 subtype. We see that the general performance of most
models are unsatisfactory, with average AUC < 0.7. And for models using
parosteal, osteoblastic and chondroblastic, the performances are slightly better,
but showing great fluctuations, indicating lack of fit of the trained model.

Addition of more subtypes in training data increases model performance

We then rank the performance of the models of each subtype from low to high by
the average AUC of the 25 epochs, and sequentially add one more subtype to the
training data. The models using different training sets are then tested on the
same dataset as used in experiment E.

Figure 7 shows the boxplot of the AUC of the 25 epochs of subtype models in
experiment E on the same test dataset. It shows a clear pattern that with the
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addition of more and more subtypes, from AUC of 0.39 for model of using small
cell variant subtype only, to 0.47 for combination of small cell variant and
fibroblastic subtype, to 0.89 for using all subtypes.

The only violation of the trend of performance increase comes from the addition
of pareosteal subtype, which reduced the model AUC performance slightly from
0.85 to 0.84. The exact cause of the decline is unclear. Our hypothesis is that
parosteal subtype arises from the surface of the bone, it is generally well
differentiated of a lower stage (stage I and II) [16]. In the images we have selected,
there are several images with areas of chondroid differentiation. The cartilage is
present at the periphery of the lesion and may resemble a benign cartilage tissue.
We suspect that the addition of this subtype, although adding slightly more
images and variability to the train model, may not overcome the error in the test
data set caused by similarities between the chondroid differentiation in the
parosteal subtype and the normal cartilage tissues.

From this experiment, we can conclude that to generate a deep learning model of
generalization ability in the field of histopathology, the training dataset should
contain enough data that is diverse enough to cover all kinds of images the model
will be applied to. In the case of developing a deep learning model for diagnosing
osteosarcoma v.s non-osteosarcoma, including all subtypes of osteosarcoma may
be a good method to increase model variability and robustness.

DISCUSSIONS

It is important to note that our experiments only use minimal data. The purpose of
this article is to perform experiments that illustrate the issues of over-fitting and
lack of generalization in the development of deep learning models for
histopathology. The test data we collected has more variability than data
containing only limited subtypes of sarcoma, but the data variety in the real world
is significantly greater than what we have included in this study. The models we
developed are by no means production models that can be applied to real world
osteosarcoma data. However, we have proposed a framework regarding if we
have a large data set of various cancer subtypes, how to build a model that is
more robust to the varieties of the images, and how to avoid overfitting during the
model building process. By separating the training images based on different
subtypes of corresponding diseases, this framework allows users to build a series
of coherent models and based on the performances of these models, users can
thus produce a performance curve of these models. Ideally the performance
curve will grow nonlinearly until it reaches its upper limit caused by the law of
diminishing marginal utility. We can derive similar performance curves using
different numbers and qualities of training images as well. By changing the
training image sizes, qualities, and varieties, we can potentially assess the
robustness, reliability, and confidence of these models and finally derive a
confident score of the model for diagnosing purposes.
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The routine schema of deep learning model building may create the issue of
over-fitting. Many researches, similar to experiment A, collect a limited number of
images from a small number of patients. And these images are splitted into
training and test datasets randomly.

Even though the test data set doesn’t contain the exact images from the training
dataset, however, because of the intrinsic similarities among the images from the
same patient, there will be overly exaggerated similarity between the training
and testing dataset. Thus, the high performance converged by the test dataset is
commonly overestimated and the model is commonly over-fitted.

To spot this issue, we recommend building the test dataset in a way that excludes
similar data from the training dataset more carefully. Researchers can use the
images from 1 or more new patients while the model is trained on images from
other patients. Another recommendation is not to split the image tiles or patches
from the same large image into train and test dataset, as image tiles or patches
may share great similarities and can affect the model evaluation.

Histopathological images are of great variability. There has been research that
pathological assessment of malignant polyps varies between observers, high
interobserver variability with regard to histological grade of differentiated
tumors[17]. Review paper summarizes that the diagnostic variability in breast
cancer could be attributed to three overall root causes: (i) pathologist-related; (ii)
diagnostic coding/study methodology-related; and (iii) specimen-related. Most
pathologist-related root causes were attributable to professional differences in
pathologists’ opinions about whether the diagnostic criteria for a specific
diagnosis were met, most frequently in cases of atypia[18].

Experiments E and F shows that the lacking of variability in the training data
greatly affects the model performance. With more training data that reflects more
complexity of the real world data, model performance increases.

A test or validation dataset can be built by maximizing the reasonable variability.
Including different stages/types of a cancer/tumor may be the easiest way to
ensure variability based on pathological knowledge ground. For example, to build
a model that can detect colorectal cancer cells in GI biopsy samples, the training
and test datasets can include the different colon rectal cancers, which may
include but not limited to different stages of adenocarcinoma, mucinous
adenocarcinoma, signet ring cell adenocarcinoma, primary colorectal lymphoma,
gastrointestinal stromal tumors and leiomyosarcoma as well as common benign
GI duct tissues, various types of polyps and benign tumors like carcinoids.

This, however, will uninhibitedly require a large number of images of various
types. It is often noted that due to the patient confidentiality, the
histopathological images used in many published studies were not publicly
accessible. Recently, more digital pathology datasets like CAMELYON[19] have
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become publicly available and have pushed the frontiers of deep learning in
pathology informatics. With the growing abundance of data availability and
variability, we will be able to build robust deep learning models for computer
aided diagnosis systems.

Conclusion

In this article, we examined the pitfalls of overfitting and lack of generalization in
deep learning models in histopathological images through a series of
experiments on osteosarcoma. We demonstrated that lack of variability in the
training data can lead to overfitting of the models and the random split of the
train and test data set from the same patient or image may disguise the
overfitting problem. We also showed that with adding more data with increased
variability to the training data, models of higher levels of robustness can be built.
From these, we bring forward data preprocessing and collection tactics to avoid
the pitfalls of overfitting and build deep learning models of higher generalization
abilities.

Conflicts of interest
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Table 1. crosstab table of different tumor types and different patients 
for TCIA Osteosarcoma dataset

patient_id

P9 case3 case4 case48 Total

tumor_ty
pe

Non-Tumor 212 110 78 136 536

Non-Viable-
Tumor

0 171 90 2 263

Viable 0 3 87 202 292

viable: non-
viable

0 1 22 30 53

Total 212 285 277 370 1144
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Experiment label Training set Test set Specific subtype of osteosarcoma AUC
A 70% of TCIA set 30% of TCIA set NA 0.831406

B TCIA set (P9, Case3, 
Case48) TCIA set (Case4) NA 0.700612

C 70% of TCIA set

30% of all subtypes 
of osteosarcoma + 
all benign tissues , 

osteoma and 
osteoid osteoma

NA 0.55

D TCIA set (P9, Case3, 
Case48) NA 0.29

E

70% of  dfiffernt 
combinatiosn of 
otsteosarcoma subtypes  + 
70% of all benign tissues , 
osteoma and osteoid 
osteoma

smallcellvariant_fibroblastic 0.471908
smallcellvariant_fibroblastic_periosteal 0.524636
 smallcellvariant_fibroblastic_periosteal_telangiectactic 0.528312
 smallcellvariant_fibroblastic_periosteal_telangiectactic_complicatingpaget 0.598128
 smallcellvariant_fibroblastic_periosteal_telangiectactic_complicatingpaget_epithelioid 0.863568
 
smallcellvariant_fibroblastic_periosteal_telangiectactic_complicatingpaget_epithelioid_withgia
ntcells 

0.851232

 
smallcellvariant_fibroblastic_periosteal_telangiectactic_complicatingpaget_epithelioid_withgia
ntcells_parosteal 

0.840264

 
smallcellvariant_fibroblastic_periosteal_telangiectactic_complicatingpaget_epithelioid_withgia
ntcells_parosteal_osteoblastic 

0.885664

 
smallcellvariant_fibroblastic_periosteal_telangiectactic_complicatingpaget_epithelioid_withgia
ntcells_parosteal_osteoblastic_chondroblastic 

0.88704

F
70% of ONE specific type of 
osteosarcoma + 70% of all 
benign tissues , osteoma 
and osteoid osteoma

chondroblastic 0.663656
complicatingpaget 0.451864
epithelioid 0.457356
fibroblastic 0.392112
osteoblastic 0.630856
parosteal 0.542764
periosteal 0.396016
smallcellvariant 0.388852
telangiectactic 0.399856
withgiantcells 0.457676

G
70% of ONE specific type of 
osteosarcoma + 70% of all 
benign tissues

30% of all subtypes 
of osteosarcoma + 
all benign tissues

chondroblastic 0.916284
complicatingpaget 0.826564
epithelioid 0.906808
fibroblastic 0.732032
osteoblastic 0.94616
parosteal 0.761204
periosteal 0.783428
smallcellvariant 0.535136
telangiectactic 0.569512
withgiantcells 0.660888

Table 2. Experiments set up and performance summary
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Figure 1. Sample images of different Osteosarcoma subtypes we have collected 
for experiments E and F showed in Table 2.
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Figure 2. Benign dataset of experiment E and F consisting of benign bone tissues 
and 2 types of benign tumors, osteoma and osteoid osteoma.
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Figure 3. Model metrics: loss and AUC during training epochs, upper experiment A, 
lower experiment B. 
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Figure 4. receiver operating curves for experiments C and D, which are the performances 
of the models in experiment A and B applied to the test set composed of all subtypes of 
osteosarcoma, benign tissues and benign bone tumors. 
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Figure 5 model metrics of the model using only chondroblastic subtype 
to train in experiment E. 
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Figure 6, boxplot of the AUC of the 25 epochs of subtype models in experiment E 
on the same test dataset
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Figure 7, boxplots of the AUC of the 25 epochs of models that add up different 
subtypes in experiment F 
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