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Abstract 10 

To better control the SARS-CoV-2 pandemic, it is essential to quantify the impact of control 11 

measures and the fraction of infected individuals that are detected. To this end we developed a 12 

deterministic transmission model based on the renewal equation and fitted the model to daily 13 

case and death data in the first few months of 2020 in 79 countries and states, representing 14 

more than 4 billions individuals. Based on a region-specific infected fatality ratio, we inferred 15 

the time-varying probability of case detection and the time-varying decline in transmissiblity. 16 

The model was validated by the good correlation between the predicted total number of 17 

infected and that found in serosurveys; and most importantly by the strong correlation between 18 

the inferred probability of detection and the number of daily tests per inhabitant, with 50% 19 

detection achieved with 0.003 daily tests per inhabitants. Most of the decline in transmission 20 

was explained by the reductions in transmissibility (social distancing), which avoided 107 21 

deaths in the regions studied over the first four months of 2020. In contrast, symptom-based 22 

testing and isolation was not an efficient way to control the spread of the disease, as a large 23 

part of transmission happens before symptoms and only a small fraction of infected individuals 24 

was typically detected. We developed a phenomenological model to link the number of daily 25 

tests with the probability of detection and verified the prediction that increasing test capacity 26 

increases the probability of detection less than proportionally. Together these results suggest 27 

that little control can be achieved by symptom-based testing and isolation alone. 28 

  29 
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Introduction 30 

The coronavirus SARS-CoV-2 originated in November-December 2019 (1), appeared as a 31 

cluster of cases of pneumonia of unknown etiology in the Wuhan province in China in 32 

December 2019-January 2020, and subsequently spread in Asia, Europe, North America, and 33 

the rest of the world in 2020. The rapid doubling time associated with the basic reproductive 34 

number R0 at 2-3 (2–4), together with the fact that an estimated ~50% of transmission is 35 

presymptomatic (5,6) make it difficult to control. A substantial proportion of infected 36 

individuals need to be hospitalised: 1 to 18% with increasing age in China, 4% overall in France 37 

(7–9). The infected fatality ratio (IFR) is around 1%, and much higher in the elderly (7–10). 38 

By early March 2020, many regions of the world had imposed strong social distancing 39 

measures to reduce transmission and contain the spread of SARS-CoV-2. These social 40 

distancing measures were varied and included school closure, business closure, partial or full 41 

lockdowns, stay-at-home order, the prohibition of gatherings, curfews, etc. These measures 42 

resulted in the stabilisation or the inversion of the epidemic curve in many countries (11). This 43 

was accompanied by an increase in the capacity to PCR-test potentially infected individuals. 44 

To improve the control of the epidemic, it is necessary to understand the transmission dynamics 45 

during the period of unrestricted growth in the first few months of 2020, and the impact of the 46 

subsequent reduction in transmission owing to (i) the depletion of susceptible individuals , (ii) 47 

the social distancing measures implemented, (iii) tests and isolation of cases. We develop a 48 

dynamical epidemiological model that describes the transmission dynamics with a discrete-49 

time renewal equation. Thanks to published estimates of the IFR, our model predicts the daily 50 

number of all cases and the fraction of detected cases, and the daily number of deaths over the 51 

course of the epidemic and can thus be readily fit to data from 79 countries, states and 52 

provinces. Within each of these regions, we infer the time-varying probability of detection; the 53 

time-varying transmissibility; and we deduce the impact of detection and case isolation on 54 

transmission dynamics. The model is validated by the strong correlation between the predicted 55 

attack rate and that found in serological surveys. Finally, we show that the capacity to detect 56 

SARS-CoV-2 infections is strongly related to the number of tests performed per inhabitant, 57 

develop a novel model that relate the number of tests to the probability of detection and verify 58 

the model predictions. These results will serve to better understand and control transmission 59 

dynamics. 60 
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Results: 61 

We model the dynamics of SARS-CoV-2 transmission for 79 geographical zones (countries, 62 

USA states, Canadian provinces and the Hubei province in China; hereafter “regions”) with a 63 

discrete-time renewal equation that describes how individuals are infected each day by 64 

transmission from previously infected individuals (Methods). Our model is akin to an existing 65 

model that predicts the daily number of deaths (11). The adapted renewal equation we use 66 

predicts in a deterministic way the daily numbers of infected, cases recorded, and deaths, given 67 

temporal profiles of transmissibility and case detection. 68 

Infected individuals may die with a constant probability called the infected fatality ratio (IFR). 69 

We fix both the IFR and the distribution of time to death to values previously estimated from 70 

data from mainland China (8). The inference of the number of infected and hence the 71 

probability of detection crucially relies on the IFR, which links the daily deaths with the past 72 

number of infected individuals . The IFR is difficult to estimate because case detection is biased 73 

towards more severe cases. Early estimates relied on settings where tests were exhaustive such 74 

as repatriation flights or the Diamond Princess cruise boat (7,8,12). We use one of the published 75 

estimates of age-dependent IFR ((12); similar to other estimates, Supplementary Fig. 1) to 76 

compute a region-specific IFR that takes into account the regional age distribution. This region-77 

specific IFR ranges from 0.3-0.4% (Bangladesh, Egypt, Pakistan, Philippines, South Africa) to 78 

1.2%-1.4% (Germany, Italy, Portugal, Spain), and is typically around 1% in the regions 79 

examined (median 0.94%). The IFR and the distribution of the time from infection to death 80 

allows us to project back in time the number of infected individuals. 81 

We fit jointly the number of cases and deaths. This strategy has two advantages. While the 82 

number of deaths may be small, the number of cases is typically much larger and less subject 83 

to stochastic fluctuations. Furthermore, cases give an early signal of potential changes in 84 

transmissibility, as infected individuals may be detected as soon as symptoms occur, about a 85 

week after infection, while death occurs much later, about four weeks after infection on 86 

average. The number of recorded cases, however, depends on the intensity of testing and the 87 

testing strategy. We account for changes in intensity of testing by modelling sand inferring a 88 

time-varying probability of case detection. We can thus interpret the number of cases recorded 89 

jointly with the number of deaths. Case detection is assumed to happen typically a few days 90 

after symptom onset, as inferred from (13), and to be followed by perfect isolation. Isolation 91 

reduces the pool of infected individuals who contribute to transmission (Methods). 92 
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From the renewal equation framework predicting the daily number of cases and deaths, we 93 

infer the time-varying transmission rate and the time-varying detection probability in the 79 94 

studied regions. The chosen regions are those where the daily death incidence had reached 10 95 

deaths at least once as of 23rd April 2020 according to the John Hopkins Coronavirus Resource 96 

Center database. We fit the model by maximum likelihood to the case and death count data 97 

assuming the data points each day are drawn in a negative binomial distribution with mean 98 

given by the model prediction, and with an inferred dispersion parameter. 99 

We validate our projections by comparing the inferred total attack rates—the proportion of 100 

individuals in the population that have ever been infected at a given date—with the number of 101 

infected individuals in nine regions where the number of infected at a certain time is known by 102 

systematic survey on a representative sample. The attack rate is given by the result of 103 

seroprevalence surveys, where a seropositive individuals is assumed to have been infected no 104 

later than 13 days in the past, corresponding to the median time to seroconversion (14). Note 105 

that in one case (Austria) we use results from a systematic PCR test survey. In that one case a 106 

positive individual is assumed to have been infected in the interval from 20 to 4 days ago (15) 107 

The attack rate predicted by our analysis was generally close to that in the data (Fig. 1), with 108 

no systematic bias. Countries above the identity line have more positive individuals in reality 109 

than predicted by the model. For these countries the true IFR is lower than the one assumed: 110 

given the realised number of deaths, the country actually had more infected individuals than 111 

what the model predicts. On the contrary, countries below the identity line have a higher IFR 112 

than the one assumed. Deviations of the true IFR from that assumed in the model bias the 113 

estimated absolute value of the detection probability, but not the temporal trends in the 114 

detection probability. 115 

To study the change in transmission following social distancing measures, one could infer the 116 

effects of different types of measures such as business, school, bar and restaurant closures, 117 

banning large gatherings, lockdowns, etc. However, these measures and their implementations 118 

are very varied across regions and multiple measures are often implemented simultaneously 119 

and may be accompanied by undocumented behavioural changes, complicating the inference 120 

of effects of individual measures (11). Instead, we estimate a region-specific reduction in 121 

transmissibility. We test two functional forms for the decline in transmissibility: (i) a sharp 122 

reduction in transmissibility at th date of the strongest social distancing measure. This was in 123 

most cases a national (or state-wise) lockdown (65 regions), regional lockdowns (5 regions: 124 

Algeria, Brazil, Indonesia, Oklahoma, Russia) or a variety of distancing measures with no strict 125 
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lockdown (9 regions: British Columbia, Canada, Chile, Dominican Republic, Egypt, Iran, 126 

Ontario, Sweden, Turkey); (ii) a smooth sigmoid reduction in transmissibility. When 127 

comparing the fit of the two models with the Akaike Information Criterion (AIC), the smooth 128 

reduction in transmissibility fitted that data better (an AIC difference greater than 4) in 50 129 

regions out of 79. In these cases the reduction in transmissibility predated the date of the 130 

strongest social distancing measure by 5 to 20 days (Supplementary Fig. 3). In the 29 other 131 

regions, both functional forms were similar (Supplementary Fig. 2). 132 

In most regions, we find a strong reduction in transmissibility accompanied by an increase in 133 

detection capacity. The basic reproduction number 𝑅0,𝑡 decreased from 3.7 on average across 134 

countries at the first date when 5 daily cases were reached, to 0.98 as of 8th of May (Fig. 2B). 135 

There is substantial variation in the inferred initial transmissibility across regions. The mean 136 

probability of detection increased from 4% to 29% over the same period (Fig. 2C). The 137 

transmissibility remained above 1 (the threshold above which the epidemic expands in the 138 

absence of other measures) in several regions as of 8th May, including Minnesotta, Brazil, 139 

Mexico, Pakistan, South Africa (Fig. 3A). The type of social distancing measure (national 140 

lockdown, regional lockdown, distancing) did not affect the final transmissibility (linear model 141 

for the final transmissibility as a function of the distancing measure; p= 0.46). The probability 142 

of detection as of 8th May was below 50% for 67 out of 79 regions (Fig. 2B). The model 143 

predicted an attack rate of infection across regions of 0.1% (India) to 15% (New Jersey, USA).  144 

Factors contributing to the reduction to transmission: The effective reproduction number 145 

𝑅𝑡𝑓𝑖𝑛𝑎𝑙
𝐸  on the 8th of May (𝑡𝑓𝑖𝑛𝑎𝑙), including the impacts of detection and isolation and immunity 146 

may be written as the product of the initial basic reproduction 𝑅0,𝑡𝑖𝑛𝑖𝑡 number times three 147 

factors that all reduce transmission: 148 

𝑅𝑡𝑓𝑖𝑛𝑎𝑙
𝐸 = 𝑅0,𝑡𝑖𝑛𝑖𝑡  (1 − 𝒜𝑡𝑓𝑖𝑛𝑎𝑙)⏟        

(i) immunity

 (1 − ℬ𝑡𝑓𝑖𝑛𝑎𝑙)⏟        
(ii) reduced

transmissibility

 (1 − 𝒞𝑡𝑓𝑖𝑛𝑎𝑙)⏟        
(iii) detection and

isolation

  149 

with 𝒜𝑡𝑓𝑖𝑛𝑎𝑙 = 𝐼𝑡𝑓𝑖𝑛𝑎𝑙
𝑡𝑜𝑡 /𝑆0, ℬ𝑡𝑓𝑖𝑛𝑎𝑙 = 1 − 𝑅0,𝑡𝑓𝑖𝑛𝑎𝑙/𝑅0,𝑡𝑖𝑛𝑖𝑡, and 𝒞𝑡𝑓𝑖𝑛𝑎𝑙 ∝ 𝑐𝑡𝑓𝑖𝑛𝑎𝑙 (Material and 150 

Methods). The reduction in overall transmission depends on (i) the depletion of the pool of 151 

susceptibles, (ii) reduced transmissibility impacting the basic reproduction number 𝑅0,𝑡, (iii) 152 

testing and case isolation. We found that the factor contributing most to reduced transmission 153 

is the reduced transmissibility (Fig. 4B). 154 
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The reduction in transmission owing to population immunity depends on the total number of 155 

individuals ever infected 𝐼𝑡𝑓𝑖𝑛𝑎𝑙
𝑡𝑜𝑡  (the attack rate) over the initial number of susceptible 156 

individuals 𝑆0, assumed to be the total population size of the region. The attack rate was smaller 157 

than 2% in 47 regions out of 79. The reduction in the number of susceptible individuals that 158 

could lead to herd immunity is thus very small in most regions, assuming that all individuals 159 

are initially susceptible. The second factor is estimated from the inferred sigmoid curve for 160 

𝑅0,𝑡. The third factor is estimated assuming that case detection is followed by strict isolation, 161 

such that a detected case stops transmitting and the generation time is effectively truncated 162 

(Fig. 4A). This assumption is compatible with evidence that generation times are shortened by 163 

case isolation (16,17). With our set of parameters, the reduction owing to detection and 164 

isolation is approximately 𝒞𝑡𝑓𝑖𝑛𝑎𝑙 = 0.46 𝑐𝑡𝑓𝑖𝑛𝑎𝑙. That is, on average detection and isolation 165 

only prevents 46% of transmission of a detected individual. The resulting reduction in 166 

transmission caused by detection and isolation is typically small (even under the conservative 167 

assumption that all detected individuals are perfectly isolated) because a small fraction of 168 

infected individuals is detected, and because individuals are detected a few days after 169 

symptoms when about half of the transmission already occurred (5,6). 170 

To estimate the number of deaths averted by social distancing from the beginning of the 171 

epidemic to May 8th, we simulated the epidemic in the absence of social distancing measures, 172 

i.e. when transmissibility remains constant at its inferred initial value. The difference between 173 

the simulated number of deaths and the true reported number of deaths is the number of deaths 174 

averted. The reductions in transmissibility fom the beginning of the epidemic to May 8th 175 

avoided in total across these regions 9.8 × 106 deaths, and of the order of 104 to 106 deaths per 176 

country. Brazil, Mexico and large European countries (France, Germany, Italy, Spain, United 177 

Kingdom) avoided 5 to 8 × 105 deaths. A previous study of 11 European countries reported 178 

figures similar to ours (4.7 to 7.2 × 105 deaths avoided in the five aforementioneds countries 179 

(11)). 180 

Mobility as a correlate of transmission: the inferred time-varying transmissibility correlated 181 

with indicators of mobility. This has been evidenced in other studies in the USA (18,19). 182 

Precisely, we use the Google COVID-19 Community Mobility Reports which record the 183 

presence of individuals each day at six types of location: grocery & pharmacy, parks, transit 184 

stations, retail & recreation, residential, and workplaces, for most regions studied here (with 185 

the exception of Algeria, the Hubei province in China, Iran, Morocco, Russia, Ukraine). We 186 

used a multivariate linear mixed model to fit the reduction in transmissibility compared to 187 
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baseline, as a function of the reduction in mobility indicator compared to baseline, in each 188 

country, at each day. The multivariate model corrects for the correlations between the different 189 

mobility indicators. The model includes mobility as a fixed effet, and region as a random effect 190 

affecting both the intercept and the slope of the relation. Interestingly, we found a correlation 191 

between transmissibility and all indicators, and particularly mobility in transit stations (public 192 

transport hubs such as subway, bus, and train stations). The model had a coefficient of 193 

determination of 93%. A reduction in the mobility in transit stations compared to baseline 194 

approximately translated in the same reduction in transmissibility (Table 1). This correlation 195 

was found in the whole dataset, in the subset of European countries, and in the subset of USA 196 

states. 197 

 198 

Dataset / 

model 

Grocery / 

pharmacy 

Parks Transit 

stations 

Retail & 

recreation 

Residential Workplaces 

full -0.06 [-0.27 ; 0.15] -0.14 [-0.17 ; -0.1] 1.02 [0.82 ; 1.21] 0.13 [-0.08 ; 0.34] -0.26 [-0.46 ; -0.06] -0.02 [-0.15 ; 0.11] 

USA states -0.27 [-0.39 ; -0.15] -0.2 [-0.25 ; -0.15] 1.31 [0.95 ; 1.64] 0.17 [-0.12 ; 0.44] 0.02 [-0.51 ; 0.53] -0.26 [-0.52 ; 0.02] 

Europe 0.33 [-0.03 ; 0.63] -0.12 [-0.16 ; -0.09] 1.02 [0.8 ; 1.24] -0.14 [-0.43 ; 0.16] -0.1 [-0.34 ; 0.15] 0.36 [0.2 ; 0.53] 

Table 1: Regression coefficients fo the temporal relationship between transmissibil ity 199 
and each of the mobility indicators, in the full dataset, the USA states, and European 200 
countries. 95% confidence intervals indicated in parenthesis.Consistent and significant 201 
effects are highlighted.  202 
Relationship between probability of detection and intensity of testing: 203 

We last relate the time-varying probability of detection to the intensity of testing. First, we 204 

correlate the probability of detection (as of May 8th) with the number of tests performed by 205 

inhabitants across regions. We did so for 62 regions where test data were available. There was 206 

a strong correlation between probability of detection and number of tests per inhabitants 207 

(regression coefficient β = 161 per daily test per inhabitant, p = 4.0e-5) (Fig. 5B). 208 

Second, to examine further how the changing number of tests affects the probability of 209 

detection within a region and across time, we formulated a simple model of symptom-based 210 

testing. The goal of this model is to relate within a region the number of tests conducted on a 211 

given day (called 𝑇𝑡) with the inferred probability of detection on that day (𝑐𝑡). We assume that 212 

in the period when the incidence of infections is much higher than the number of tests, the 213 

decision to test individuals for SARS-CoV-2 is made on the basis of a set of symptoms. We do 214 

not consider contact tracing, as during that period and in the countries examined the number of 215 
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infected individuals was too large for this intervention to be practically implemented. The set 216 

of symptoms defines a score. SARS-CoV-2 infected and uninfected individuals present two 217 

distinct distributions of this score, such that the probability that the individual is truly infected 218 

with SARS-CoV-2 increases with this score. Tests are prioritised on individuals with the 219 

highest score. This model thus reproduces the fact that the fraction of positive tests increases 220 

when tests are more limited compared to the number of infected individuals. For simplicity, 221 

we additionally assume that the score in infected and uninfected individuals follows 222 

exponential distributions with two distinct rates. Under this model, the probability of detection 223 

is given by the solution 𝑐𝑡 of: 224 

𝑇𝑡 = 𝑃𝑡 𝑐𝑡 + 𝑁 𝑐𝑡
𝛾 225 

(Material and Methods). In this equation, the variable 𝑇𝑡 is the total number of tests conducted 226 

at day t. 𝑃𝑡 and 𝑁 are the number of SARS-CoV-2 infected and non-infected individuals 227 

seeking care at day t, and who could potentially be tested if the number of tests available allows. 228 

𝑃𝑡 is the time-delayed number of infected individuals given by 𝑃𝑡  = ∑ 𝑦(𝜏)∞
𝜏=0 𝐼(𝑡, 𝜏) where 229 

𝑦(𝜏) is the probability that an individual is detected 𝜏 days after infection (when it is detected), 230 

while 𝑁 is assumed to be constant over the considered period. The parameter 𝛾 > 1 describes 231 

the distribution of the symptom score in infected individuals relative to that in uninfected 232 

individuals. There is no closed form solution for the general solution 𝑐𝑡, but when the 233 

distribution of the score is dominated by negative individuals, the probability of detection is 234 

approximately a root function of the number of tests: 235 

𝑐𝑡 = (
𝑇𝑡
𝑁)

1/𝛾

 236 

The probability of detection should thus generally increase sublinearly with the number of tests 237 

since 𝛾 > 1, and at best, should be proportional to the number of tests (when 𝛾 = 1). This is 238 

because tests are prioritised on individuals that are more likely to be infected; as the number of 239 

tests increases, the probability of positivity decreases. We also predict that in general, when 240 

the number of infected is large, the probability of detection decreases with the number of 241 

infected individuals (Material and Methods). 242 

Both predictions were verified in data (Fig. 5). We inferred for each region the best-fitting pair 243 

of parameters (𝑁, 𝛾) to relate the inferred probability of detection 𝑐𝑡 to the number of tests 𝑇𝑡, 244 

using both the approximated and the general model. We found that 𝛾 > 1 for most regions, 245 

implying a sublinear relationship as predicted (Fig. 5C). The general model where the 246 
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probability of detection decreased with the number of testable infected individuals was a better 247 

fit only when the attack rate was high, for example in New York state (Fig. 5D, Supplementary 248 

Fig. 8). 249 

Discussion 250 

We developed a discrete time renewal equation model to describe the dynamics of SARS-CoV-251 

2 infections. We fitted this model to the daily cases and deaths in a large number of countries 252 

and states (together representing more than four billions individuals), with the following 253 

results: 254 

(i) Transmissibility declined in all 79 regions examined. The best-fit decline in 255 

transmissibility was often smooth, with the decline in transmissibility predating the date 256 

of the lockdown. This could be due to non-pharmaceutical interventions implemented 257 

before the full lockdown or other behavioural changes. However, the decline in 258 

transmissibility as of May 8th was not enough to contain the epidemic in a number of 259 

regions. 260 

(ii) The probability of case detection increased, was on average 29% across regions as of 261 

May 8th, and very rarely above 50%. 262 

(iii) Epidemic control was achieved mainly through reductions in transmissibility brought 263 

about by social distancing. Case detection and isolation had a limited impact (Fig. 4B), 264 

even under the conservative assumption that case detection is followed by perfect 265 

isolation. Only a small proportion of cases are detected and about half of the 266 

transmission happens before symptom onset. We emphasise that in this period most 267 

testing was based on symptoms and not on past contacts with infected individuals. The 268 

build-up of immunity in infected individuals also had a very limited impact because the 269 

fraction of individuals infected remains small in all regions. Social distancing in the 270 

regions considered (totalling more than 4 billions inhabitants) avoided almost 10 271 

millions deaths from the beginning of the epidemic to May 8th. 272 

(iv) Transmissibility correlated with mobility indicators, and most notably with the 273 

presence of individuals in transit stations, both in Europe and in the USA. 274 

(v) The inferred probability of detection correlated with the number of tests per capita 275 

across regions. However, increasing the number of tests does not proportionally 276 

increase the probability of detection. This is explained by the fact that tests are 277 

prioritised on individuals most likely to be infected. 278 
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Our model and inference rely on several assumptions. First of all, we describe transmission 279 

dynamics within a simplified model that does not take into account age structure or household 280 

structure. These forms of structure may be weak enough that they can be neglected when 281 

describing the overall epidemic trajectory (20). Second, to infer jointly the time-varying 282 

transmissibility and probability of detection within a dynamical model, we assumed the 283 

temporal change took specific sigmoid functional forms. This differs from other approaches 284 

which estimate daily transmissibility as the incidence at a given day divided by past incidence 285 

weighted by the distribution of the generation time (21,22). These alternative approaches are 286 

more flexible in that they can infer any pattern of time-varying transmissibility. However, they 287 

cannot account exactly for the delay in case reporting, and can be very sensitive to noise in the 288 

data (21). Fitting a dynamical model with imposed functional forms for transmissibility and 289 

probability of detection reduces the sensitivity of inference to noise in the data. Third, and most 290 

importantly, inference relies on daily deaths and cases. Deaths are assumed to be perfectly 291 

reported. Cases are assumed to be partially reported with a time-varying detection probability. 292 

The inferred absolute value of the probability of detection of course strongly relies on the 293 

assumed IFR at around 1% on average (and tuned to the specific age structure of each region 294 

considered). The approach was validated in a number of regions where systematic test or 295 

seroprevalence surveys were conducted (Fig. 1). It is possible that in some of the other regions 296 

examined the number of deaths was greatly under-reported, in which case the true number of 297 

infected would be much higher than predicted, and the probability of case detection much 298 

smaller. However this should not affect the temporal trends in transmissibility or probability 299 

of detection, provided that under-reporting is constant in time. Other emerging seroprevalence 300 

surveys will give more information on the IFR (or death under-reporting) across regions, but it 301 

is notable that the early estimate of IFR in mainland China (8) already allow good predictions 302 

(Fig. 1). Lastly, our framework does not take into account the possibility that the IFR changes 303 

in time. Such temporal variation in IFR could be caused by overwhelmed health systems 304 

(increasing IFR) of better social distancing in at-risk groups (decreasing IFR). 305 

Our method has several advantages. The discrete-time renewal equation makes the minimal 306 

assumptions that the transmissibility of an infected individual depends on the age of infection. 307 

It allows arbitrary distributions of the generation time, and arbitrary delays between infection 308 

and case detection, and infection and death. The distributions of these delays determines the 309 

dynamics of the changes in number of cases and deaths following a change in transmissibility. 310 

Parameters can be inferred using multiple time series, improving the precision of inference. 311 
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The daily cases, although dependent on the number of tests available, give an earlier signal of 312 

changes in transmissibility than the daily deaths, and suffer less from stochastic effects. The 313 

method allows different transmissibility for detected cases (here assumed to be zero, i.e. perfect 314 

isolation after detection). This is particularly relevant for accurate inference of transmissibility, 315 

as non-pharmaceutical interventions shorten the serial interval (fig. 4A) (17). Lastly, the 316 

framework quantifies the immunity acquired by infected individuals. 317 

The probability of detection as a function of time in different countries was computed by 318 

different means in another study (23). Their statistical approach was based on estimating the 319 

case fatality ratio (CFR) adjusted for the delay between infection and deaths, and comparing 320 

with the baseline infected fatality ratio estimated in other studies that account for under-321 

reporting (assumed to be 1.4% in their case). Their statistical method allows inferring arbitrary 322 

temporal variations in the probability of detection. However, it does not explicitly model the 323 

dynamics of transmission. It is unclear how the changing age-of-infection structure of the 324 

population upon reductions in transmission will affect the relationship between daily number 325 

of deaths and past number of cases, hence the inferred probability of detection, in their 326 

approach. 327 

We found that tests based on symptoms detected only a small proportion of cases. Our model, 328 

importantly, applies in settings where the number of tests is much smaller than the number of 329 

individuals presenting to health systems with symptoms suggestive of SARS-CoV-2 infections. 330 

Increasing the number of tests does not proportionally increase the proportion of detected 331 

individuals. As a consequence of the typically small probability of detection, together with the 332 

fact that around half of the transmission is pre-symptomatic, tests followed by isolation of 333 

positive cases had very little impact on transmission, and are not sufficient by themselves to 334 

control an epidemic with a basic reproductive number of 3 or more. Tracing and testing the 335 

contacts of positive cases—a strategy that is not described by our model—identifies a pool of 336 

individuals with a 5-10% chance of being positive, up to 10-15% for household contacts 337 

(16,24,25). Identification of positive cases through widescale contact-tracing could thus 338 

modify the relationship between probability of detection and number of tests and in particular 339 

make it more linear. Furthermore, these contacts are isolated earlier than those identified 340 

through symptom-based testing (5,26). For these two reasons, contact-tracing and testing is a 341 

more efficient way to control the epidemic than symptom-based testing. Thus, if the capacity 342 

to trace contacts is limited, the epidemic may be out control as soon as the daily incidence is 343 

too large to trace a good fraction of contacts. This pleads for the use of digitical contact tracing 344 
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apps and/or rapid implementation of additionnal social distancing measures when incidence 345 

increases. 346 

Lastly, the inferred time-varying transmissibility correlated with mobility indicators (19,27). 347 

More precisely, within a multivariate framework we found that the mobility in transit stations 348 

was the most highly correlated with transmissibility, a pattern consistent in European countries 349 

and the USA (Table 1), and with a regression coefficient close to 1 (a given reduction in 350 

mobility corresponds to an equivalent reduction in transmission). The mobility in transit 351 

stations could be a general indicator of economic / social activity resulting in more 352 

transmission. Public transports could also be a common context of transmission. In support of 353 

our finding, individual use of public transport in Maryland was strongly associated with SARS-354 

CoV-2 positivity (28). 355 

In conclusion, we developed a framework to estimate time-varying transmissibility and 356 

probability of detection from daily cases and deaths in a large number of countries and regions. 357 

In the first few months of 2020, control of the epidemic was achieved mostly by reductions in 358 

transmissibility, which avoided 10 millions deaths in these 79 regions (representing more than 359 

half of the world’s population), while case detection and isolation comparatively had a much 360 

smaller effect. 361 

  362 
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Methods: 363 

Deterministic transmission dynamics: 364 

To model transmission dynamics, we use a discretised version of the renewal equation (e.g. 365 

(11)). We follow the dynamics of the number of individuals infected at day t who were infected 366 

𝜏 days ago, and have not yet been detected and isolated, called 𝐼(𝑡, 𝜏). The transmission 367 

dynamics are given by the system of recurrence equations: 368 

𝐼(𝑡 + 1, 0) = 𝑅0,𝑡 (1 − 𝐼𝑡𝑡𝑜𝑡/𝑆0)∑ 𝑤(𝜏) 𝐼(𝑡, 𝜏)∞
𝜏=0    (1a) 369 

𝐼(𝑡 + 1, 𝜏) = 𝐼(𝑡, 𝜏 − 1)(1 − 𝑐𝑡 𝑦(𝜏 − 1)) ∀ 𝜏 ≥ 1   (1b) 370 

The first equation represents transmission to new susceptible individuals giving rise to infected 371 

individuals with age of infection 0. The parameter 𝑅0,𝑡 reflects transmissibility, and is the basic 372 

reproduction number (in the absence of interventions, and when the population is fully 373 

suscpetibe, i.e. 𝐼𝑡𝑡𝑜𝑡 = 0). The factor 𝑤(𝜏) is the fraction of transmission that occurs at age of 374 

infection 𝜏, where ∑ 𝑤(𝜏)∞
𝜏=0 = 1. Thus 𝑤(𝜏) represents the distribution of the generation time 375 

of the virus. The infectiousness profile of the virus is linked with the generation time 376 

distribution through 𝛽(𝜏) = 𝑅0,𝑡 𝑤(𝜏). Transmission is reduced by a factor 1 − 𝐼𝑡𝑡𝑜𝑡/𝑆0 by 377 

population immunity, where 𝑆0 is the initial number of susceptible individuals in the region, 378 

assumed to be the total population size. The variable 𝐼𝑡𝑡𝑜𝑡 = ∑ 𝐼(𝑖, 0)𝑡
𝑖=1  is the total number of 379 

individuals already infected and assumed to be fully immune at time 𝑡. The instantaenous 380 

reproduction number that accounts for population immunity but not for case isolation is 𝑅𝑡 =381 

𝑅0,𝑡 (1 − 𝐼𝑡𝑡𝑜𝑡/𝑆0). 382 

The second equation (1b) represents the dynamics of individuals infected in the past. 383 

Individuals infected 𝜏 − 1 days ago are now of age of infection 𝜏, provided they were not 384 

detected and isolated. An infected individual is detected with time-varying probability 𝑐𝑡, and 385 

the probability that an individual is detected at age 𝜏 (when it is detected) is given by 𝑦(𝜏), 386 

with ∑ 𝑦(𝜏)∞
𝜏=1 = 1. An individual who is detected is removed from the pool of individuals 387 

that contribute to further transmission of the disease. The total number of cases detected at day 388 

𝑡 is thus: 389 

𝐶(𝑡) = 𝑐𝑡 ∑ 𝑦(𝜏)∞
𝜏=0 𝐼(𝑡, 𝜏)  (2) 390 

And the number of detected individuals who were infected 𝜏 days ago changes as: 391 

𝐶(𝑡 + 1,0) = 0 (when 𝜏 = 0)  (3a) 392 
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𝐶(𝑡 + 1, 𝜏) = 𝐶(𝑡, 𝜏 − 1) + 𝑐𝑡 𝐼(𝑡, 𝜏 − 1) 𝑦(𝜏 − 1)  ∀ 𝜏 ≥ 1 (3b) 393 

The total number of infected individuals, be they undetected or detected, that we may call 394 

𝐴(𝑡, 𝜏) = 𝐼(𝑡, 𝜏) + 𝐶(𝑡, 𝜏), follows the equations: 395 

𝐴(𝑡 + 1,0) = 𝑅0,𝑡 (1 − 𝐼𝑡𝑡𝑜𝑡/𝑆0)∑ 𝑤(𝜏) 𝐼(𝑡, 𝜏)∞
𝜏=0   (4a) 396 

𝐴(𝑡 + 1, 𝜏) = 𝐴(𝑡, 𝜏 − 1)  (4b) 397 

The fact that incidence (in the first equation) only depends on undetected cases 𝐼(𝑡, 𝜏) emerges 398 

from the assumption that detected individuals 𝐶(𝑡, 𝜏) do not transmit. 399 

While in the absence of testing and isolation, the infectiousness profile is given by 𝛽(𝜏) =400 

𝑅0,𝑡 𝑤(𝜏) (with 𝑅0,𝑡 = ∑ 𝛽(𝜏)∞
𝜏=0 ), detection and isolation truncates the infectiousness profile 401 

at the time of detection 𝑡𝑑 (Fig. 4A) with probability 𝑐𝑡 𝑦(𝑡𝑑) where 𝑡𝑑 is the time of detection. 402 

In other words, the effective infectiousness profile is the mixture distribution: 403 

𝛽𝐸(𝜏) = (1 − 𝑐𝑡) 𝑅0,𝑡 𝑤(𝜏) + 𝑐𝑡 𝑅0,𝑡  ∑ 𝑦(𝑡𝑑) 𝑤(𝜏) 𝕀𝜏≤𝑡𝑑
∞
𝑡𝑑=0   (5) 404 

where 𝕀𝜏≤𝑡𝑑 is an indicator variable equal to 1 when 𝜏 ≤ 𝑡𝑑, and 0 otherwise. 405 

Probability of dying and time to death given infection: 406 

The probability that an infected individual dies is the Infected Fatality Ratio (IFR) denoted d, 407 

assumed to be constant over time. The probability of dying 𝜏 days after infection, given that 408 

one dies, is given by 𝑥(𝜏). The mean number of deceased individuals at day t is then given by: 409 

𝐷(𝑡) = 𝑑 ∑ 𝑥(𝜏) (𝐼(𝑡, 𝜏) + 𝐶(𝑡, 𝜏))∞
𝜏=0   (6) 410 

As death typically occurs at a time when the infected individual does not transmit any longer, 411 

and the probability of dying is small (of the order of 1%), we neglect the impact of death on 412 

transmission. 413 

Effects of detection and isolation, change in transmissibility and immunity on transmission 414 

We call “effective reproduction number” 𝑅0,𝑡𝐸  the instantaneous reproduction number taking 415 

into account immunity and case isolation is given by (see also (29)): 416 

𝑅0,𝑡𝐸 = ∑ 𝛽𝐸(𝜏)∞
𝜏=0 = 𝑅0,𝑡 [ (1 − 𝑐𝑡)⏟    

undetected

+ 𝑐𝑡 ∑ 𝑦(𝑡𝑑)∑ 𝑤(𝜏) 𝑡𝑑
𝜏=0

∞
𝑡𝑑=0⏟              
detected at time td

]  (7a) 417 

For example, an individual detected at day 0 only infects 𝑅0,𝑡 𝑤(0) individuals on average. 418 

Equation (6a) can be rewritten as: 419 
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𝑅0,𝑡𝐸 = ∑ 𝛽𝐸(𝜏)∞
𝜏=0 = 𝑅0,𝑡[1 − 𝑐𝑡 ∑ 𝑦(𝑡𝑑)(∑ 𝑤(𝜏)∞

𝜏=𝑡𝑑+1 )∞
𝑡𝑑=0 ]  (7b) 420 

Thus, the effective reproduction number 𝑅𝑡𝑓𝑖𝑛𝑎𝑙
𝐸  on the 8th of May (𝑡𝑓𝑖𝑛𝑎𝑙), including the impacts 421 

of detection and isolation and immunity may be written as the product of the initial basic 422 

reproduction number, times three factors that all reduce transmission: 423 

𝑅𝑡𝑓𝑖𝑛𝑎𝑙
𝐸 = 𝑅0,𝑡𝑖𝑛𝑖𝑡  (1 − 𝒜𝑡𝑓𝑖𝑛𝑎𝑙)⏟        

(i) immunity

 (1 − ℬ𝑡𝑓𝑖𝑛𝑎𝑙)⏟        
(ii) reduced

transmissibility

 (1 − 𝒞𝑡𝑓𝑖𝑛𝑎𝑙)⏟        
(iii) detection and

isolation

 (8) 424 

With 𝒜𝑡𝑓𝑖𝑛𝑎𝑙 = 𝐼𝑡𝑓𝑖𝑛𝑎𝑙
𝑡𝑜𝑡 /𝑆0, ℬ𝑡𝑓𝑖𝑛𝑎𝑙 = 1 − 𝑅0,𝑡𝑓𝑖𝑛𝑎𝑙/𝑅0,𝑡𝑖𝑛𝑖𝑡, and 425 

𝒞𝑡𝑓𝑖𝑛𝑎𝑙 = 𝑐𝑡𝑓𝑖𝑛𝑎𝑙 ∑ 𝑦(𝑡𝑑)(∑ 𝑤(𝜏)∞
𝜏=𝑡𝑑+1 )∞

𝑡𝑑=0 . 426 

Parameter estimates 427 

We fix the distributions of the generation time 𝑤(𝜏), the distribution of time from infection to 428 

death 𝑥(𝜏), the distribution from infection to detection 𝑦(𝜏), and the infection fatality ratio d 429 

to values estimated previously. 430 

Parameter Symbol Value Reference 

Distribution of 
generation time 𝑤(𝜏) 

Log-normal(1.77, 0.888) 
Mean 7 days 
SD 4.5 days 

(9,16,30) 

Distribution of time 
from infection to 
symptom onset 

- Log-normal(1.518, 0.472) (13) 

Distribution of time 
from infection to death 𝑥(𝜏) 

Calculated by convoluting distribution from 
infection to onset and from onset to death. The 
latter is Gamma(5, 0.25) 

(9) 

Distribution of time 
from infection to 
detection 

𝑦(𝜏) Calculated by convoluting distribution from 
infection to onset and from onset to detection (13) 

Infection fatality ratio d Depends on the age structure of the country, 
around 1% on average (8) 

Probability of detection 𝑐𝑡 Inferred - 
Transmissibility 𝑅0,𝑡 Inferred - 
Table 2: Summary of model parameters  431 
Generation time 432 

We assume the generation time is lognormally distributed with mean 7 days and standard 433 

deviation 4.5 days (9) (Supplementary Fig. 4). This is the generation time when the infected 434 

individual is not tested. A positive test is assumed to be followed by perfect isolation of the 435 

infected individual and interruption of transmission. This effectively truncates the distribution 436 
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of generation time (Fig. 4A). Two factors make estimation of this generation time difficult: 437 

first, the generation time, the time from an infection to another infection, is often approximated 438 

by the serial interval, the time between symptom onset in an infector and symptom onset in the 439 

infectee. These two quantities have the same mean, but the variance of the generation time 440 

should in general be smaller than that of the serial interval (31). Second, measuring the serial 441 

interval requires to identify infectees and their infectors. The fact that the infector needs to be 442 

identified could bias the serial interval towards lower values. For example, in a large study in 443 

the Shenzhen province in China, the serial interval had mean 6.3 days overall and 8.1 days if 444 

the infector was isolated more than two days after infection (16). Thus, in settings where most 445 

infections are undocumented, the typical serial interval (and generation time) may be longer 446 

than that estimated in other work (e.g. mean 5 days in (5)), motivating the mean of 7 days 447 

chosen here. 448 

Note that the chosen serial interval distribution affects the absolute value of the basic 449 

reproduction number, but does not affect either the inferred temporal trend in basic 450 

reproduction number or the absolute value of the probability of detection. 451 

Time from infection to detection 452 

The time from symptom onset to case detection was inferred from published data on 150 cases 453 

from various countries (13). We used the time between the midpoint date of symptom onset 454 

and the midpoint date of case detection. We excluded 31 cases for which the date of case 455 

detection was not available or there was very large uncertainty on the date of symptom onset. 456 

We inferred that the time from symptom onset to detection was gamma-distributed with mean 457 

2.2 days [95% CI 1.6-3.2] and SD 2.7 days [2.0-3.8] (shape 0.69 [0.55-0.82] and rate 3.2 [2.5, 458 

4.5]). The fit of a Weibull distribution was comparable to that of the gamma (Supplementary 459 

Fig. 5). 460 

The distribution of time from infection to detection was computed from the convolution of the 461 

distribution of time from infection to symptom onset (13), and our inferred distribution of time 462 

from symptom onset to case detection, assuming independence of the two times. The 463 

distribution of time from infection to symptom onset has mean 5 to 6 days (Supplementary Fig. 464 

6). 465 

Time from infection to death 466 

The distribution of the time from infection to death was estimated using data from 41 patients 467 

in Wuhan analysed elsewhere (12). The time from symptom onset to death was gamma-468 
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distributed with a mean of 20 days and a standard deviation of 10 days. This estimate is close 469 

to that of other studies (24 deceased cases from mainland China, mean and SD of time from 470 

onset to deaths 18.8 / 8.5 days (8); 34 deceased cases from mainland China, mean and SD 20.2 471 

/11.6 days (32). 472 

Infection fatality ratio 473 

For each region studied, we computed an overall infection fatality ratio that takes into account 474 

the age pyramid of the country. To this end, we used the infection fatality ratio (IFR) estimated 475 

in nine age classes, [0, 9], [10, 19], etc., [80+] in mainland China (8). Other estimates similarly 476 

stratified by age, for mainland China and for France, are very similar (Supplementary Fig. 1). 477 

The IFR climbs from close to 0% in 0 to 39 years old, up to 5 to 10% in individuals aged 80 478 

years old or more. 479 

Likelihood method: 480 

To fit the model and infer transmission and case detection parameters, we use data on the 481 

number of confirmed cases over time and the number of deaths over time in 79 states and 482 

countries from different public sources detailed below. We include all states and countries that 483 

had a daily incidence of 10 deaths or more at least once as of 23th April. As we want to estimate 484 

the impact of sudden social distancing measures in an essentially uncontrolled epidemic, we 485 

exclude South Korea and Japan from the analysis. In these two countries, SARS-CoV-2 was 486 

introduced earlier and strong control measures including social distancing and contact tracing 487 

were immediately in place. 488 

Simulating the deterministic model gives the expected number of detected cases 𝐶(𝑡) and 489 

deaths 𝐷(𝑡) at time t as a function of model parameters. We assume that the probability to 490 

observe a certain number of cases (resp. deaths) in the data at day t is the density of a negative 491 

binomial distribution with mean given by the theoretical predictions for cases (resp. deaths), 492 

and dispersion parameters that we infer. The overall likelihood is the product of these 493 

probabilities over all days. For the number of deaths, we include the period from the first day 494 

to the last day when at least 1 death and 5 cases were recorded. For the number of cases, we 495 

include the period from the first day to the last day when at least 5 cases were recorded. 496 

We mainly estimate the time-changing transmissibility 𝑅0,𝑡 and the time-changing probability 497 

of detection 𝑐𝑡. 498 
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For the time-changing transmissibility, we fit two functional forms. First we assume that 𝑅0,𝑡 499 

is a step function with a sharp transition from a high pre-control value to a low post-control 500 

value, at a fixed date 𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙  corresponding to the date of implementation of the control 501 

measure: 502 

𝑅0,𝑡 = 𝑅0,𝑝𝑟𝑒 if 𝑡 < 𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙  (9a) 503 

𝑅0,𝑡 = 𝑅0,𝑝𝑜𝑠𝑡 if 𝑡 ≥ 𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙   (9b) 504 

For the sharp change in transmissibility, we infer the two values 𝑅0,𝑝𝑟𝑒 and 𝑅0,𝑝𝑜𝑠𝑡. 505 

Furthermore, to investigate the possibility that transmissibility changed in a more gradual way, 506 

we assume 𝑅0,𝑡 is a smooth declining sigmoid function: 507 

𝑅0,𝑡 = 𝑅0,𝑝𝑟𝑒 +
𝑅0,𝑝𝑜𝑠𝑡−𝑅0,𝑝𝑟𝑒
1+𝑒− 𝑘𝑅(𝑡−𝑡𝑅)

  (10) 508 

Where 𝑅0,𝑝𝑟𝑒 is the basic reproductive number before social distancing measures, 𝑅0,𝑝𝑜𝑠𝑡 is the 509 

basic reproductive number after social distancing, 𝑘𝑅  is the steepness of the logistic curve, and 510 

𝑡𝑅  is the time when the basic reproductive number is intermediate between 𝑅0,𝑝𝑟𝑒 and 𝑅0,𝑝𝑜𝑠𝑡. 511 

The step function is a special case of the logistic when 𝑘 is large and 𝑡𝑅 = 𝑡𝑙𝑜𝑐𝑘𝑑𝑜𝑤𝑛. For the 512 

smooth change in transmissibility, we infer the two values 𝑅0,𝑝𝑟𝑒 and 𝑅0,𝑝𝑜𝑠𝑡, the steepness 𝑘𝑅  513 

and the time 𝑡𝑅 . 514 

For the time-changing detection probability, we assume an increasing logistic function: 515 

𝑐𝑡 = 𝑐𝑚𝑖𝑛 +
𝑐𝑚𝑎𝑥−𝑐𝑚𝑖𝑛
1+𝑒− 𝑘𝐶(𝑡−𝑡𝐶)

  (11) 516 

We infer the four parameters 𝑐𝑚𝑖𝑛, 𝑐𝑚𝑎𝑥, 𝑘𝐶  and 𝑡𝐶. Note that we constrain the parameter 𝑐𝑚𝑖𝑛, 517 

the initial probability of detection, to be small, in [0.0001, 0.001]. We fit three models: (i) a 518 

model based on death data only with the step function of transmissibility, (ii) a model based 519 

on death and case data with the step transmissibility function; and (iii) a model based on death 520 

and case data with the smooth transmissibility function. These three models are fitted by 521 

maximum likelihood. We first find an optimal likelihood value by 50 iterations of the Nelder-522 

Mead algorithm starting from different initial parameters. We then run a Markov chain Monte 523 

Carlo (MCMC) sampling of the likelihood function with bounded parameters (equivalent to 524 

uniform priors for all parameters in a Bayesian framework). We let the chain run for 106 steps 525 

and record the parameter values from 2 × 105 to 106 steps. This sample is used both for 526 

maximum likelihood parameters (if a better parameter set is found than with the Nelder-Mead 527 

algorithm) and for confidence intervals. 528 
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Symptom-based test model 529 

The model 530 

We relate the fraction of infected individuals detected to the number of daily RT-PCR tests 531 

performed and the incidence of infection. Each day, the testable individuals seeking care are 532 

composed of two populations: 533 

- SARS-CoV-2 infected individuals. The number of such individuals is time-varying and is 534 

denoted by 𝑃𝑡 = ∑ 𝑦(𝜏)∞
𝜏=0 𝐼(𝑡, 𝜏) where 𝑦(𝜏) is the probability that an individual is detected 535 

at age of infection 𝜏 (given that it is detected) (Fig. 5A). 536 

- Non-SARS-CoV-2 infected individuals. The number of such individuals is assumed to be 537 

constant and is denoted by 𝑁. We acknowledge that a more complete model would allow for 538 

this number to vary in time, for example to account for seasonal infections by respiratory 539 

diseases like influenza or seasonal coronavirus that may contribute to the pool of testable 540 

individuals. 541 

We assume that contexts in which we apply our model are characterized by a number of tests 542 

smaller than the number of testable individuals, 𝑇𝑡 < 𝑃𝑡 + 𝑁 where 𝑇𝑡 is the number of tests 543 

available at time t. Thus the 𝑇𝑡 tests are prioritised on the subset of individuals most likely to 544 

be infected by SARS-CoV-2. Individuals presenting to health centers with symptoms 545 

suggestive of SARS-CoV-2 are characterised by a score such that the probability of SARS-546 

COV-2 infection increases with the score. Given the limited number of tests available each 547 

day, a threshold score is defined and tests are performed only for patients above this score. 548 

Formally, denoting by 𝜙𝑃𝑡(𝑠) and 𝜙𝑁(𝑠) the distribution of the score s in infected and 549 

uninfected individuals, the (time-varying) threshold score 𝑠𝑚𝑎𝑥 is the solution of: 550 

𝑇𝑡 = ∫ [𝜙𝑃𝑡(𝑠)𝑃𝑡 + 𝜙𝑁(𝑠)𝑁]
+∞
𝑠𝑚𝑎𝑥

 𝑑𝑠  (12) 551 

In the absence of detailed information on the choice of individuals to test in different regions 552 

at different stages of the pandemic, we further assume for simplicity that the scores are 553 

distributed exponentially. We set the rate of the exponential distribution 𝜙𝑃𝑡  to 1 without loss 554 

of generality, and we denote 𝛾 > 1 the rate of 𝜙𝑁: 555 

𝜙𝑃𝑡(𝑠) = 𝑒
−𝑠   (13a) 556 

𝜙𝑁(𝑠) = 𝛾𝑒−𝛾 𝑠  (13b) 557 
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The fact that 𝛾 > 1 guarantees that the probability that an individual is positive increases with 558 

the score. Plugging the distributions (13) in the implicit formula to define the threshold score 559 

𝑠𝑚𝑎𝑥 (12) yields: 560 

𝑇𝑡 = 𝑃𝑡 𝑒−𝑠𝑚𝑎𝑥 + 𝑁 𝑒−𝛾 𝑠𝑚𝑎𝑥   (14) 561 

The probability of detection 𝑐𝑡, defined as the ratio between positive tests results and the 562 

number of testable infected individuals 𝑃𝑡, is the area of the 𝜙𝑃𝑡  distribution above the threshold 563 

𝑠𝑚𝑎𝑥: 564 

𝑐𝑡 =
1
𝑃𝑡
∫ 𝜙𝑃𝑡(𝑠)𝑃𝑡 𝑑𝑠
∞
𝑠𝑚𝑎𝑥

= 𝑒−𝑠𝑚𝑎𝑥  (15) 565 

Replacing with equation (15) in equation (14), we find that 𝑐𝑡 is the solution of: 566 

𝑇𝑡 = 𝑐𝑡 𝑃𝑡 +  𝑐𝑡
γ 𝑁  (16) 567 

This generally defines an implicit function 𝑐𝑡(𝑇𝑡, 𝑃𝑡) of the number of testable infected at day 568 

t, 𝑃𝑡 and the number of available tests 𝑇𝑡. We can simplify this general solution in two ways. 569 

First, in the limit when the number of infected 𝑃𝑡 is much smaller than the number of uninfected 570 

𝑁, and γ is not too large, the probability of detection is: 571 

𝑐𝑡 ≈ (
𝑇𝑡
𝑁
)
1
𝛾  (17a) 572 

That is, the probability of detection increases as a root function of the normalised number of 573 

tests. In general, when the number of testable infected individuals 𝑃𝑡 is not negligible, the 574 

solution 𝑐𝑡 of equation (16) decreases with 𝑃𝑡. When the number of testable infected individuals 575 

𝑃𝑡 is small, the solution (17a) can be better approximated by: 576 

𝑐𝑡 ≈ (
𝑇𝑡
𝑁
)
1
𝛾 − 𝑃𝑡

1
𝛾 𝑇𝑡
 (𝑇𝑡
𝑁
)
2
𝛾  (17b) 577 

In this approximation the probability of detection decreases linearly with the number of 578 

infected 𝑃𝑡. 579 

Parameter inference 580 

We verify the model predictions using the inferred probability of detection 𝑐𝑡 together with 581 

data on the daily number of tests 𝑇𝑡, and the number of testable infected individuals 𝑃𝑡 inferred 582 

from the dynamical model in different regions. We used the nls method from the stats package 583 

in the software R (33). 584 
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First, we use the general solution of equation (16). This solution is a non-linear function 585 

𝑐𝑡(𝑇𝑡, 𝑃𝑡) with parameters 𝑁 and 𝛾. We infer the parameters 𝑁 and 𝛾 by minimizing the mean 586 

square error between the inferred 𝑐𝑡 and the prediction. In most cases (except, notably New 587 

York and New Jersey states) the coefficient of determination was as good with the 588 

simplification of the model where 𝑐𝑡 is approximated as a root function of 𝑇𝑡 only 589 

(equation(17a)) (Supplementary Fig. 8). The general solution improved the fit all the more than 590 

the the attack rate was larger, as predicted by the model (Supplementary Fig. 8). 591 

Data sources 592 

Epidemiological data: 593 

For France, we used data from OpenCOVID19 available at https://github.com/opencovid19-594 

fr/data. This website curates data from Agence nationale de santé publique, the French 595 

governmental public health agency. 596 

For Italy, we used data from the Civil Protection Department (Dipartimento della Protezione 597 

Civile), available at https://github.com/pcm-dpc/COVID-19. This data includes daily cases 598 

and deaths, and daily number of tests. 599 

For other European countries, we used data from the European Center for Disease Control 600 

(ECDC) available at https://opendata.ecdc.europa.eu/covid19/casedistribution/  601 

For American states, we used data from the COVID Tracking Project that compiles data from 602 

American official sources, available at https://covidtracking.com/api/v1/states/daily.csv . This 603 

data includes daily cases and deaths, and daily number of tests. 604 

For other countries, we used data from the Center for Systems Science and Engineering 605 

(CSSE) at Johns Hopkins University (JHU), available at 606 

https://github.com/CSSEGISandData/COVID-19  607 

Daily number of tests data for regions other than Italy and American state were compiled 608 

from Our World in Data at https://covid.ourworldindata.org/data/owid-covid-data.csv 609 

We considered test data only for regions for which the number of tests was strictly superior to 610 

the number of cases recorded for at least 80% of the days. The reported number of tests are 611 

sometimes exactly equal to the number of cases that day, indicating that negative tests are not 612 

reported. Since we ignore whether negative tests are not reported or reported at a later date (as 613 

sometimes suggeted by a peak in the number of reported tests a few days after), we exclude 614 

these datapoints and exclude regions where this artefact is often observed. 615 

https://github.com/opencovid19-fr/data
https://github.com/opencovid19-fr/data
https://github.com/pcm-dpc/COVID-19
https://opendata.ecdc.europa.eu/covid19/casedistribution/
https://covidtracking.com/api/v1/states/daily.csv
https://github.com/CSSEGISandData/COVID-19
https://covid.ourworldindata.org/data/owid-covid-data.csv
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Age structure data: 616 

We collected data on the number of individuals in age categories 0-9, 10-19, …, 80+, for 617 

different states and countries, from the following sources: 618 

Region Source Web address (accessed 04/09/2020)  
USA US Census bureau https://population.un.org/wpp/Download/Files/1_Indicators%20(Standard)/EX

CEL_FILES/1_Population/WPP2019_POP_F07_1_POPULATION_BY_AGE_
BOTH_SEXES.xlsx 

Quebec Canadian government https://stat.gouv.qc.ca/statistiques/population-
demographie/structure/population-quebec-age-sexe.html#tri_pop=10 

British Columbia Canadian government https://www12.statcan.gc.ca/census-recensement/2016/dp-
pd/prof/details/page.cfm?Lang=E&Geo1=PR&Code1=59&Geo2=PR&Code2=
01&SearchText=Canada&SearchType=Begins&SearchPR=01&B1=All&type=

0  

Ontario Canadian government https://www12.statcan.gc.ca/census-recensement/2016/dp-
pd/prof/details/page.cfm?Lang=E&Geo1=PR&Code1=35&Geo2=PR&Code2=
01&Data=Count&SearchText=35&SearchType=Begins&SearchPR=01&B1=A

ll&Custom=&TABID=3 

Hubei province, 
China 

China National 
Bureau of Statistics 

https://www.citypopulation.de/en/china/admin/42__hubei/ 

All others United Nations https://population.un.org/wpp/Download/Files/1_Indicators%20(Standard)/EX
CEL_FILES/1_Population/WPP2019_POP_F07_1_POPULATION_BY_AGE_

BOTH_SEXES.xlsx accessed 

 619 

Mobility data: 620 

We used Google mobility data available at https://www.google.com/covid19/mobility/ 621 

Data availability: 622 

Code and data is available on https://github.com/FrancoisBlanquart/covid_model 623 
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Figure 1: Comparison of the total number of infected (attack rate) found in 
systematic serological test surveys with that predicted by our model. The 
segments are 95% confidence intervals (for the data, binomial confidence 
intervals; for the model, estimated from the MCMC sample). We used the model 
with the smooth sigmoid reduction in transmission; the model with the sharp 
transition gave very similar results.
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Figure 2: Panel A shows the map of the regions considered in this study, colored by 
geographic areas (Europe+Russia, North Africa/Middle East, Asia, South Africa, Central-
South America, North America). The USA are represented by 33 states. China is represented 
by the Hubei province. Panels B, C show the inferred transmissibility and the probability of 
detection as a function of time for all regions. The overall mean is a thick black line. The early 
blue trajectory is that of the Hubei province in China.
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Figure 3: Inferred transmissibility Rt (panel A) and probability of detection ct (panel B) as of May 8th, for each region. The point 
is the maximum likelihood estimate and the segment shows the 95% confidence intervals.
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Figure 4: Impact of control measures and immunity on transmission dynamics. Panel A illustrates how social 
distancing and case isolation reduce transmission of the disease. The basic reproduction number is given by the area 
under the curve. A reduction in transmissibility uniformly reduces the Rt (blue curve and area), while detection and 
case isolation truncates the serial interval (red curve). Panel B represents the distribution of the reduction in 
transmission caused by social distancing (blue), detection and isolation (red) and immunity of already infected 
individuals (green) across the 79 regions. Panel C represents the log10 number of deaths averted by social distancing 
between the beginning of the epidemic and the 8th May 2020.
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Figure 5: Relationship between probability of detection and number of tests. Panel A shows stacked 
distributions of the disease score for positive (red) and negative (blue) individuals. The fraction of positive individuals 
increases with the score. The number of tests performed is the area to the right of the threshold  (vertical line). Panel 
B represents the final probability of detection as a function of number of daily tests per capita (over the 7 days 
preceding 8th May) for the 62 regions with available test data. Panel C shows the predicted root-function relationship 
between proportion of detected and daily tests for the 33 regions with sufficient available test data.  Panel D shows 
the proportion of detected a function of daily tests and the number of testable infected presenting for a test, for the 
New York state (one of the high-prevalence states where the proportion detected declines with the number of 
infected as predicted at high prevalence).
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