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Abstract 

Mathematical models are useful in epidemiology to understand the COVID-19 contagion 

dynamics. Our aim is to demonstrate the effectiveness of parameter regression methods to 

calibrate an established epidemiological model describing COVID-19 infection rates subject to 

active and varying non-pharmaceutical interventions (NPIs). To do this, we assess the 

potential of some established chemical engineering modelling principles and practice for 

application to modelling of epidemiological systems. This allows us to exploit the 

sophisticated functionality of a commercial chemical engineering simulator capable of 

parameter regression with piecewise continuous integration and event and discontinuity 

management. Our results provide insights into the outcomes of on-going disease suppression 

measures, while visualisation of reported data also provides up-to-date condition monitoring 

of the status of the pandemic. We observe that the effective reproduction number response 

to NPIs is non-linear with variable response rate, magnitude and direction. 

Key words: COVID-19, model calibration, discrete event modelling and management, time varying 

disease transmission rate 

1.0 Introduction 

COVID-19 is currently a global pandemic affecting around 213 countries around the world. As 

of 31 August 2020, 25.6million cases, with 17.9 million recovered patients and 859,550 

deaths have been reported [1]. To control the pandemic, most governments have issued 

recommendations such as intensified hand hygiene and have taken measures such as closing 

borders, enforcing lockdowns, etc. These NPIs reduce infection rates, keeping the number of 

severe cases below hospital capacity limit, a strategy popularly referred to as ‘flattening the 

curve’. A significant challenge is to identify and efficiently evaluate the effect that active and 
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varying NPIs have on the disease transmission rate. This is particularly important as countries 

begin to relax NPIs after successfully flattening the curve of active cases.  

1.1 The effective reproduction number  

Key parameters used to quantify contagion are the basic and effective reproduction 

numbers. These dimensionless numbers describe the average number of expected secondary 

infections generated by each infected person in the absence and presence of controlled 

interventions. Current opinion suggests that the COVID-19 has a basic reproduction number 

~2 – 3. Although a recent review [2] compared twelve studies published from the 1st of 

January to the 7th of February 2020 which reported a range of values for the COVID- 19 basic 

reproduction number between 1.5 and 6.68. This apparent disparity arises because the 

reported number depends on country, culture, the stage of the outbreak and calculation 

method used. NPIs aim to slow the spread of the virus and reduce the effective reproduction 

number to a sustained value less than one so that the pandemic will eventually die out. 

Scientists and governments in many countries around the world use the effective 

reproduction number as an illustrative metric to explain and justify the introduction and 

relaxation of NPIs [3].  

1.2 Mathematical modelling 

Most reported effective reproduction numbers are estimates obtained from mathematical 

models. These include mechanistic transmission models [4], statistical models, [5], [6] 

deterministic epidemiological models [7] – [9] and a statistical dynamical growth model [10]. 

Estimated values of the effective reproduction number are highly dependent on the choice of 

the model, the initial conditions used to parameterise the model as well as underlying model 

assumptions. 

A widely used compartmental model in epidemiology is the susceptible – infected - removed 

(𝑆𝐼𝑅) model, [11] – [13]. An extension of this model separates the removed group into 

recovered and dead (𝑆𝐼𝑅𝐷). These models differentiate between the classes of individuals, 

modelling transition rates between the classes using rate laws defined in accordance with the 

law of mass action kinetics. As noted in [14], modelling rates of infection through analogy to 

chemical kinetics is the standard approach in mathematical epidemiology. Indeed, the 

purpose of mathematical modelling of epidemiology is mostly concerned with the kinetics of 

the spread of a contagion, which is clearly an important issue when epidemics occur. The 

(𝑆𝐼𝑅) and (𝑆𝐼𝑅𝐷) models are deterministic, autocatalytic kinetic models of the whole 

population [15]. 

1.3 Capturing essential system dynamics 

Any mathematical model must capture essential system dynamics for calibration, predictive 

modelling and simulation studies to be meaningful. For COVID-19 and the application of NPIs, 

these are an initial exponential growth in active cases, slowing as the NPIs influence disease 

transmission. After a peak in the number of new cases, there will typically be a slow decline in 

active cases, provided the NPIs are not excessively relaxed.  

While the 𝑆𝐼𝑅 model and its extensions provide the fundamental backbone to represent 

these dynamics, there is no accepted means to alter the disease transmission rate in order to 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 11, 2020. ; https://doi.org/10.1101/2020.09.10.20191817doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.10.20191817


3 | P a g e  
 

‘flatten-the curve’. For example, recent studies used a deterministic model with a constant 

reproduction number to model the outbreak dynamics in Europe [16] and in China [17] by 

using a reduction in the total population as a model calibration parameter that indirectly 

quantifies the application of NPIs. Whereas [18] use a hyperbolic tangent function to capture 

time variation in the effective reproduction number and [19] adjust model rate constants 

assuming a sigmoidal profile with respect to time. Our recent work [20] demonstrates that 

the 𝑆𝐼𝑅 model augmented with a differential equation to model decline in the disease 

transmission rate could accurately model reported case data, and hence determine the 

effective reproduction number. However, in [20] the effective reduction in disease 

transmission rate was characterised because of the application of all NPIs. Moreover, model 

calibration and validation did not utilise the most recently available case data as NPIs have 

begun to be relaxed. In this paper, we extend previous work to model variations in the 

effective reproduction number using a philosophy centred on discrete event modelling and 

management in order to calibrate the 𝑆𝐼𝑅𝐷 model to reported case data with active and 

varying NPIs. 

1.4 Exploiting the functionality of commercial dynamic modelling with kinetic fitting tools  

The 𝑆𝐼𝑅𝐷 epidemiological model is structurally equivalent to the model equations for a set of 

chemical reactions occurring in a well-mixed batch reactor in which the stoichiometry of the 

contagion reaction varies. Due to the structural equivalence of the chemical and 

epidemiological models, we can exploit the sophisticated functionality of a commercial 

chemical engineering simulator that combines a dynamic modelling framework with kinetic 

regression tools.1 The software platform provides an environment for rapid development of 

piecewise continuous models containing a series of discrete operational events. We adapt 

existing functionality for sequencing of discrete events to represent NPIs and characterise the 

efficacy of NPIs on reducing and maintaining the effective reproduction number to 

acceptable levels. This allows us to calibrate the characteristic rates of infection and removal 

of individuals and estimate the effective reproduction number throughout the epidemic. 

Further, a successfully calibrated model allows dynamic simulation studies to quantify the 

effect of the relaxation of the NPIs. 

2.0 Methods 

Up-to-date daily information regarding the number of active, recovered and fatal cases for 

most countries around the world is available from [1]. Retrieving this information allows daily 

model calibration, on a country-by-country basis, incorporating information about the timing 

and nature of their NPIs as well as the monitoring of the status of the pandemic. 

2.1 Kinetic modelling applied to an epidemiological system 

Defining 𝐼 as an infected individual, 𝑅 as a recovered individual and 𝐷 as a deceased 

individual, the stoichiometric scheme describing the transition of individuals between the 

four compartments of an 𝑆𝐼𝑅𝐷 model is 

 
1 The simulator used for this study is BatchCAD 7.1. The software was originally developed by Bramfitt VJ, 
Wright AR and Wright AW from 1986 to 1999, and was eventually acquired by Aspen Technology Inc.  
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𝑅𝑒 ∙  𝑆 + 𝐼 ⟶ (𝑅𝑒 +  1) ∙ 𝐼 

𝐼 ⟶ 𝑅 

𝐼 ⟶ 𝐷 

 

In this scheme, 𝑅𝑒 is the (dimensionless) effective reproduction number. We observe that it 

is analogous to a stoichiometric coefficient in a chemical reaction scheme. The significant 

difference is that in chemical schemes, stoichiometric coefficients are constant whereas the 

effective reproduction number, 𝑅𝑒 can vary throughout the course of an epidemic as NPIs are 

applied. 

We can develop a set of model equations for this epidemiological scheme by treating it in the 

same way as a chemical scheme and applying the law of mass action2. Defining, 𝑛𝑆  (people) 

as the number of susceptible 𝑛𝐼  (people) the number of infected, 𝑛𝑅 (people) the number 

of recovered, 𝑛𝐷 (people) the number of deceased, the rate of change of the number of 

people in the various compartments of the model are, 

𝑑𝑛𝑆

𝑑𝑡
= −𝑅𝑒  ∙  𝑟1 

(1) 

𝑑𝑛𝐼  

𝑑𝑡
= 𝑅𝑒 ∙  𝑟1 − 𝑟2 − 𝑟3 

(2) 

𝑑𝑛𝑅

𝑑𝑡
= 𝑟2 

(3) 

𝑑𝑛𝐷

𝑑𝑡
= 𝑟3 

(4) 

The rate terms 𝑟𝑖,(𝑖=1,2,3) (people ∙ day−1) are, 

𝑟1 = 𝑘 ∙ 𝑛𝐼 ∙
𝑛𝑆

𝑁
𝑟2 = 𝛾1 ∙ 𝑛𝐼 𝑟3 = 𝛾2 ∙ 𝑛𝐼  

(5) 

In equations (5), 𝑘 (day−1) is the infection rate constant, 𝛾1 (day−1) is the removal rate 

constant of recovered infectious individuals, 𝛾2 (day−1) is the removal rate constant of 

deceased individuals, 𝑁 (people) is the total population. Substituting these rate terms into 

(1) to (4) gives, 

 
2 Model equations for chemical systems are more commonly expressed in terms of concentration. 
Epidemiological models are expressed in terms of population fraction. The basis of the model equations for 
chemical schemes can be transformed from concentration to mole fraction by considering molecular weight 
and density. It can be shown that by assuming all molecular weights and densities have equal value, the 
numerical values of mole fraction and concentration are identical, and the model equations are equivalent. 
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𝑑𝑛𝑆

𝑑𝑡
= −𝑅𝑒  ∙  𝑘 ∙ 𝑛𝐼 ∙

𝑛𝑆

𝑁
 

(6) 

𝑑𝑛𝐼  

𝑑𝑡
= 𝑅𝑒 ∙  𝑘 ∙ 𝑛𝐼 ∙

𝑛𝑆

𝑁
− 𝛾1 ∙ 𝑛𝐼 − 𝛾2 ∙ 𝑛𝐼  (7) 

𝑑𝑛𝑅

𝑑𝑡
= 𝛾1 ∙ 𝑛𝐼  (8) 

𝑑𝑛𝐷

𝑑𝑡
= 𝛾2 ∙ 𝑛𝐼  (9) 

2.2 Modelling the variation in the effective reproduction number  

In equations (6) – (9) we assume that 𝑘 is constant and refer to this as the specific 

transmission probability per exposure time, a constant that is characteristic of the COVID-19 

infection. It is assumed that the effective reproduction number 𝑅𝑒 varies as an exponential 

function, and that the variation of 𝑅𝑒 is due to measures taken as NPIs are changed during 

the epidemic. We use an Arrhenius equation to represent the exponential variation, 

 𝑅𝑒 ∙ 𝑘 = 𝐴 ∙  exp (
−𝐸

 𝑇
) (10) 

In equation (10), 𝐴 and 𝐸 are constants determined by model calibration at the same time as 

the other unknown parameters in equations (6) – (9). In order to use this equation to capture 

variation in 𝑅𝑒 we use temperature as a placeholder variable to represent the efficacy of 

NPIs. This allows us to exploit the discrete event based operational modelling capability in a 

commercial chemical engineering simulator and to introduce a sequence of temperature 

changes to emulate the effect of NPIs.  

2.3 Using a commercial simulation package to construct the model 

In this study, we exploit the features of an existing simulator designed for regression of 

chemical kinetic rate constants and predictive modelling of chemical systems. We use this 

simulator as a demonstrator to model an epidemiological system and calculate of variation in 

the effective reproduction number in response to NPIs. We enter the SIRD reaction scheme 

including the reaction rate terms (5) directly into the software. The software automatically 

constructs the associated set of ODEs (6) – (9). Next, we specify operational information such 

as the initial 𝑆𝐼𝑅𝐷 numbers. All models are constructed as batch operation, although we 

note that the simulator’s capability for fed batch operation would allow modelling of influx of 

infected cases to the population. 

The model also includes a sequence of temperature steps and ramps, which we use to 

represent the NPIs. This sequence is shown conceptually in Figure 1.  
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Figure 1 Schematic of a typical temperature profile used  

Nominally, we use an initial baseline temperature value of 100oC to represent the system 

before any interventions are applied. To represent the introduction of NPIs, we impose a 

negative temperature ramp that can vary in rate and duration. As NPIs are changed the 

temperature can be further manipulated to reflect the observed change in active cases. The 

magnitude, direction and rate of the subsequent temperature changes in the model is 

representative of the stringency and efficacy of the NPIs. Increasing stringency of NPIs 

represented by decreasing temperature, relaxation of NPIs by increasing temperature. 

Interpreting temperature as the efficacy of applied NPIs provides a quantitative measure of 

their effect and insight into the dynamics of the disease. 

2.4 Model calibration 

The modelling software used in this study is designed for simulation studies of batch chemical 

systems. To calibrate our model, we must calculate the kinetic constants and the values for 

the temperature profile used as a placeholder for the NPIs. 

The simulator has methods for regression of kinetic constants, but does not have a capability 

for optimisation of a temperature profile. Therefore, to perform model calibration we 

combine the existing kinetic regression capability in the simulator with systematic manual 

manipulation of the temperature sequence representing NPIs. These manual interventions 

can be considered as a prototype demonstrator of the algorithmic steps required to develop 

tools for modelling epidemiological systems.  

The process kinetic constants are manipulated by an optimisation algorithm in the simulator 

to vary the pre-exponential term and exponent for Re ∙  𝑘 as well as the rate constants γ1 and 

γ2. This is performed with a data window over the duration of the first NPI. The kinetic 

constants calculated in this initial phase are held constant for the remaining model 

calibration phases. In subsequent model calibration phases, when observation of the 

predicted number of infected persons shows a divergence from the recorded data after a 

period-of-time (corresponding to a change in the initial NPI) the data window is extended and 

the next section of the temperature profile is determined by manual intervention, such that 

the objective function for the data window is minimised and a good fit to data for the whole 

of the data set in use is maintained. 
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To quantify the discrepancy between model response and reported case data, the sum of the 

squared error between the reported cumulative infected individuals 𝑛𝐼(𝑡) and the model 

prediction 𝑛𝐼
∗(𝑡) as well as the reported removed individuals, 𝑛𝑅(𝑡) and the model 

prediction 𝑛𝑅
∗(𝑡) and the reported dead 𝑛𝐷(𝑡) and the model prediction 𝑛𝐷

∗(𝑡) is calculated 

as, 

𝐹 = ∑
(𝑛𝐼(𝑡) − 𝑛𝐼

∗(𝑡𝑑𝐼
))

2

𝜎𝐼
2

𝑡2

𝑡=𝑡1

 

+ ∑
(𝑛𝑅(𝑡) − 𝑛𝑅

∗(𝑡𝑑𝑅
))

2

𝜎𝑅
2

𝑡2

𝑡=𝑡1

 

+ ∑
(𝑛𝐷(𝑡) − 𝑛𝐷

∗(𝑡𝑑𝐷
))

𝜎𝐷
2

2𝑡2

𝑡=𝑡1

 

(11)  

The sum is over the time-period 𝑡1 (the initial outbreak reaching exponential growth) and 𝑡2 

(current time). 𝜎2 is the variance in the reported data for a given data set. The parameter 𝑡𝑑 

represents a time delay associated with the reporting of recovered / deceased individuals. 

This delay accounts for the time it takes for confirmation of deaths, recoveries, or the 

validation of data from tests for infection.  

The optimisation algorithm used for model calibration was a modified Simplex algorithm3 and 

numerical integration of the ODEs is via an adaptive Runge-Kutta integrator. The integration 

algorithm is piecewise continuous with event and discontinuity management. This ensures 

accurate model response to interventions, for example the sequence of NPIs as represented 

by the temperature profile. 

The temperature profile is specified manually for each country. For all the models developed, 

the initial temperature is set to an arbitrary initial value of 100oC. We use known intervention 

times from reports of actions taken by governments. The initial decrease in temperature 

commences with the introduction of the first NPIs. The time and temperature values for the 

end-point of an initial linear temperature ramp are adjusted manually such that the 

trajectories of the model predictions correspond with the reported data for the early stage of 

the epidemic extending beyond the peak in the number of infected cases. The rates of 

change and durations of the subsequent changes in the temperature profile are adjusted 

empirically as the model is calibrated such that a good fit to the entire data set is achieved. 

 
3 The simplex algorithm is modified and uses intelligent jacketing which exploits embedded knowledge of the 
characteristics of kinetic constants in chemical reaction systems to improve robustness and aid convergence. 
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2.5 Calculating the effective reproduction number 

The number of infected individuals passes through a maximum at 𝑡𝐼𝑚𝑎𝑥
, and at this point 

𝑑𝑛𝐼  

𝑑𝑡
= 0 |

𝑡𝐼𝑚𝑎𝑥

 
(12) 

It follows that  

𝑘 ∙  𝑅𝑒 ∙
𝑛𝑆

𝑁
∙ 𝑛𝐼 = 𝛾1 ∙ 𝑛𝐼 + 𝛾2 ∙ 𝑛𝐼  |

𝑡𝐼𝑚𝑎𝑥

 
(13) 

If the effective reproduction number at this point is, 𝑅𝑒 = 1, then the constant for specific 

transmission probability per exposure time can be calculated as 

𝑘 =
𝑁 ∙  (𝛾1 + 𝛾2)

𝑛𝑆
 |

𝑡𝐼𝑚𝑎𝑥

 
(14) 

The value of the placeholder variable 𝑇(𝑡) is known by inspection of the temperature profile 

imposed on the model. This allows the instantaneous effective reproduction number 𝑅𝑒(𝑡) 

to be calculated using (10). 

 3.0 Results 

To demonstrate and discuss our modelling, we use reported case data from Germany, 

Austria, Saudi Arabia and Italy. As with any data-driven approach, it is only possible to have 

representative and reliable results if the data is also reliable. The countries selected have a 

reasonably well developed COVID-19 testing capacity (test coverage is greater than 15 per 

thousand residents), which would imply reasonably robust and reliable data. The time period 

we consider is from around the 1st March to 31st August, 2020. 

Given our model formulation, a change in temperature translates directly into changes in the 

effective reproduction number. Imposing a linear decrease in temperature results in an 

exponential decrease in 𝑅𝑒 with time. A constant temperature input to the model results in a 

constant output of 𝑅𝑒 . The dynamic response to an NPI is represented by the rapidity of the 

temperature change, and the variation in 𝑅𝑒 correlates with the variation in the temperature 

placeholder variable. 

3.1 Germany 

Figure 2 shows 𝑆𝐼𝑅𝐷 model predictions (𝑹𝐬𝐪𝐮𝐚𝐫𝐞𝐝 = 99.9%) plotted with the reported 

values for numbers of active infected, recovered and deceased individuals. The time shifts for 

reporting delays are 𝑡𝑑𝐼
= 0, 𝑡𝑑𝑅

= 6 𝑑𝑎𝑦𝑠, 𝑡𝑑𝐷
= 6 𝑑𝑎𝑦𝑠. 
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Figure 2 – Germany 
The upper chart shows the number of active infected, recovered and deceased cases as a function of time. 

Model predictions are shown as solid lines and reported values as discrete points. 

The lower chart shows the temperature profile representing NPIs imposed to achieve the model predictions. 

We compare this to the stringency index (plotted as 100 – Stringency Index). The estimate of the effective 

reproduction number is also shown. 

The number of active cases peaked in mid-April and then declined. The introduction of 

Germany’s lock-down measures in late March is represented in our model by significant 

downward ramp in temperature over a 2-month period from the initial value of 100oC to 

around 30oC. This gives accurate model calibration of the early epidemic cases beyond the 

peak in infected cases up to 20 May when lock-down measures were relaxed. 

The number of infected cases continues to decrease at a reduced rate until late June when a 

gradual increase commences. We capture this dynamic by extending the temperature profile 

progressively to maintain accurate model predictions. The first increase in temperature 

captures the reduced rate of decline in infected cases from relaxation of NPIs on 20 May. We 
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find that the measures result in a sharp increase in 𝑅𝑒 followed by a sustained period where 

𝑅𝑒 remains at this new level until mid-June 2020. The second temperature increase 

corresponds to the slight increase in infected cases reported from mid-June 2020. The final 

temperature increase on 23 July captures the increasing infection rate through to late 

August. Some NPIs were reintroduced on 31 July with further measures introduced on 23 

August. This is captured in our model by a downward temperature ramp on 25 August.  

The calibrated model constants obtained were as follows 

𝐴 (day−1) 𝐸(𝐾) 𝑘(day−1) 𝛾1(day−1) 𝛾2(day−1) 

1.78 x 106 5.858 x 103 6.648 x 10−2 6.290 x 10−2 3.250 x 10−3 

Using these calibrated model constants, we calculate 𝑅0 = 4.0  We observe an increase in 

the number of active cases in mid-June 2020, and that and that our model predicts 𝑅𝑒 > 1 . 

In addition, there is a small downward trend in the number of active cases at the end of June 

2020. This is captured in our model by a further decrease in temperature with a 

corresponding fall in 𝑅𝑒 to a value less than one. In late July there is a growing increase in the 

number of active cases which continues until 24 August during which time the model predicts 

an effective reproduction number of, 𝑅𝑒 = 1.5.  By the end of August the model predicts a 

decrease in 𝑅𝑒 to 1.05. 

Finally, assuming no additional NPIs and 𝑅𝑒 remains constant at a value of 1.05 the model is 

used to simulate the increase in infection rate for a further 28 days. Under these conditions 

the model forecasts virtually no change in the level of infected cases throughout September. 

Interestingly, the final temperature profile shows a similar trend to Oxford’s government 

stringency index (shown in Figure 2 as ‘100 – stringency index’) , [21]. The stringency index is 

an aggregate measure of governments’ responses to the COVID-19, which includes a variety 

of diverse measures for example school closures, travel bans etc. We suggest that the 

disparity between our temperature profile and the stringency index could arise for a number 

of reasons. It may be due to the relative weightings used to aggregate terms in the stringency 

index, the relative adherence of a population to introduced measures or the dynamics of the 

disease transmission rate. 

3.2 Austria 

Figure 3 shows 𝑆𝐼𝑅𝐷 model predictions (𝑹𝐬𝐪𝐮𝐚𝐫𝐞𝐝 = 96.8%) plotted with the reported 

values for cumulative numbers of active infected, recovered and deceased individuals. The 

time shifts for reporting delays are 𝑡𝑑𝐼
= 0, 𝑡𝑑𝑅

= 9 𝑑𝑎𝑦𝑠, 𝑡𝑑𝐷
= 9 𝑑𝑎𝑦𝑠. 
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Figure 3 – Austria 

The upper figure shows the number of active infected, recovered and deceased cases as a function of time. 

Model predictions are shown as solid lines and reported values as discrete points. 

The lower figure shows the temperature profile representing NPIs imposed to achieve the model predictions. 

We compare this to the stringency index (plotted as 100 – Stringency Index). The estimate of the effective 

reproduction number is also shown. 

The trajectories for the numbers of cases are similar to those shown in the German data. 

Austria successfully ‘flattened-the-curve’ of infected cases as early as the end of March, 

although the numbers of cases are an order of magnitude smaller than those reported by 

Germany. After successfully flattening the curve, NPIs were gradually relaxed and the number 

of active cases initially continued to decrease. In mid-June 2020, there was a gradual increase 

in the number of cases. In early August, a much steeper increase in the numbers of infected 

individuals occurs before the curve is flattened. 

In our model, we first imposed a deeper and steeper downward temperature ramp taking the 

system temperature from 100oC to 20oC over a period of around 1 month.  
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The number of infected cases continues to decrease at a reduced rate until mid-June when 

numbers start to increase. We capture this dynamic by extending the temperature profile 

progressively to maintain accurate model predictions. The first increase in temperature 

captures the reduced rate of decline in infected cases from relaxation of NPIs in May. 𝑅𝑒 

increases sharply, followed by a sustained period where 𝑅𝑒 remains at this new level until 

mid-June 2020. The second temperature increase corresponds to the slight increase in 

infected cases reported from mid-June 2020 after which the temperature is reduced to 

reflect the decrease in infected cases from 27th June until 4th August. The number of cases 

started to increase rapidly from this time. This is captured by a steep increase in 

temperature. The increase in cases is brought under control after that date. This is captured 

in our model by further decreases in temperature commencing on 13 August. Again, the 

temperature profile used in our model shows a similar trend to Oxford’s government 

stringency index. 

The calibrated model constants obtained were as follows 

𝐴 (day−1) 𝐸(𝐾) 𝑘(day−1) 𝛾1(day−1) 𝛾2(day−1) 

3.321 x 108 7.771 x 103 6.072 x 10−2 5.826 x 10−2 2.557 x 10−3 

We calculate 𝑅0 = 5.37 followed by a fall in 𝑅𝑒 to a value 𝑅𝑒 < 1. We then observe an 

increase in the number of active cases starting in mid -June and that our model predicts an 

effective reproduction number of, 𝑅𝑒 = 2.38 by the 9th August. This falls to  𝑅𝑒 = 1.13 by 

the end of August. If no additional NPIs were introduced and 𝑅𝑒 remained at this value, our 

model forecasts a small increase in infected cases by late September.  

3.3 Saudi Arabia 

Figure 4 shows 𝑆𝐼𝑅𝐷 model predictions (𝑹𝐬𝐪𝐮𝐚𝐫𝐞𝐝 = 99.24%) plotted with the reported 

values for cumulative numbers of active infected, recovered and deceased individuals. The 

time shifts for reporting delays are 𝑡𝑑𝐼
= 0, 𝑡𝑑𝑅

= 10 𝑑𝑎𝑦𝑠, 𝑡𝑑𝐷
= 10 𝑑𝑎𝑦𝑠. 

Initially, the trend in cases is similar to Germany and Austria. The number of infected cases is 

successfully curtailed by early May. The initial temperature ramp reduces the system 

temperature from 100oC to 30oC over a period of around 6 weeks. The model predicts a 

much slower response in 𝑅𝑒 to the initial NPI when compared to Germany and Austria. This is 

reflected in the calibrated values of the coefficients 𝐴 and 𝐸 in equation (10).  
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Figure 4 – Saudi Arabia  

The upper figure shows the number of active infected, recovered and deceased cases as a function of time. 

Model predictions are shown as solid lines and reported values as discrete points.  

The lower figure shows the temperature profile representing NPIs imposed to achieve the model predictions. 

We compare this to the stringency index (plotted as 100 – Stringency Index). The estimate of the effective 

reproduction number is also shown. 

To fit the reported data for the rapidly increasing numbers infected cases it was necessary to 

impose a sharp temperature increase on 18 May which raises 𝑅𝑒 to 1.5. This was followed by 

a series of step changes in temperature which were introduced to replicate the pattern 

manifest in the reported data. We calculate 𝑅0 = 3.3 and an effective reproduction number 

of, 𝑅𝑒 = 0.8 throughout August. Assuming these conditions are maintained the model 

forecasts a continuing decline in infected cases throughout September. 

The calibrated model constants that we obtained were as follows, 
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𝐴 (day−1) 𝐸(𝐾) 𝑘(day−1) 𝛾1(day−1) 𝛾2(day−1) 

4.982 x 106  7.771 x 103 7.02 x 10−2 6.941 x 10−2 8.598 x 10−4 

3.4 Italy 

Figure 5 shows 𝑆𝐼𝑅𝐷 model predictions (𝑹𝐬𝐪𝐮𝐚𝐫𝐞𝐝 = 96.7%) plotted with the reported 

values for cumulative numbers of active infected, recovered and deceased individuals. The 

time shifts for reporting delays are 𝑡𝑑𝐼
= 0, 𝑡𝑑𝑅

= 10 𝑑𝑎𝑦𝑠, 𝑡𝑑𝐷
= 10 𝑑𝑎𝑦𝑠. 

The trend in cases is similar to the pattern in data from Germany and Austria. Italy 

successfully ‘flattened-the-curve’ of infected cases by the end of April, and infections and 

deaths declined steadily. A temperature decrease is required after the introduction of the 

most stringent of Italy’s lock-down measures in late February. This takes the form of a 

downward ramp, lasting over a 2-month period corresponding to a fall in the initial 

temperature of 100oC to a temperature of around 60oC.  
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Figure 5 – Italy 

The upper figure shows the number of active infected, recovered and deceased cases as a function of time. 

Model predictions are shown as solid lines and reported values as discrete points.  

The lower figure shows the temperature profile representing NPIs imposed to achieve the model predictions. 

We compare this to the stringency index (plotted as 100 – Stringency Index). The estimate of the effective 

reproduction number is also shown. 

Italy first began to relax NPIs around the beginning of May 2020, however in order to 

calibrate the model a further reduction in temperature was required to a constant value of 

30oC. In mid July the reported number of infected cases becomes constant and remains so 

until mid August when it starts to increase. We capture these dynamics first by a sharp 

temperature increase which raises 𝑅𝑒 to 1.0 and then by a second increase in temperature 

which raises 𝑅𝑒 to 1.5. Using these conditions the model forecasts that the number of 

infected cases will increase to 27000 by late September. 
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The calibrated model for Italy is reasonably good, however there is a significant model data 

mismatch for the number of the dead. What is strikingly different about the model for Italy is 

the prediction that 𝑅0 = 15 and that the value of 𝑘 is only about half that of the other 

countries. We can offer no explanation for these results other than to say that the modelling 

is based on a rigorous mass balance of all model elements and is therefore affected by errors 

in data. We note that on 4 August the international news media reported that Italy 

announced that the actual number of infections was estimated to be six times higher than 

the reported number which may be a factor in these questionable model predictions.  

𝐴 (day−1) 𝐸(𝐾) 𝑘(day−1) 𝛾1(day−1) 𝛾2(day−1) 

1.019 x 1011 9.714 x 103 3.358 x 10−2 2.799 x 10−2 5.486 x 10−3 

4.0 Discussion and conclusions 

The primary aim of this work is to demonstrate the effectiveness of using parameter 

regression methods to calibrate an 𝑆𝐼𝑅𝐷 model for COVID-19 where the effective 

reproduction number response to NPIs is non-linear and variable in terms of response rates, 

magnitude and direction. By using an existing commercial chemical engineering package 

capable of parameter regression with piecewise continuous integration with event and 

discontinuity management we have been able to explore the efficacy of this approach. We 

have highlighted the trend in the number of active cases in Germany, Austria and Saudi 

Arabia and Italy.  

Results indicate that our model where 𝑅𝑒 varies exponentially as a function of NPIs can 

accurately capture the reported numbers of disease progression in the sample of countries 

selected. We elected to keep our mathematical model comparatively simple using the 

established 𝑆𝐼𝑅𝐷 scheme. Our enhancements to this scheme are that we treat 𝑅𝑒 as a 

variable stoichiometric coefficient, and assume that it varies exponentially. We have used 

temperature as a placeholder to develop this exponential variation. This choice is expedient 

as the modelling platform already had an Arrhenius equation model with regression tools. A 

benefit of this approach is that a non-linear response in 𝑅𝑒 to NPIs is transformed to a linear 

ramp. This transformation made it easier to calibrate the model using a systematic series of 

manual interventions. The experience gained in using this approach for several data sets 

suggests that a strategy for model calibration may be developed into an algorithm which 

could be coded.  

Understanding that in an 𝑆𝐼𝑅𝐷 model 𝑅𝑒 is a variable stochiometric coefficient in the 

infection step has enabled the determination of 𝑅𝑒 ∙ 𝑘 by model calibration together with 

their numerical decoupling. This has resulted in identifying the characteristic time for 𝑘 to be 

in the range of 14 to 16 days with Italy being an outlier at around 30 days. 

The modelling software used in this study is designed for simulation studies of batch chemical 

systems. The software has limitations, not the least being the considerable expertise needed 

to utilise it for this application which is significantly outside its designed purpose, and we are 

not advocating its use. Rather we are suggesting that the methodology embedded in the 

software with some further development of regressive capability could be developed into an 
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effective software tool for epidemic study. This work is merely a demonstrator of the 

algorithmic steps involved.  

One aspect of the modelling software’s capability which was not used in this study is 

simulation of thermal runaway – the behaviour of a reacting system which accelerates 

exponentially. Batch chemical process development places strong emphasis on avoiding a 

violent thermal runaway, which a significant number of processes could potentially undergo 

unless properly designed. The methods for studying and the design procedures to negate the 

possibility of a thermal runaway are well established. There are many analogies in a thermal 

runaway scenario with the outbreak of an epidemic. For example, the explicit inclusion of the 

effective reproduction number in the model equation for infection reveals the stability 

characteristics of the system. Another feature which could be exploited is the modelling of 

reagent additions which is directly analogous to an influx of infected cases to a population. 

Such scenarios will be simulated and reported in a future publication. 

In conclusion, this study has attempted to assess the potential of some established chemical 

engineering modelling principles and practice for application to modelling of epidemiological 

systems. We have successfully developed a novel extension to the analogy between chemical 

and epidemiological system models. 
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