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Abstract 
Background: Re-opening universities while controlling COVID-19 transmission poses unique 
challenges. UK universities typically host 20,000 to 40,000 undergraduate students, with the majority 
moving away from home to attend. In the absence of realistic mixing patterns, previous models 
suggest that outbreaks associated with universities re-opening are an eventuality.  
 
Methods: We developed a stochastic transmission model based on realistic mixing patterns between 
students. We evaluated alternative mitigation interventions for a representative university.  
 
Results: Our model predicts, for a set of plausible parameter values, that if asymptomatic cases are 
half as infectious as symptomatic cases then 5,760 (3,940 – 7,430) out of 28,000 students, 20% (14% 
– 26%), could be infected during the first term, with 950 (656 – 1,209) cases infectious on the last day 
of term. If asymptomatic cases are as infectious as symptomatic cases then three times as many cases 
could occur, with 94% (93% – 94%) of the student population getting infected during the first term. 
We predict that one third of infected students are likely to be in their first year, and first year students 
are the main drivers of transmission due to high numbers of contacts in communal residences. We 
find that reducing face-to-face teaching is likely to be the single most effective intervention, and this 
conclusion is robust to varying assumptions about asymptomatic transmission. Supplementing 
reduced face-to-face testing with COVID-secure interactions and reduced living circles could reduce 
the percentage of infected students by 75%. Mass testing of students would need to occur at least 
fortnightly, is not the most effective option considered, and comes at a cost of high numbers of 
students requiring self-isolation. When transmission is controlled in the student population, limiting 
imported infection from the community is important.  
 
Conclusions: Priority should be given to understanding the role of asymptomatic transmission in the 
spread of COVID-19. Irrespective of assumptions about asymptomatic transmission, our findings 
suggest that additional outbreak control measures should be considered for the university setting. 
These might include reduced face-to-face teaching, management of student mixing and enhanced 
testing. Onward transmission to family members at the end of term is likely without interventions.  
 
Introduction 
Despite the on-going COVID-19 epidemic, social distancing measures in many countries are 
beginning to be relaxed and universities across the world are due to start the new academic term from 
September 2020. In the UK, there are 2.3 million students, with up to 40,000 undergraduates at a 
single institution[1]. Universities are integral to many towns and cities in the UK: for example, in the 
2011 census, a quarter of Oxford’s adult population was registered as a full-time student. Managing 
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universities is a complex operation, and in the context of the COVID-19 epidemic, re-opening 
universities poses particular challenges for containing disease transmission.   
 
Since June 2020, the UK has moved from a national containment strategy to localised containment of 
outbreaks, with the number of cases highly variable across the country. The imposition of lockdown 
in March 2020 led to a substantial reduction in travel and mobility, and local lockdowns have led to 
further reduced movement in some parts of the country. In the UK, re-opening universities is 
associated with a mass travel event. Around 80% of students leave home to attend University, moving 
an average 90 miles[2]. This synchronised event will increase population mixing at a national scale 
with the potential to spark outbreaks in new areas if not carefully managed. Once the university term 
starts there are more unique challenges facing universities. Students, in common with other 20-to-30-
year olds, report high numbers of social contacts in their everyday lives[3]. Student accommodation 
frequently involves communal living, either in halls of residence that house several hundred students, 
or in all-student households renting in the private sector. Regular face-to-face teaching can involve 
several hundred students in a lecture theatre, and even without large lectures, tutorials and small 
group teaching involve close and prolonged contact between individuals.    
 
The potentially high rate of transmission within a university setting is unlikely to translate to high 
morbidity among students. There is a marked age disparity in severe COVID-19 cases, with younger 
people less likely to exhibit typical symptoms or suffer severe outcomes[4]. In the UK, less than 0.2% 
of COVID-19-related deaths are in persons under 30. Students are typically young adults in their early 
twenties. Nevertheless, it appears likely that young adults are susceptible to infection and infectious to 
others. Hence there is a risk of asymptomatic transmission within the student population, posing a risk 
to vulnerable students, people outside the university setting and family members when students return 
home.  
 
A number of studies have investigated the challenges inherent in reopening of universities amidst the 
COVID-19 pandemic[5,6]. Existing models have focused on isolated campus universities in the US, 
rather than civic universities that are common in the UK and elsewhere[6], and the majority have not 
had access to realistic mixing patterns within the university setting, which drive transmission. In this 
paper we combined analysis of social contact data with a data-driven mathematical modelling 
approach to investigate the impact of re-opening a UK university on COVID-19 transmission. We 
characterise patterns of disease transmission and investigate potential mitigating effects of 
interventions. These results are used to synthesise guidance on measures that universities might wish 
to consider for effective outbreak control once students arrive or return for the forthcoming academic 
year. 
 
Methods 
Data sources 
We used two datasets for our analysis: a re-analysis of the Social Contact Survey (SCS)[3,7] and a 
data extract from the University of Bristol (UoB).  
 
Social Contact Survey data  
The SCS was a paper-based and online survey of 5,388 participants in Great Britain conducted in 
2010[3,7]. We have previously used these data to estimate the reproduction number for COVID-19[8] 
[ref]. The SCS included 363 participants whose listed occupation included “STUDENT”. We 
extracted these participants to summarise their contacts by context (home, university, leisure/other, 
travel) and to estimate the potential COVID-19 reproduction number in students. We used a Student’s 
t-test to determine the level of evidence for the observed differences in numbers of contacts between 
students and the general population.    
 
We used the SCS to estimate the contact rate between students by year and school. For a student in 
group 𝑖, we took the number of study contacts as 𝑠!! = 𝑠̅ and 𝑠!" = 0, where 𝑠̅ is the mean number of 
university-associated contacts reported by students in the SCS. For non-study contacts, we took 𝑟!" =
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𝑟̅ 𝑛" 𝑁⁄ , where 𝑟̅  is the mean number of other/leisure contacts reported by students in the SCS and 
𝑛" 𝑁⁄  is the proportion of students in group 𝑗.  
 
University data 
We were provided with an anonymised extract of student data for a university relating to the 
2019/2020 academic year. The study complied with the University data protection policy for research 
studies (http://www.bristol.ac.uk/media-library/sites/secretary/documents/information-
governance/data-protection-policy.pdf).  
 
The data contained age, primary faculty affiliation (7 faculties), primary school affiliation (28 
schools), year of study (6 undergraduate years, taught postgraduates and research postgraduates), 
term-time residence, home region (if in the UK), and country of origin for students registered in 
2019/2020.    
 
We used the university data to estimate the household contact rate between students by year and 
school. We estimated the number of household contacts from the student data, taking postcode as a 
proxy for household. The average number of students in school/year group 𝑗 sharing accommodation 
with a student in group 𝑖 is calculated as: 

ℎ!" =
∑ 𝑛!#𝑛"#$
#%&

∑ 𝑛!#$
#%&

 

where 𝑛!# is the number of students in school/year 𝑖 living at unique postcode 𝑘 and 𝑃 is the number 
of unique postcodes.  
 
In UoB, students in university residences will be assigned to a living circle, which is a group of 
students that have higher rates of contact. We take the baseline living circle size as 24 students and 
investigate the impact of smaller living circles. Where the number of students at a single postcode 
exceeded the living circle size, we create subunits within the postcode that are the size of the living 
circle. Each living circle contains a random sample of students at that address. See supplementary 
figure S1 for a pictorial explanation of how the data are processed. 
 
Modelling framework 
We use a stochastic compartmental model to simulate transmission dynamics in the student 
population at UoB. We assumed that COVID-19 could be captured by seven infection states: 
susceptible to infection (S), latently infected (E), asymptomatic and infectious (A), pre-symptomatic 
and infectious (P), symptomatic and infectious (I), self-isolating (Q), hospitalised (H) and recovered 
and immune (R). The total number of students is given by 𝑁. The flow between compartments is 
depicted in figure 1 and given by the equations below.  
 

𝑆!(𝑡 + 1) = 𝑆!(𝑡) − Δ'( 
 

𝐸!(𝑡 + 1) = 𝐸!(𝑡) + Δ'( − Δ( 
 

𝐴!(𝑡 + 1) = 𝐴!(𝑡) + Δ() − Δ) 
 

𝑃!(𝑡 + 1) = 𝑃!(𝑡) + Δ( − Δ() − Δ$ 
 

𝐼!(𝑡 + 1) = 𝐼!(𝑡) +	Δ$* − Δ* 
 

𝐻!(𝑡 + 1) = 𝐻!(𝑡) + Δ*+ − Δ+ 		 
 

𝑅!(𝑡 + 1) = 𝑅!(𝑡) + Δ)- + Δ+- + Δ*- + Δ.-	 
 

𝑄!(𝑡 + 1) = 𝑄!(𝑡) + Δ) − Δ)- +	Δ* − Δ*+ − Δ*- + Δ$ − Δ$*	 − Δ.- 
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Δ'(~𝐵𝑖𝑛@𝑆!(𝑡), 1 − exp	(−𝑏 −F𝛽!" (𝐼" + 𝑃" + 𝜀𝐴" + 𝛿!"𝜀.𝑄") 𝑁")⁄
/

"%&

J 

 
Δ(~	𝐵𝑖𝑛(𝐸!(𝑡), 1 − exp(𝜎	)) 

 
Δ()~𝐵𝑖𝑛(	Δ( , 1 − exp(−𝑓)) 

 
Δ)~𝐵𝑖𝑛(𝐴! , 1 − exp(−𝛾) − 𝑡))) 

 
Δ)-~𝐵𝑖𝑛(Δ), 1 − exp	(−𝛾) (𝛾) + 𝑡)⁄ )) 

 
Δ$~𝐵𝑖𝑛(𝑃! , 1 − exp(−𝛾$ − 𝑡))) 

 
Δ$*~𝐵𝑖𝑛(Δ$ , 1 − exp	(−𝛾$ (𝛾$ + 𝑡)⁄ )) 

 
Δ*~𝐵𝑖𝑛(𝐼! , 1 − exp	(−𝛾* − 𝑡*)) 

 
Δ*+~𝐵𝑖𝑛(Δ* , 1 − exp	(−ℎ𝛾* (𝛾⁄ * + 𝑡*))) 

 
Δ*-~𝐵𝑖𝑛(Δ* − Δ*+ , 1 − exp	(−(1 − ℎ)𝛾* (𝛾⁄ * + 𝑡*))) 

 
Δ+~𝐵𝑖𝑛(𝐻! , 1 − exp	(−𝛾+)) 

 
Δ+-~𝐵𝑖𝑛(Δ+ , 1 − exp	(𝑚 − 1)) 

 
Model parameters 
The student population was divided into 161 groups representing school and year of study. The 
proportion of students in each group and the mixing between groups was taken from the mixing 
matrix in figure 2. As 92% of the student population is under 30 years of age, we expect a high 
proportion of cases to be asymptomatic[9] (𝑓 = 0.75), a low hospitalisation rate[10] (ℎ = 0.002) and 
a low mortality rate of hospitalised cases (𝜇 = 0.038)[10]. We assume that only symptomatic cases 
can be hospitalised, and only hospitalised cases can die.  
 
For symptomatic cases, we assume an average incubation period, during which cases are assumed not 
to be infectious and cannot be detected by the test, of 〈1 𝜎⁄ 〉 = 3 days[11], after which they become 
infectious but pre-symptomatic for a period of 〈1 𝛾$⁄ 〉 = 2 days, when cases can be detected with a 
test. The infectious period is taken as 〈1 𝛾⁄ 〉 = 3 days[11], although there is uncertainty around these 
values. We take the number of days in hospital as 〈1 𝛾+⁄ 〉 = 7 days[12]. Symptomatic individuals are 
tested and moved to self-isolation at a rate 𝑡*.  
 
Asymptomatic cases are infectious for 〈1 𝛾)⁄ 〉 = 5 days, so that their average infectious period equals 
the infectious period for symptomatic cases. Asymptomatic cases are tested and moved to self-
isolation at rate 𝑡) where they remain for an average of 14 days. Individuals in self-isolation 
contribute to the force-of-infection within their subgroup only at a reduced rate 𝜀. = 0.5.  
 
The infectiousness of asymptomatic cases relative to symptomatic cases is represented by the 
parameter 𝜀. It is now generally accepted that asymptomatic transmission can and does occur, 
however much of it appears to be pre-symptomatic transmission, i.e. in the days before symptom 
onset [13]. A modelling study estimated that transmission due to truly asymptomatic cases (i.e. cases 
that never go on to develop symptoms) was limited, with pre-symptomatic and symptomatic 
transmission contributing the remainder in approximately equal proportions[14]. We take a baseline 
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value for the relative infectiousness of asymptomatic cases, 𝜀, of 0.5 and consider values between 0 
and 1. We assume that pre-symptomatic and symptomatic cases are equally infectious[15].  
 
We assume the transmission rate between group 𝑖 and group 𝑗, 𝛽!", is proportional to the contact rate 
𝑐!", where 𝑐!" is the average number of contacts in group 𝑗 made by a person in group 𝑖. We assume 
that contacts were either household contacts (ℎ!"), study contacts (𝑠!") or random contacts (𝑟!"), so 
each entry in the contact matrix is given by  𝑐!" = ℎ!" + 𝑠!" + 𝑟!". In order to translate the contact 
matrix into the transmission matrix, we calculate a constant 𝑘 such that the maximum eigenvalue of 
the transmission matrix Β = Z𝛽!"[ = Z𝑘𝑐!"[ equals the reproduction number[16].  
 
To estimate the reproduction number in the student population, we took a population-wide 
reproduction number of 𝑅0 = 2.7. In our framework, if a symptomatic case generates 𝑅1 secondary 
cases, then an asymptomatic case will generate 𝑅) = 𝜀𝑅' secondary cases. With 𝑅0 = 𝑅' + 𝑅),    
𝑅1 = 𝑅0 (𝑓 + (1 − 𝑓)𝜀)⁄ . If cases without symptoms are 50% as infectious as cases with symptoms 
(𝜀 = 0.5), and a fraction 𝑓 = 0.6 of the general population has symptoms when infected, then in a 
university setting when a lower proportion of cases have symptoms (𝑓 = 0.25) but have on average 
10% more contacts than an average person, we would expect a reproduction number within university 
of 𝑅2 = 2.7. If 𝜀 = 0.1 then 𝑅2 = 1.7;	if 𝜀 = 1 then 𝑅2 = 3.4 (see SI, section 2, figure S2).  
 
Initial conditions and model implementation  
We estimated the number of infected students at the start of term using home location and incidence 
in home location as of July 2020. For each scenario, we ran the model 100 times using a different 
random seed. The model was simulated for one year to illustrate the full range of dynamics, and we 
consider the state of the outbreak after 84 days, which is the number of days between the start of the 
September term and the winter holidays at the end of the first term. The model code is available at 
https://github.com/ellen-is/unimodel.  
    
Sensitivity analysis 
We explored the inherent variability of the model by running the model with baseline parameters for 
100 realisations, and then running 100 more realisations of the model varying the baseline parameters 
by +/-10%.  
 
The impact of the infectiousness of asymptomatic cases was explored for values of 𝜀 between 0 
(asymptomatic cases not infectious) and 1 (asymptomatic cases as infectious as symptomatic cases), 
which corresponds to reproduction numbers ranging from 1.7 to 3.4 (see SI section 2).     
 
Control options 
We assumed that the university would be operating within Public Health England (PHE) guidelines, 
i.e. that symptomatic cases should be tested and self-isolate within 48 hours. Contact tracing is 
difficult to implement explicitly in the compartmental model framework, but the mechanism of action 
can be captured by a lower within-group transmission rate. We focussed on interventions that could 
be implemented on top of wider control measures. We considered the following interventions (see 
table 1 for a summary): 

• Baseline conditions are “business as usual” behaviour within universities with PHE 
guidelines. Symptomatic cases are tested are moved into self-isolation after an average of 48 
hours if test positive. No additional testing for people with no symptoms. Students are 
assumed to be in living circles that comprise of a maximum of 24 individuals to reflect 
existing UoB arrangements.  

• COVID security is modelled by reducing the transmission probability associated with non-
residence contacts by 25% and 50% to capture the impact of face covering use and social 
distancing.   

• Reduced face-to-face teaching is captured by reducing the number of face-to-face teaching 
contacts from 20 students to 15 and then 5 students.  
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• Reduced living circles reflects reducing the number of students sharing facilities within 
accommodation. In the baseline scenario, we assumed that students were in contact with other 
students living in the same accommodation, forming household groups up to a maximum of 
24 individuals. For accommodation with more than 24 residents, we divided the 
accommodation population up into subunit “living circles” of 24 students. To explore the 
impact of living circle size, we reduced the maximum living circle size from 24 to 20 and 
then 14 persons.    

• Reactive mass testing: We simulate scenarios in which all students are tested the presence of 
current infection if the number of test-positive cases in a given week is greater than the 
previous week. We move test positive cases into self-isolation after an average of 2 days. Test 
all students within 2 to 28 days if the number of test-positive cases increases from one week 
to the next. Additional testing is continued until the number of test-positive cases in a given 
week is less than the previous week.  

• Multiple, layered interventions: We investigated the impact of each of the above 
interventions in isolation and then applied sequentially: 25% reduction in transmission due to 
COVID security, followed by a reduction in face-to-face teaching to 5 study contacts, 
followed by a reduction in living circles to 24 individuals, and reactive mass testing every 2 
days if the infection rate on campus should rise, and finally a reduction in importation rates 
from outside the university population.  

 
Table 1: Intervention scenarios for controlling transmission within university settings.  

Scenario Transmission 
probability per 
contact 
household/other 

# 
random 
contacts 

# within-
course 
contacts 

Max living 
circle size 

% transmission 
reduction due 
to self-isolation 
within/between 
groups 

Asymptomatic 
testing 

Baseline 0.05§ 4* 20* 24 50% / 100%  None 
COVID 
security 

0.05§ / 0.04 or 
0.025 

4* 20* 24 50% / 100%  None 

Reduced 
face-to-

face 
teaching 

0.05§ / 0.05§ 4* 15 or 5 24 50% / 100%  None 

Reduced 
living 

circle size 

0.05§/ 0.05§ 4* 20* 20 or 14 50% / 100%  None 

Improved 
self-

isolation 

0.05§/ 0.05§ 4* 20* 24 100% / 100%  None 

Reactive 
mass 

testing 

0.05§/ 0.05§ 4* 20* 24 50% / 100%  Every 2 or 7 
days when rates 
are increasing 

Multiple 0.05§ / 0.04 4* 5 14 50% / 100% Every 2 days 
when rates are 

increasing 
*Estimated from the Social Contact Survey, §calculated such that R=2.7.  

 
For each model realisation, we calculated the doubling time during the exponential growth phase as 
ln	(2) 𝑟⁄ , where 𝑟 is the exponential growth rate in the number of infected individuals, the incident 
number of symptomatic and asymptomatic cases at the end of the first term (day 84 of the model), the 
time the outbreak turns over, the number of students in self-isolation and ratio of asymptomatic to 
symptomatic cases.  
 
We ranked the interventions when implemented without additional measures by mean number of 
symptomatic cases at the end of the first term calculated from 100 realisations of the model for a 
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given set of parameters, and repeated this ranking for values of 𝜀 between 0 (asymptomatic cases not 
infectious) and 1 (asymptomatic cases as infectious as symptomatic cases).     
 
Results 
Contact patterns and estimated reproduction number in university students 
The Social Contact Survey included 363 participants whose listed occupation included “STUDENT”. 
Students reported more home contacts than other participants (3.5 versus 2.3, p-value < 0.001).  
However, although students reported more contacts than other participants on average, there was no 
evidence of a systematic difference (29.9 versus 26.8, p-value 0.40). The majority (82% 95% CI: 79% 
to 86%) of students’ social contacts are either home or associated with university. On average, 
students reported 20.0 (95% CI: 14.1, 28.8) university contacts, and 4.3 (95% CI: 2.7, 6.5) 
other/leisure contacts.  
 
Although students do not have more contacts than the general population, 18 to 24-year olds do have 
more contacts than the wider population. Taken in combination with the contact duration, the 
individual reproduction number for this age group is higher than for other individuals.  
 
Heterogeneous mixing rates within a university 
To capture student contact patterns within a university, we used comprehensive anonymised student 
accommodation data for the academic year 2019/2020 from UoB. The data included 20,819 registered 
undergraduates and 8,501 registered postgraduates divided into 6 faculties and 28 schools and 2,862 
unique postcodes (see supplementary table 1 for number of students by year of study and faculty). 
Most students (92%) are under 30 years of age and the largest school is the School of Economics, 
Finance and Management with 3,674 students.  
 
We used the student data to create synthetic contact matrices for mixing between year groups and 
schools. From postcodes we generated between school contact matrices for each year of study, and for 
all years (figure 2). Halls of residence dominate the first-year contact matrix, with mixing across all 
schools and no clear assortative mixing (figure 2a).  
 
In years 2 and 3 the average household size decreases substantially and there is increased assortativit 
mixing between schools, indicating that students are more likely to share accommodation with 
someone from their own school by choice (figures 2b & 2c).  
  
The university-wide contact matrix consists of 161 groups of students categorised by 28 schools and 
nine year-groups (0, 1, 2, 3, 4, 5, 6, PGT, PGR) (figure 2d). The higher levels of mixing between first 
years is evident in the lower left-hand corner and the assortative mixing by year and school is shown 
by the diagonal. There are fewer inter-year household contacts and more intra-university mixing 
between taught postgraduates than for research postgraduates.  
 
Transmission dynamics in the student population 
We investigated the dynamics of an epidemic with limited mitigation in the student population with 
plausible COVID-19 parameter values and assuming that symptomatic cases are tested and self-
isolate within 48 hours. Because of the population structure, the stochasticity and relatively small 
numbers involved, there is large intrinsic variability between simulations with identical parameter 
values; we report the mean, minimum and maximum from 100 simulations.  
 
Using plausible parameters (asymptomatic cases half as infectious as symptomatic cases and a 
reproduction number of 𝑅2 = 2.7), and without interventions or holidays, we predict a university-
wide outbreak with an early growth rate of 0.07 (0.03-0.10), which is equivalent to a doubling time of 
9 days (7-24 days) (figure 3a). Based on the timescales of COVID-19 with baseline parameters, we 
expect that it would take around 4 months for the outbreak to peak, assuming no winter break.  
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First year students drive the early part of the outbreak and experience the highest burden of infection, 
followed by second and third years and taught postgraduate students (figure 3b). Students in year 4 
and above and research postgraduates have the lowest infection rates. 
 
By the end of the first term, 5,760 (3,940 – 7,430) out of 28,000 students, or 20% (14% – 26%), have 
been infected with 73 (47 – 100) symptomatic cases and 880 (610 – 1,110) asymptomatic cases 
infectious on the last day of term. Without additional control measures, 74% (72% – 75%) of students 
would be infected by the end of the academic year. The low rate of symptoms and low morbidity rate 
results in a median of zero deaths in the student population.  
 
The relative infectiousness of asymptomatic cases is central for determining the scale of a university-
based outbreak. In our framework, asymptomatic cases are either less or as infectious as symptomatic 
cases, however because asymptomatic cases do not self-isolate without a test, for higher values of 
relative infectiousness, 𝜀, asymptomatic cases produce on average more secondary cases than 
symptomatic cases (see SI figure S2). For lower values of 𝜀 university-focussed outbreaks are largely 
driven by the forcing from outside the university. For intermediate values, outbreaks peak after the 
first term. For high values, outbreaks peak before the end of the first term (figure S4) 
 
As a comparison to the baseline case, if asymptomatic cases are as infectious as symptomatic cases 
(𝑅2 = 3.4) then we expect an early growth rate of 0.12 (0.10 – 0.14) and a doubling time of 5.8 days 
(5 – 7 days). Without additional control measures, 96% (95% – 97%) of the student population would 
be infected by the end of the academic year. If asymptomatic cases are 30% as infectious as 
symptomatic cases (𝑅2 = 2.25) then we expect an early growth rate of 0.06 (0.04 – 0.09) and a 
doubling time of 12 days (8 – 17 days). Without additional control measures, 28% (20% – 35%) of 
the student population would be infected by the end of the academic year. The epidemic profiles for 
the full range of potential scenarios for asymptomatic infectiousness, which corresponds to 
reproduction numbers from 1.7 to 3.4 are shown in supplementary figure S4.  
 
University-based interventions that mitigate transmission 
We investigated multiple interventions that reduced the infection burden in the student population 
(figures 3c – f). The impact of implementing each intervention was explored in isolation and in 
combination with other measures. When layering interventions, we implemented lower cost 
interventions first, such as creating COVID-secure interactions with face coverings and 
social/physical distancing, and reserved mass testing of non-symptomatic students as a more resource-
intensive intervention.   
 
For realistic values of COVID security and 𝑅2 = 2.7, we find that reducing the transmission 
probability with COVID secure interactions has the potential to reduce, but not completely eliminate, 
the size of outbreaks (figure 3c). We estimate that by reducing transmission for non-household 
contacts by 25% the early doubling time is increased slightly to 11 (8 – 17) days. The percentage of 
students infected by the end of the first term is 10% (7% – 13%) and the number of symptomatic and 
asymptomatic students infectious on the last day of term is decreased to 35 (15 – 53) and 410 (270 – 
550) asymptomatic cases. Reducing transmission for non-household contacts by 50% increases the 
doubling time to 12 (9 – 17) days and further reduces the number of infectious students on the last day 
of term 15 (10 – 22) symptomatic cases and 200 (160 – 260) asymptomatic cases.   
 
Reducing the number of interactions made during face-to-face teaching from 20 to 15 other students 
increases the early doubling time to 10 (7 – 22) days and reduces the number of infected students at 
the end of the first term to 39 (19 – 60) symptomatic cases and 460 (320 – 620) (figure 3d). Reducing 
the number of face-to-face contacts from 20 to 5 other students was the single most impactful 
intervention investigated in terms of the number of students infected by the end of the first term and 
the number of infectious students on the last day of term, increasing doubling time to 14 (9 – 28) 
days, including scenarios in which the number of cases in the student population was driven to zero 
(figure 3d). The number of infected students at the end of the first term was 11 (4 – 20) symptomatic 
cases and 130 (80 – 200) asymptomatic cases.   
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Implemented without other measures, reducing the size of living circles (defined as the number of 
students that share bathroom/kitchen facilities) from 24 to 20 or 14 students was overall the least 
effective intervention investigated (figure 3e, supplementary information Table 2). However, when 
implemented on top of COVID secure interactions and reductions in face-to-face teaching, reducing 
living circles to 14 individuals does reduce the total percentage of students that are infected by the end 
of the first term by 25%.  
 
Mass testing all students regardless of symptoms was effective at reducing the total number of 
infections and the initial rate of epidemic growth rate, but reactive testing was required for the whole 
year (figure 3f). Compared to other interventions, mass testing was generally more effective for 
higher values of the reproduction number and resulted in the third lowest number of infected students 
by the end of the first term. However, for lower values of asymptomatic infectiousness, and hence 
lower values of the reproduction number, reducing face-to-face teaching, implementing COVID 
security and reduced living circles was more effective than testing all students (figure 3g).   
 
Testing all students primarily reduced the number of students with asymptomatic and pre-
symptomatic infections, reducing the ratio of asymptomatic to symptomatic cases to 9:1 (8:1 – 10:1). 
However, the reduction in infection from mass testing comes at a substantial cost in terms of the 
number of students self- isolating: under 2 day testing, at the height of the outbreak 1,300 (860-1,500) 
students (4.5%, 3% – 5%) were self-isolating compared to 520 (470 – 560) students (1.9%, 1.7% – 
2.0%) in the baseline scenario.  
 
Testing all students monthly had a minimal impact compared to not testing at all, reducing the 
average percentage of students infected during the outbreak by 1.3%. Increasing testing frequency to 
fortnightly, weekly or every 3 or 2 days was beneficial, and this was robust to parameter choice 
(supplementary figure S5).  
 
We found that implementing multiple, layered interventions was able to effectively control 
transmission in the student population (figure 4a-c). The remaining cases in students were largely due 
to importation of infection from outside the university setting: reducing the background rate of 
infection demonstrates that if imported infections could be managed then the number of infected 
students could be very low.   
 
Discussion 
Our results suggest that, under normal circumstances, COVID-19 would spread readily in a university 
setting. Our data-driven approach reveals natural heterogeneities in student mixing patterns that can 
be exploited to enhance disease control. We find that controlling transmission is possible with 
combinations of social distancing, online teaching, self-isolation, and potentially mass testing of 
students without symptoms.  
 
Our findings highlight the importance of monitoring first year students and halls of residence in 
particular. In our analysis, first year students experienced the highest rates of infection and dominate 
the early part of the outbreak due to the high levels of mixing in halls of residence. Halls of residence 
have been identified as a risk factor for the transmission of close contact infections including 
meningitis[17], mumps[18], norovirus[19], respiratory illnesses[20] and gastroenteritis[21]. In 
practice, students in larger residences are allocated into shared flats or living circles, potentially 
limiting widespread transmission. Maintaining social distancing between living circles within 
residences is paramount for maintaining COVID-19 control.  
 
Lessons about infection control in universities can be learnt from other diseases. Mass vaccination 
used for meningitis, mumps and rubella outbreaks is not an option for COVID-19 at present. During a 
mumps outbreak in a university hall of residence, Kay et al (2011) reported difficulty in identifying 
higher risk students[18]. Due to the high number of contacts and of students’ contact networks 
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inhabit, universities may wish to consider how they might facilitate the collation of data to expedite 
the contact tracing process. Embedding positive health behaviours like hand washing and using face 
coverings will also contribute to minimising transmission opportunities. A randomised control trial of 
hand washing in university residences found that installing alcohol hand sanitizer in every room, 
bathroom and dining hall reduced respiratory illness in students by 20%[20].  
 
Previous modelling work, based on universities in the United States, has focussed on the necessity of 
regularly testing all students[5]. While our findings are consistent that frequent testing is necessary if 
used in isolation, our modelling approach demonstrates that other interventions are viable. This is 
partly due to our result that suggests that the reproduction number would be lower than previous 
studies have assumed due to the high proportion of asymptomatic cases. Furthermore, as previous 
studies have discussed[5], when prevalence is low the false positive rate can exceed the true positive 
rate leading to unnecessary isolation of negative cases. We tried to mitigate false positive cases by 
implementing reactive mass testing once incidence increased; an alternative approach would be to use 
a second confirmatory test. Antibody testing could also play in role in determining prior infection and 
infection rates in student populations.  
 
Our work uses a similar compartmental modelling approach to the handful of models that have been 
developed for COVID-19 transmission in universities in the USA. A drawback of this approach is that 
individual behaviour is not readily captured; in particular, contact tracing and isolation of contacts or 
living circles is difficult to include in detail. We capture some heterogeneity using household and 
faculty mixing data, and a stochastic model was necessary due to the potentially small number of 
students in each subgroup. Nevertheless, a network modelling approach would be more appropriate 
for studying superspreading events and individual-level variation.  
 
Furthermore, while we had detailed data pertaining to the university student population, we had 
limited data on contact with the location population and we did not include university staff explicitly 
in the model. Given the age distribution of students, and the high likelihood of asymptomatic 
infection, staff and surrounding communities are likely to experience higher levels of morbidity than 
the students themselves. Although by-and-large students fraternise with students, they do pose some 
risk to more vulnerable groups within the university such as staff with co-morbidities, or to their local 
community. Safeguarding all is a high priority.  
 
The aim of this work was to characterise potential COVID-19 transmission patterns in a university 
setting and identify strategies that may prove more likely to control transmission. In the absence of 
university outbreak data, we used COVID-19 transmission parameters estimated from other settings. 
Once the university year starts, and should there be an outbreak, this type of modelling should be used 
to estimate parameters in real time and provide a more accurate tool for guiding interventions.  
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Figures 
 

 
 
Figure 1: a) Model flow diagram with infection states and rates between them.  
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Figure 2: The average number of students sharing accommodation by school (a) year 1; (b) year 2; 
(c) year 3; (d) for all years and schools.  

   
 

 
Figure 3: a) Epidemic trajectories for the total number of infected cases (symptomatic and 
asymptomatic cases) the baseline model from 100 realisations with best estimate parameters; b) 
Mean number of symptomatic cases by year group from 100 realisations; c) Epidemic trajectories 
when COVID security measures reduce transmission by 50% and 25%; d) Epidemic trajectories 
when face-to-face teaching is limited to 15 and 5 persons; e) Epidemic trajectories for reduced 
living circles to 20 and 14 persons; e) Epidemic trajectories when reactive mass testing is 
implemented every week and every 2 days. Dotted vertical lines denote the end of the first term. g) 
Ranking of interventions by mean number of symptomatic cases at the end of the first term from 
100 realisations for increasing values of asymptomatic infectiousness, and therefore also increasing 
values of the reproduction number. The colours correspond to the colours of the epidemic 
trajectories above.     
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Figure 4: Impact of implementing multiple interventions sequentially. a) Number of symptomatic 
cases; b) Number of infected (symptomatic and asymptomatic) students at the end of the first term 
(day 84); c) Number of students that are self-isolating.  
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