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Abstract 

 

Background 

Given the global public health importance of the COVID-19 pandemic, data comparisons that 

predict on-going infection and mortality trends across national, state and county-level 

administrative jurisdictions are vitally important.  We have designed a COVID-19 dashboard with 

the goal of providing concise sets of summarized data presentations to simplify interpretation of 

basic statistics and location-specific current and short-term future risks of infection. 

 

Methods 

We perform continuous collection and analyses of publicly available data accessible through the 

COVID-19 dashboard hosted at Johns Hopkins University (JHU github). Additionally, we utilize 

the accumulation of cases and deaths to provide dynamic 7-day short-term predictions on these 

outcomes across these national, state and county administrative levels. 

 

Findings 

COVID-19Predict produces 2,100 daily predictions [or calculations] on the state level (50 States 

x3 models x7 days x2 cases and deaths) and 131,964 (3,142 Counties x3 models x7 days x2 cases 

and deaths) on the county level.  To assess how robust our models have performed in making short-

term predictions over the course of the pandemic, we used available case data for all 50 U.S. states 

spanning the period January 20 - August 16 2020 in a retrospective analysis.  Results showed a 

3.7% to -0.2% mean error of deviation from the actual case predictions to date.  

 

Interpretation 

Our transparent methods and admin-level visualizations provide real-time data reporting and 

forecasts related to on-going COVID-19 transmission allowing viewers (individuals, health care 

providers, public health practitioners and policy makers) to develop their own perspectives and 

expectations regarding public life activity decisions. 

 
Funding 
Financial resources for this study have been provided by Case Western Reserve University.  
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Introduction 

The pandemic caused by the coronavirus SARS-CoV2, first described from an isolated outbreak 

in Wuhan, a city of 9.78 million people 1first reported in late December 2019, rapidly spread across 

the globe the genome sequence became available on January 10, 2020 2.  The first reported case 

of COVID-19 in the United States was on January 20, 2020, in Washington State 3. The disease 

caused by SARS-CoV-2, has since been termed Coronavirus Disease 2019 (COVID-19) by the 

WHO on February 11 4. As of September 9, 2020 more than 27.8 million cases and 898,426deaths 

have been confirmed worldwide resulting from COVID-19; the United States alone has 6.3 million 

confirmed infected and 189,718 deaths attributed to the disease.  A general assessment of the 

global trend of the COVID-19 pandemic, shows that it took 4 months to reach 1 million confirmed 

cases globally (1.03 M on April 2, 2020) and since then cases have increased by 1 million every 

6.16 days (since July 13 worldwide cases have advanced by 1 million every 3.93 days) 4.  

Importantly, significant heterogeneity is observed as incidence of new cases varies greatly across 

different geographic regions. Developing a tool to summarize region-specific changes in COVID-

19 cases and deaths is the basis for this study. 

In order to track SARS-CoV2 transmission, the Johns Hopkins University COVID-19 Dashboard 

first emerged with vital data on cases, deaths and recovery 5. Since then, many more web-based 

dashboards have appeared from investigative teams around the world emphasizing different 

perspectives and applying a variety of models to assess the epidemiology of this new disease 6-9 10. 

Results from these efforts have been, and continue to be, critically important in informing federal, 

state and local response regarding needed supportive facilities and appropriate/necessary 

equipment and disposable supplies (e.g. intensive care rooms, ventilators, personal protective 

equipment, nasal swabs, reagents for testing) to support a vast spectrum of COVID-19 medical 

outcomes 11. The data used by these dashboards and models have also been used to inform local 

and regional responses to COVID-19 transmission through recommendations on application of 

public health measures including social distancing, wearing masks, quarantine and lockdowns of 

businesses and institutions. 

Most of the early modelling forecasts focused on attempts to determine the basic reproductive 

number (Ro) and then project long-term (4-24 week) trends of the pandemic without substantial 

change in transmission. As has been observed, these models have been interpreted in a variety of 
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ways by the general public, national, state and local officials and that actual outcomes often deviate 

from the long-term predictions. Public health investigators fully expect that community responses 

to the COVID-19 pandemic will lead to differences between predicted and observed cases and 

deaths.  Furthermore, it is easy to predict that epidemiological outcomes will differ between states, 

counties, and between different sectors of communities.    

Our efforts to develop COVID-19Predict is in response 12 to turbulence in the representation of the 

available data across the pandemic timeline for national, state, and county administrative levels by 

adding an approach to make short-term predictions (7 days in advance) through a continuously, 

daily updating platform on each of these levels. Through this dynamic process we also examine 

relationships between testing, morbidity and mortality attributed to COVID-19.  In this way, 

COVID-19Predict may also contribute to unraveling questions pertaining to disease transmission 

and discovering unknown factors of this disease 13. At this time, we have restricted our focus to 

the United States, but our methods enable the same assessments and forecasts for all countries of 

the world depending on data availability.  We anticipate that regular use of the website will be 

helpful to the general public, clinical and public health care practitioners, and government officials 

charged with making public health decisions until a safe and effective vaccine emerges and is 

efficiently distributed to the global at-risk population. 

 

Methods 

Software and Data Access 

Our website is the product of two interacting software components: calculation service and the 

user interface. An Application Programming Interface (API) was created to integrate the 

calculation service and the user interface. Both components exist in an Amazon Web Services 

(AWS) environment. The calculation service runs at 12:00 AM UTC.  

Calculations are carried out based on the reported cases and reported deaths from the COVID-19 

data sourced from Johns Hopkins University Github. The timeline for the first data point is set to 

January 21, 2020, the first available data point from the JHU Github server 5.  

 

Statistical analysis of historical data 

All statistical analysis for this manuscript was carried out using GraphPad Prism 8.4.3. 
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Website navigation 

Upon arrival at COVID-19Predict, viewers are met with national (admin1) top-tier information.  

To navigate through COVID-19Predict, progress from top-left to top-right; bottom-left to bottom-

right - progressing from Counts to Map to Daily Course of the COVID-19 Pandemic to 

Accumulated Cases.  Each element on the website includes a detailed description by clicking on 

the “i-information” icon (i) (mobile phone) or by hovering the cursor over a state or county 

(computer). In the Map panel, the “Map Type” pull-down menu allows for selecting among seven 

different maps that summarize infection rate, apparent case fatality rate, incidence over the last 14 

days, total cases and deaths per 100K population, as well as total predicted cases and deaths per 

100K population in the approaching 7 days.  Hovering over any state displays the current state-

specific counts data – color coding within maps is presented in Table 1.  By clicking on any 

individual state viewers are directed to state (admin2) second-tier information.  There, all 4 panels 

of the display change to report the COVID-19 information for the selected state.  In the Map panel, 

the map of the state appears with all counties or parishes outlined.  Hovering the cursor over any 

county displays the county-specific counts (admin3) as well as the county-specific infection rate 

and apparent case fatality rate, incidence over the past 14 days, total cases and deaths per 100K 

population, and total predicted cases and deaths per 100K population in the approaching 7 days.  

To examine the data for a different state, click “Dashboard” at the top of the page to return to the 

national level (admin1). 

Daily Course of the COVID-19 Pandemic - Daily cases and deaths are shown graphically as color-

consistent flags display the case count (dark blue), death count (red) and date (white).  

Additionally, the infection rate (yellow) and apparent case fatality rate (magenta) are presented 

daily.  Sliding the diamonds along the bar above the graph allows the user to zoom in for closer 

examination of specific date ranges. 

Accumulated Cases – In addition to displaying the accumulated cases and deaths graphically, 

moving the cursor over the graph reveals color-consistent flags displaying the case count (dark 

blue), death count (red) and date (white).  At the right-hand end of the graph, predicted cases and 

deaths are shown for the next 7 days.  Users may zoom in for examination of specific date ranges 

as indicated above.  Clicking on the blue circle with the “-” sign opens the graph to cover the time 

since the first case was reported in the USA (January 21, 2020). 
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Data Analyses 

The following calculations generate the data summaries in the map layers and graphs shown in 

COVID-19Predict (presented in the Results and Discussion section). 

Infection Rate:  The infection rate (IR) is determined through a comparison of the confirmed 

COVID-19 cases across the current 10-day trend in the SARS-CoV2 infection rate. 

Infection Rate (IR) is determined by the following equation. 

 

IR = (incidence over last 5 days [-1 to -5]) / (incidence over the prior 5 days [-6 to -10]) 

 

Apparent Case Fatality Rate:  We calculate an apparent case fatality rate (aCFR) as the cumulative 

number of COVID-19 deaths per the reported, confirmed cases.  The aCFR (purple, right-hand Y-

axis, logarithmic scale) is displayed as a daily percentage. 

aCFR = (accumulating Deaths) / (accumulating Cases) 

Fourteen-day incidence (FDI) per 100,000: - assessments compare the Fourteen-day incidence 

rate per 100K, displaying changes over a larger time period. To compare state and county IRs, 

we have employed the cutoffs used by the European Center of Disease Control 14. 

 

FDI = [(Current total cases) - (total case count 14 days ago)] / Population size *100,000 

 

Weekly Incidence and Death Rates:  For the weekly incidence rate per 100,000 population for each 

calendar week the number of accumulated new cases is normalized to the population of a state or 

county. The weekly death rate calculation is computed per 100K population as well. Population 

sizes of states and counties were obtained from Worldometer and hardcoded into COVID-

19Predict /our website 15.  

 

Weekly Incidence Rate = (Number of Cases per Calendar Week) / (Population of State)*100,000 

 

Weekly Death Rate = (Number of Deaths per Calendar Week) / (Population of State)*100,000 
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Total Cases and Deaths per 100,000 - All cases and deaths are reported after normalizing to the 

current 2020 population (national, state, county) accessed through Worldometer 15. 

 

Predicted Cases and Deaths per 100,000 - The accumulated cases are used to make an exponential 

curve fit for the last five, seven, and ten days of data to provide an extrapolation for the near-term 

future. In a fluctuating environment of transmission, illness, and death, the five-day and ten-day 

fit provide an upper and lower level of confidence for the case and death predictions.  

 

Predicted cases and deaths normalized to the current 2020 population (national, state, county) 

accessed through Worldometer 15 were calculated by the following model. 

 

      y(t+1)=yt * ek*(t+1) 

. 

. 

      y(t+7)=yt * ek*(t+7) 

 

With t=0 on January 21, 2020 (t=232 September 8, 2020), yt and k are obtained from fitting either 

five, seven, or ten days of data to an exponential curve by least squares using the accumulated 

deaths over the period.  Case and death predictions are updated daily and provide estimates for one 

week into the future for each of the administrative levels evaluated.  
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Table 1. Legends underlying each of the seven map layers, summary counts and statistics 

 

 

Results and Discussion 

All information at the national level (admin1) is the cumulative state level (admin2) and county 

level (admin3) data Figure 1. These data are displayed on the landing page within four main 

elements – Counts, Map, Daily Course of the COVID-19 Pandemic, and Accumulated Cases. The 

map layers available at national and state levels are identical and quantitative information adjusts 

accordingly (i.e. from national to the specific state) when moving between administrative levels.  

State and county-level representations are shown at a lower tier in the website with state-specific 

graphs.  Quantitative summaries presented in the graph panels include daily cases, deaths, infection 

rate (IR) and apparent case fatality rate (aCFR) (lower left); and cumulative cases, deaths and 

predictive cases and deaths (next 7 days) (lower right).   
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Figure 1.  Landing page with key display elements.  The landing page summarizes multiple 
elements of the ongoing COVID-19 epidemic in the United States.   
 

Critical Evaluation of COVID-19 Epidemiological Data  

Reliability or precision of the IR (or similar measures by many other sources) is dependent on the 

level of testing performed within any individual state.  The Covid Tracking Project 

(https://covidtracking.com/) accumulates and describes this information on a state-by-state basis16.  

From this resource we learn that the number of tests performed varies according to each state (per 

capita tests from 0.102 to 0.638) and that across the United States, SARS-CoV-2 testing is 
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performed at just 62% of the rate recommended to achieve mitigation.  Additionally, enumeration 

of tests varies from (a) all tested samples counted, regardless of individuals being tested multiple 

times (6 states plus the District of Columbia); (b) all PCR tested samples counted regardless of 

multiple sampling (as in “a”) but corrected for antigen testing (34 states plus Puerto Rico); (c) only 

the first sample collected from a person counted - multiple samples excluded (9 states).  This brief 

summary suggests there are multiple indicators suggesting that COVID-19 testing is performed 

following a variety of protocols across the United States, unavoidably leading to inconsistencies.  

This suggests it may be difficult to compare the quantitative benchmarks for testing that 

epidemiologists use to characterize the novel coronavirus between and within states. 

 

Given a significant potential for uncertainty in these testing benchmarks, we reason that deaths 

attributed to COVID-19 (assessed through PCR testing, serology, multiple clinical markers and 

formalized protocol) may be more reliable than case/infection estimates 17-19.  We have therefore 

calculated the aCFR (magenta, right-hand Y-axis, logarithmic scale) as a proxy to monitor 

potential inaccuracies in estimating the number of infected individuals. Others have termed this to 

be a measure of the infection fatality rate (IFR) 20,21.  Both approaches emphasize that estimating 

the number of infected individuals is made very challenging for COVID-19 tracking because (1) 

the high number of SARS-CoV-2-infected individuals who are asymptomatic and do not get tested 

and (2) limitations to diagnostic testing.  Overall, we have observed a range in aCFR among the 

50 states from 0.718 to 8.45 and a range among the 3,142 counties from 0 to 83.6.  We interpret 

the ratio of the aCFR to represent a multiplier to more accurately predict the number of SARS-

CoV-2-infected individuals in an administrative level when compared with more broadly 

calculated CFRs (current CFRs calculated by the United States CDC = 0.68%, median 

international CFR - 0.27%) 20,22.  Therefore, if the current aCFR is 6.8%, this would be 10-fold 

higher than the CDC calculated CFR and 25.1-fold higher than the international CFR.  This may 

suggest that given 1,000 reported cases within the admin level the actual number of cases could be 

between 10,000 and 24,000.  Alternatively, a local aCFR that is higher than expected, could signal 

the emergence of new, more serious cases or indicate that a local health care delivery system was 

failing its patient population. 
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Further evaluation of the data, the analytical summaries, and the 7-day forecasting methods has 

been performed in developing COVID-19Predict to assess the variability of the predictions and 

observed outcomes (Figure 2, Supplemental Figures S1, Supplemental Table 1). To do so we 

performed identical calculations as outlined previously for five, seven, and ten day intervals 

moving forward one day at a time starting five, seven or ten days after the first case was reported 

in all states through August 2020. Results of this analysis presented in Figure 2A show that the 

percent difference between the observed data and 7-day prediction outcomes decreased 

significantly from the 5-day to 10-day approaches (3.7% for 5-day; 1.1% for 7-day; -0.2% for 10-

day data). The same data are shown in Figure 2B for all states corresponding to the state’s 

population size; inset graph indicates the range in the number of observation days since the 

beginning of the COVID-19 epidemic in the United States (mean days = 162.2).  The assessment 

in Figure 2B also suggests that while smaller states may show greater variability in predicting 

SARS-CoV-2 infection trends, the 7-day predictions and data comparisons have also varied for 

some larger states.    

 
Figure 2.  Assessment of 7-day prediction model over the course of the pandemic. A) The graph shows 
the mean percent difference between actual and predicted cases per state using either five (red), seven 
(magenta) and ten (black) days to predict 7 days into the future. B) The graph displays the percentage 
difference between prediction and actual case count versus the population for all 50 US states. The inset 
shows the number of predicted days per state plotted (mean = 162.2), with Washington (first state where 
COVID-19 was reported) having the highest number of days (n=202) and West Virginia (last state where 
COVID-19 was reported) with the lowest number of days (n=147). Statistical analysis was performed using 
GraphPad Prism. 
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Comparisons Among COVID-19Predict Map Layers 

Further assessments of the predictive value of the daily infection data to predict the approaching 

trend of COVID-19 cases are presented for each state in Supplemental Figure S1, Supplemental 

Table 1.  Overall, it is consistently observed that the largest discrepancies (between observed and 

predicted cases) were at the beginning of the pandemic when few cases were present.  

Supplemental Table 1 reports that the average percentage difference between observed and 

predicted case counts was 3.69% using 5-day prior data (range of lower and upper 95% CI of the 

mean: 0.46 to 10.03%), 1.06% using 7-day prior data (range of lower and upper 95% CI of the 

mean: -0.55 to 2.31%) and -0.19% using 10-day prior data (range of lower and upper 95% CI of 

the mean: -0.55 to 0.60%). Overall the accuracy increases when more days are used to fit the 

exponential growth curve.  This held true irrespective of the state population size as observed in 

California (largest population size of 39.9 million; predictions based on 5-day = 2.54% mean 

difference, 7-day = 0.8%, 10-day = 0.14%) and in Wyoming (smallest population size of 567,025; 

predictions based on 5-day = 6.64% mean difference, 7-day = 1.67%, 10-day- -0.29%).  Therefore, 

while there are many differences in the way COVID-19 is diagnosed across the United States (as 

discussed above), the trends analyzed are shown to lead to reproducible predictions of on-going 

COVID-19 infection. 
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Figure 3. Covid19Predict Map layers. A) Infection 
Rate (IR), calculated over the past ten days.  B) The 
apparent Case Fatality Rate (aCFR) calculated over the 
whole period of the pandemic. C) Fourteen-day incidence 
(FDI) rate. D) Cases per 100K. E) Deaths per 100K. F) The 
7-day prediction of cases is visualized per 100K population. 
G) The 7-day prediction of deaths is visualized per 100K 
population.  Legends to interpret quantitative differences 
across counties are provided below each map and are 
consistent with Table 1. 
 

Map layers displayed in Figure 3 present multiple 

facets of infections and deaths attributed to COVID-19 

including current characteristics (3A to 3C; IR, aCFR 

and FDI per 100,000, respectively), cumulative 

characteristics (3D and 3E; total cases and total deaths 

per 100,000, respectively) and predicted 

characteristics, 7 days into the future (3F and 3G; 

predicted cases and total deaths per 100,000, 

respectively); map types and order are identical for 

national and state maps.  The state IR map provides 

insight into how local county transmission is 

contributing to the state outcome.  Further, the aCFR 

map allows an assessment of the potential severity of 

disease, stress on the local health care system, and/or 

the level of under-testing in a county.  For example, 

when a county shows a decrease in the IR but the aCFR 

is high, this comparison would suggest caution and that 

the actual number of cases in the county is likely to be 

higher by the aCFR multiplier.  Map layers 3C to 3G are presented per capita to facilitate 

comparisons between counties or states based.  The FDI/100,000 and Total Cases/100,000 offer 

broader perspectives on COVID-19 incidence over longer time-frames providing additional points 

of references for comparison with the more rapidly changing IR, with the FDI/100,000 providing 

an intermediate perspective (Figures 3C and 3D). This intermediate perspective is useful given 

that the Total Cases/100,000 categorical coloration (introduced by the Robert Koch Institute 
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(Berlin) and used in European countries) is over 800/100,000 in 2,210 of the 3,142 U.S. counties 

(68.5%). Where overall incidence is lower, similarities between these measures are observed, as 

in western Ohio.  Additionally, these comparisons can reveal areas where notable decreases in 

COVID-19 incidence has occurred (e.g. Mid-Hudson, New York City and Long Island regions). 

The comparisons in total cases and deaths per 100,000 clearly show the accumulation of disease 

burden across the United States (Figures 3D and 3E). However, accumulation of cases beyond 

800/100,000 is not highly correlated with deaths per 100,000. Finally, the comparisons between 

predicted cases and deaths per 100,000 provides a perspective on where pending stress to local 

health systems is most likely to be observed (Figures 3F and 3G).  These predictions may be 

particularly important to rural communities in which resources to provide medical care and 

treatment are limited and public health programs have been impacted through decreased funding.  

 

Dynamic Changes in COVID-19 IR 

In calculating the IR, a 5-day interval was chosen as the average person-to-person transmission 

time for SARS-CoV2 is 5.2 days 23. On the county level if less than 100 cases per 5-day interval 

are reported, the infection rate becomes less accurate. Since the IR is back-calculated, the last IR 

is displayed 5 days prior to the current date (yellow, right-hand Y-axis, logarithmic scale). The 

infection rate is not to be confused with the basic reproduction number R0, which describes how 

many resulting infections a single carrier can cause (current best estimate provided by the CDC 

for the USA COVID-19 R0 = 2.5) 24.  Variability in the IR from state-to-state is reflected in the 

varying color pattern in the national map and from county-to-county in the state maps.  These 

patterns capture the dynamic nature of COVID-19 incidence across the different administrative 

levels.  Across all geographic landscapes the goal of this predictive model is to assist the public in 

reducing the IR below rates where every single infection is predicted to lead to infection of one or 

more uninfected individuals. Therefore, the green and yellow IR categories are the more positive 

indicators that SARS-CoV-2 transmission is being constrained by public health measures, while 

the orange and red categories indicate that transmission is expanding the number of infected 

people. 

 

A demonstration of the dynamic variation in IR is provided below in Figure 4.  The states of 

California, Connecticut, Ohio and Vermont have been selected to show the daily change in IR 
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across counties within the states and the impact these local dynamics have on the state IRs in the 

national map between August 16, 2020 to August 22, 2020 (Top to bottom).  During this time, 

California decreased the number of counties with increasing IRs (red and orange) from 43 of 58 

(74.1%) to 21 of 58 (36.2%), transitioning state-wide from red (>1.25) to yellow (<1.0). 

Connecticut transitioned from red to yellow and back to red across this time, as 7 of 8 (87.5%) 

counties experienced increasing transmission at the beginning of the time period, 6 of 8 (75%) 

experienced decreasing transmission in the middle and there were equal numbers of counties with 

increasing and decreasing transmission 4 of 8 (50.0%) as of August 22. Across Ohio (transitioned 

from orange to yellow (6 of 7 days), the majority of the state’s 88 counties showed evidence of 

decreasing transmission (54.5% to 70.5%). This observation window occurred at the end of a 

significant reduction in SARS-CoV-2 transmission from just after the July 4th holiday (daily cases 

= 1,378) through August 10th (daily cases = 613).  While the majority of the counties in Vermont 

consistently showed evidence of decreasing transmission, Burlington (the state’s most populous 

city and having the greatest number of COVID-19 cases) resides in Chittenden county (only red 

county in 6 of 7 time points).  As a result, Vermont was consistently shown to have an increasing 

IR until Chittenden transitioned to yellow on August 22.   

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 11, 2020. ; https://doi.org/10.1101/2020.09.09.20191593doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.09.20191593
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

 
Figure 4. Longitudinal observations of COVID-19 incidence for states with varying infection and 
mortality rates. Accumulating data as of September 6, 2020 in selected states cover the spectrum of 
COVID-19 cases, deaths, infection rates and apparent Case Fatality Rates (California (CA) = 736,209 cases, 
13,709 deaths, IR = 0.903%, aCFR = 1.9%; Connecticut (CT) = 53,356 cases, 4,468 deaths, IR = 1.108%, 
aCFR = 8.9%; Ohio (OH) = 129,785 cases, 4,256 deaths, IR = 1.117%, aCFR = 3.3%; Vermont (VT) = 
1,647 cases, 58 deaths, IR = 0.977%, aCFR = 3.5%.  
 

 

Conclusion 

Using publicly available data from the JHU Github 5, we developed COVID-19Predict as a tool to 

guide interested users through the continuing SARS-CoV-2 pandemic. The daily predictions made 

by COVID-19Predict down to the county level provide useful insights with respect to potential 

risks for infection and help guide individuals’ activities and community planning.  Retrospective 

assessments make it easy to observe how increased social behaviors around the Memorial Day and 

July 4th holidays contributed to increased infection, followed by increased deaths in many parts 

of the country.  With the reopening of schools across the country, further dynamic changes 
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presented by COVID-19Predict can be expected to detect increases in local transmission.  At the 

launch of this website we have focused on making our predictions at the county, state and national 

level for the United States. Given the ever-changing dynamics of the pandemic and that country-

to-country and continent-to-continent travel and commerce are influencing and influenced by 

continuing outbreaks, we are in the process of expanding the analyses performed here to all 

countries where data is available.  This perspective will help facilitate learning what measures have 

helped to constrain COVID-19 and how these public health strategies can begin to reduce the 

public health threat of this disease. 

 

Limitations 

COVID-19Predict relies on the data reported by hospitals to the JHU server to be an accurate 

representation of the current status of SARS-CoV-2 transmission and COVID-19 morbidity and 

mortality.  If there are disruptions to the availability of this data, the presentations provided in 

COVID-19Predict and many other COVID-19 dashboards will be compromised. 
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