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Abstract 
 
Background: Several adolescent health behaviors have been hypothesized to improve academic performance 

via their beneficial impact on cognitive control and functional aspects of the prefrontal cortex (PFC).  

Specifically, exercise, restorative sleep, and proper diet are thought to improve PFC function, while substance 

abuse is thought to reduce it. Few studies have examined the relationships among all of these in the same 

sample, while quantifying downstream impacts on academic performance.   

Objective: The primary objective of this study is to examine the association between lifestyle behaviors and 

academic performance in a sample of adolescents, and to examine the extent to which activity within the PFC 

and behavioural indices of inhibition may mediate this relationship.  

Methods: Sixty-seven adolescents underwent two study sessions five days apart. Sleep and physical activity 

were measured using wrist-mounted accelerometry; eating habits, substance use and academic achievement 

were measured by self-report.  Prefrontal function was quantified by performance on the Multi-Source 

Interference Task (MSIT), and task-related brain activity via functional near-infrared spectroscopy (fNIRS).   

Results: Higher levels of accelerometer-assessed physical activity predicted higher MSIT accuracy scores (β= 

.321, ρ= 0.019) as well as greater task-related increases in activation within the right dlPFC (β=.008, SE= .004, ρ 

=.0322). Frequency of fast-food consumption and substance use were both negatively associated with MSIT 

accuracy scores (β= -.307, ρ= .023) and Math grades (�= -3.702, ��= 1.563, ρ= .022) respectively. However, 

these effects were not mediated by indicators of PFC function. 

Conclusion: Physical activity and eating behaviors predicted better interference task performance in 

adolescents, with the former mediated by greater task-related increases in right dlPFC activation. Substance 

use predicted worse Math grades, however, no other reliable effects of health behaviors on academic 

outcomes were evident. 
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1.0 Introduction 
 
 Strong academic performance depends partially on focused attention, working memory, and 

planfulness, all of which are partially supported by the lateral and medial subregions of the prefrontal cortex 

(PFC). Longitudinal (1,2) as well as cross-sectional (3,4) studies have found reliable but modest associations 

between behavioural measures of these functions and academic performance (5). Health behaviors—including 

sleep, eating, substance use and physical activity—may all impact the brain in a manner that could affect 

academic performance among adolescents. 

 A recent meta-analysis found that sleep restriction has a significant and moderate negative effect on 

cognitive performance across the lifespan (6). These findings are also supported by imaging studies examining 

indicators of functional connectivity (7,8). Likewise a high calorie, low nutrient diet has been shown to 

negatively impact performance on executive function tasks  (9,10). Among adolescent girls, a higher Body 

Mass Index (BMI) correlates with greater impulsivity in response to inhibition tasks as well as reduced 

activation in the superior frontal gyrus, middle frontal gyrus, ventrolateral prefrontal cortex (PFC), medial PFC 

(mPFC), and orbitofrontal cortex (OFC; 11). Likewise, there is evidence that substance use and substance use 

disorders can also be detrimental to brain regions implicated in executive functioning among adolescents. 

Executive functioning has been shown to  be weaker among habitual users of cocaine, amphetamines, 

cannabis, tobacco and alcohol (12). In addition, youth with a history of alcohol and cannabis use demonstrate 

less activation in the inferior frontal cortex, but enhanced mPFC response when completing a working memory 

task (13). The deleterious effects of substance use can potentially persist into early adulthood. When followed 

for a period of ten years, young adults with a history of alcohol use disorder or a substance use disorder 

demonstrated poorer performance on verbal and visual learning and memory tasks as well as reduced 
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executive functioning compared to non-users (14). As such, sleep restriction, a poor diet and substance use 

have all been shown to detrimentally impact academic performance in adolescents (13,15,16). Because each 

of these lifestyle behaviours have been shown to have a negative relationship with indicators of executive 

function (e.g., task performance and cortical network engagement), it is plausible to believe that the 

relationship between each factor and academic achievement may be mediated (in part) through the brain.  

 In contrast to the apparent adverse effects of the above mentioned health behaviours, both acute and 

regular physical activity have been shown to enhance some parameters of PFC function and improve task 

performance on cognitive tasks that tap executive control (17–19). Physical activity training programs have 

improved the functional and cognitive capacity of older adults (20–22), and these effects appear especially 

important for brain regions supporting executive control and memory (17,21,23–25). Brain health benefits of 

physical activity may be present throughout the lifespan, and yet, especially important for adolescents whom 

may rely on such functions in the academic sphere (17,18,26–28).  While the precise pathway through which 

physical activity influences brain health remains unclear, it is generally thought to increase the production of 

growth factors critical for synaptic plasticity, angiogenesis and the development of new neuronal architecture, 

and changes in cerebrovascular dynamics (17). In adolescents, systematic reviews and meta-analyses on the 

effects of physical activity on executive functions have found net positive effects (29–33) with acute aerobic 

exercise and in the moderate to vigorous range producing the strongest benefits (31–33).  

There is also evidence to support a relationship between greater levels of physical activity and adaptive 

brain activation during cognitive task performance. A recent study investigating the effects of acute physical 

activity on the cognitive function of older adults found significantly greater activation in the right and left 

dorsolateral PFC (dlPFC) post-exercise session during an interference task (22). Although there are very few 

studies that investigate this topic in children or adolescents, it appears that there is a reliable difference 
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between higher- and lower-fit children. Higher-fit children have been shown to exhibit superior performance 

on executive performance tasks as well as increased activity in the fronto-parietal regions of the brain 

(23,34,35). Given the rapid neural development in adolescence, the perceived cognitive benefits of physical 

activity, both in terms of performance on executive function tasks and through enhanced brain activation, 

during this critical period may be especially important for the progression of a healthy neurocognitive 

structure and function into adulthood(36).  

Furthermore, the cognitive benefits of exercise could positively impact academic achievement. This 

“brain benefit” hypothesis postulates that the cognitive enhancements within the PFC could translate into 

improved academic performance because achievement in school in part relies on executive functions. 

Currently, the wealth of evidence in support of the relationship between physical activity and academic 

achievement suggests a null to weak association between the two variables. Systematic and meta-analytic 

reviews of the literature have shown variable results ranging from null to small positive effects of physical 

activity interventions (both acute and long-term) on academic performance (29,33,37–41). However, among 

the studies reviewed there is a large degree of heterogeneity in intervention components assessed, a high 

degree of variability in the quality of the study designs, and a limited number of studies with sufficient power 

(29,38,40). More problematic is the inability to achieve blinding (single or double) when assessing physical 

activity interventions. This also applies to studies involving exercise effects on the brain, which can lead to 

expectancy effects and therefore an over-estimation of a brain health benefit (in both cognitive testing and 

functional imaging). In addition, very few randomized trials exist that examine the brain health benefits of 

exercise in children, and the few that are present have mixed results (23,42). It is possible that over-

estimations cloud the true effect of physical activity on the brain, and that the cognitive enhancements of 
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physical activity are not potent enough to influence academic achievement in adolescents. Therefore, further 

investigations into the mediating role of the brain are warranted. 

In contrast to the “brain benefit” hypothesis, the removal of physical activity from school curriculums 

decades ago across North America was often rationalized based on an assumption that physical activity 

programming competes for time with academic subjects. This perspective posited a negative effect of physical 

activity on academic performance based on time competition between the two. The “brain-benefit” and 

“time-competition” perspectives pertaining to physical activity and academic performance suggest a 

significant relationship, but in opposite directions. It could be that the variation in results from the current 

body of literature on the topic stems from competition between the two hypotheses. However, if both 

hypotheses exist, the stronger of the two will determine the net effects (net benefit or net cost). Further 

research must be done in order to distinguish between the brain benefit and time competition hypotheses.  

The emergence of new portable brain imaging technologies—particularly functional Near-Infrared 

Spectroscopy (fNIRS)—may prove to be more logistically feasible for many types of research studies involving 

the brain and development and when field settings are required for data collection(43,44). This technology is 

comparable to functional Magnetic Resonance Imaging (fMRI) in that it measures blood oxygenation 

parameters for inferring neuronal activity within brain regions (45). Although it has inferior spatial resolution 

to fMRI, it has better spatial resolution than Electroencephalograms (EEG; 43,44). fNIRS also is less subject to 

motion artifacts than both EEG and fMRI (46,47) and its portability allows for it to be deployed in field settings 

more flexibly than any other brain imaging option currently available such as individuals walking outdoors 

(48), or pilots flying an aircraft (49). Therefore, this technology provides an opportunity to investigate brain 

activity in a sample of adolescents in a field setting.  
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 The current study examines the relationship between adolescent health behaviours and academic 

performance as mediated by the brain. Physical activity and sleep hours were assessed using accelerometers, 

while the other health behaviours (i.e. substance use, fast-food consumption) and academic performance 

were measured via self-report. The brain health parameters consist of fNIRS measurements of task-related 

functional activation patterns within subregions of the PFC as well as cognitive interference task performance. 

It is hypothesized that higher levels of physical activity and greater sleep hours, in addition to less frequent 

substance use and fast-food consumption will all be associated with greater academic performance, and that 

this association will be mediated by the brain health parameters.  

2.0 Material and Methods  

2.1 Participants and Setting  

 A sample of 67 adolescent high school students between the ages of 13-18, were recruited for this 

study. Participants were recruited from one public and three private high schools located in small to medium-

sized urban areas. Principals, teachers and/or key members of administration disseminated information and 

consent materials to the student body. Those students who wished to participate returned their signed 

consent forms to the administration helping to facilitate the study, or to the student researcher upon the first 

study session. Demographic features of the sample are presented in Table 1. 

2.2 Procedure 

 The current study was a 5-day prospective observational study with two on-site data collection visits. 

During each visit, an open period was held during school hours where students could drop in and participate 

on their own time. This was necessary in order to ensure that data collection took place during free periods 

and did not impact class time, and that students could participate on-site with minimal inconvenience.  
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During the first session, students underwent an assent procedure upon presentation of their signed 

parental consent form. Next a questionnaire consisting of 6 questions pertaining to demographic information 

(age and gender), eating behaviours, substance use and academic performance was completed. To measure 

academic performance, participants were asked to report their past years (2018-2019) English and Math 

grades in percentages. Finally, students were fitted with the fNIRS headband while a cognitive interference 

task (Multi-Source Interference Task; MSIT; 45) was performed. In total, this first session took approximately 

20 minutes per student. Upon completion of the cognitive task, students were given a Fitbit Inspire watch, 

oriented to its correct usage, and instructed to wear it consistently until the second data-collection period 5 

days later.  

 The second period took place on the following Friday. During this session, students were asked to 

return their Fitbit and indicate any instances (day, time and duration) when the watch was removed during 

the period since the first session.  

2.3 Demographics, health behaviours, and academic performance 

 Participants were asked to report their age and gender. In addition, students were asked “how many 

times have you eaten “fast-food” (e.g. McDonalds, Burger King, etc.) in past week?” as a measure of calorically 

dense food consumption. Participants were also be asked “how many times have you experimented in the 

past month with substances (e.g., alcohol, cannabis, other)?”and responded using a scale ranging from 0,1-2, 

3-5, 6+. To measure academic performance, students were asked “What was the final grade that you received 

last year (2018-2019) in Math class?” and “What was the final grade that you received last year (2018-2019) in 

English class?” Students were then able to indicate their English and Math grade in percentage.  
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2.4 Multi-Source Interference Task  

 Participants completed the MSIT as a measure of response inhibition (66,67). For this task, each trial 

consisted of three numbers that were horizontally aligned in the centre of a black computer screen in bold 

white 50pt font. A “+” sign was presented between trials and in the centre of the screen during a 1.75s inter-

trial interval. The numbers corresponded to the “1, 2 and 3” numbered computer keys, and participants were 

instructed to indicate the unique number in the triplet by pressing the corresponding key using their dominant 

hand.  

Control and interference trials differed by the type of distractor used as well as the position of the 

target numbers in relation to their location on the keyboard. In control trials, the target number always 

matched their location on the keyboard, and the distractors were never used as targets. During interference 

trials, the target number never matched its position on the keyboard and the distractors were also targets. 

During the initial orientation to the MSIT task, participants were asked to respond as quickly and accurately as 

possible in response to each number stimulus. A 1.5 -minute practice trial of 48 trials initiated the task (50,51). 

Participants then completed 4 blocks of 24 control and interference trials for a total of 96 trials of each type. 

There was a fixed order of trials within each block, but blocks were counterbalanced between participants (i.e. 

either CICICICI or ICICICIC). A 30 second rest period with a fixation cross was included at the beginning of the 

first block and at the end of the last block (50,51). 

2.5 Functional Near-Infrared Spectroscopy 

fNIRS is an optical neuroimaging technique which non-invasively measures activation of the cortex 

using near-infrared (NIR) light (46,47). In order to measure regional activation, fNIRS relies on metabolic 

related increases local arteriolar vasodilation, which in turn produces an increases in oxygenated hemoglobin 

(OxyHb) as well as a (slightly time lagged) relative decrease in deoxygenated hemoglobin (DeoxyHb; 43). 
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Because hemoglobin is the main chromophore that absorbs NIR light and does so differently when oxygenated 

(>800nm) versus deoxygenated (<800nm), fNIRS can utilize the spectroscopic features of hemoglobin in order 

to infer regional brain activation (46). 

For this study, 16-prefrontal cortical regions were monitored using fNIR Devices 203C imaging system 

during the MSIT task. The system collected data at 10Hz sampling rate for both 730nm and 850nm as well as 

ambient light intensity and two additional short distance channels. The dependent variable was the change in 

OxyHb between MSIT control and interference trials in each target area from 2 seconds to 8 seconds and 

relative to baseline. A rest period for 20 seconds preceded measurements. Four regions of interests (ROI) were 

identified, corresponding to conceptually important subregions of the prefrontal cortex. Channels 3,4 and 6 

make up the left dlPFC (L-dlPFC); 13,14 and 15 the right dlPFC (R-dlPFC); 7,8 the left mPFC (L-mPFC) and 9,10 

the right mPFC (R-mPFC). Raw light intensities in the 730 nm  and 850 nm wavelengths as well as ambient light 

intensities  were recorded using the COBI Studio software (52) . Each participant’s data was checked for any 

potential saturation (when light intensity at the detector was higher than the analog-to-digital converter limit) 

and motion artifact contamination by means of a coefficient of variation based assessment, sliding window 

motion artifact rejection (53). A low-pass finite impulse response filter with an order of 100 and cut-off 

frequency of 0.1Hz was designed using Hamming window and was subsequently applied to the light intensity 

measures to attenuate high frequency noise and physiological nuisance signals (i.e. heartbeat, respiration). 

Using the modified Beer-Lambert law, raw light intensities were then converted into OxyHb and DeoxyHb 

concentrations (54).  fNIRS data for eight training blocks (4 control and 4 interference) of 42 seconds were 

extracted using based on synchronization markers. The hemodynamic response at each optode was baseline 

corrected using the linear subtraction of the signal level at the beginning of each trial block, and finally 
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averaged across time for each trial block to provide a mean hemodynamic response at each channel for each 

block.  

2.6 Accelerometry 

 At the conclusion of the first 20-minute session, each participant was provided a Fitbit Inspire watch to 

wear until the second session on the following Friday. Each Fitbit watch was embedded with an triaxial 

accelerometery sensor that measured linear acceleration along three orthogonal axes (X, Y and Z) and can 

detect movement including gravity (55). The accelerometry sensor was used to determine active minutes and 

sleep hours. Students were instructed to wear the Fitbit consistently Monday to Friday, day and night. Each 

Fitbit Inspire watch was linked to a Fitbit account so that physical activity and sleep data could be accessed 

remotely and recorded. The Fitbits were synced using the Fitbit app once during the first and last sessions. 

During the final session, students were asked to drop in and return their Fitbit watch and specify whether or 

not the watch was removed during the week using a weekly calendar.   

2.7 Statistical analysis  
 
 All statistical analyses were conducted using SPSS. The Explore subcommand in SPSS was used to 

generate Boxplots and distributional statistics; together these were employed to assess skewness and kurtosis 

for each individual variable, and to any extreme outliers that may be present. One extreme outlier was 

removed from the fast-food consumption variable and three extreme outliers were removed from the % 

correct MSIT responses variable. English grades, the % correct MSIT responses, the mean MSIT RT and MSIT 

SD, were subjected to winsorization.  

To calculate the fNIRS indicators of oxygenation in each ROI the mean change in OxyHb was calculated for 

the interference and control blocks of the MSIT separately and for each channel. These mean values of 
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oxygenation were then transformed into Z scores and the mean of the Z scores were calculated for all 

channels making up each ROI. All ROI aggregates were then subjected to winsorization.  

Hierarchical linear regression models were employed in order to examine the relationship between each 

lifestyle behavior (i.e., physical activity, sleep hours, fast-food consumption frequency and substance use 

frequency) and MSIT performance (% correct responses) while controlling for age. The PROCESS macro was 

utilized run moderated regression analyses in order to examine the moderating effect of gender and BMI on 

the above models (i.e., all lifestyle factors and MSIT % correct responses). Multiple mediation models were 

then utilized to assess the potential mediating effect of the brain health parameters (MSIT indicators, fNIRS 

ROI oxygenation) while controlling for the % correct responses. Final conditional process models assessed 

whether the above multiple mediation models differed based on gender, age or BMI. An estimate of BMI was 

calculated by the Fitbit watches upon the first day of wear, and relied on physical characteristics (year of birth, 

height, weight, sex) supplied by the participants.  

3.0 Results 

Initial predictive models were fitted using multi-level modelling of within-person effects pertaining to 

trials within blocks and blocks within task. Modelling these nested effects did not significantly improve model 

fit, and so the primary analyses presented below utilized data averaged across trials and blocks of the same 

type. This enabled the use of multiple mediation models, using an ordinary least squares regression approach, 

which forms the primary analytic approach in the sections below. Given the focus of the study on executive 

control and evaluative processes, our functional imaging analyses were primarily focussed on oxygenated 

hemoglobin levels in interference blocks.  During signal processing, each individual task trial was divided into a 
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2 second baseline and 8 second sampling epoch, and so OxyHb levels described below represent average 

changes (increases normally) in OxyHb from each of these local baselines during each individual task trial.   

Initial analyses show lifestyle behaviors as predictors of interference task performance (% correct MSIT 

responses). These are followed by multiple mediation models testing simultaneous mediational effects of a 

given target behavior (e.g., activity, sleep, etc.) on an academic performance outcome (e.g., Math grades or 

English grades) through all brain primary health parameters (e.g., MSIT reaction mean reaction times; MSIT 

reaction time variability; fNIRS parameters), while controlling for MSIT task performance. Subsequent 

conditional processed models explored the extent to which the multiple mediation models were moderated 

by age, gender and BMI. fNIRS channels were combined into neuroanatomically relevant ROIs, corresponding 

to the L-dlPFC, R-dlPFC, L-mPFC, and R-mPFC. All multiple mediation and conditional process models focussed 

on these four regions of interest. 

3.1 Lifestyle predictors of interference task performance 
 

Means and standard deviations (SD), as well as N and % for categorical variables, for all sample 

characteristics and primary study variables are presented in Table 1. The majority of students were aged 16-17 

(61.2%) and Male (59.7%). 

Table 1. Mean and SDs for the study characteristics 

Variable N % 

Gender  

   Female 

   Male 

 

26.000 

40.000 

 

38.800 

59.700 

Age 

   13 

   14 

 

2.000 

13.000 

 

3.000 

19.400 
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   15  

   16  

   17  

   18  

6.000 

15.000 

26.000 

5.000 

9.000 

22.400 

38.800 

7.500 

Substance use (times in past 

month  

   0 times 

   1-2 times  

   3-5 times  

   6+ times   

 

 

46.000 

10.000 

1.000 

10.000 

 

 

68.700 

14.900 

1.500 

14.900 

Variable  Mean  SD  

Fast-food consumption 

(times in past week) 

1.909 1.444 

Grades (%)   

   English 80.910 9.569 

   Math  79.300 12.076 

Average sleep hours  7.162 1.046 

Average steps counts  8914.279 3451.436 

Average active minutes  32.391 28.456 

MSIT % correct responses  0.883 0.056 

 

To examine the extent to which MSIT performance was predicted by each target lifestyle behavior, 

behavior-specific regressions were run using age as a covariate and each lifestyle behavior as a predictor. 

Findings are presented in Figure 1. Both fast-food consumption and accelerometer-assessed active minutes 

were significant predictors of MSIT performance. Specifically, more average daily minutes of accelerometer-

assessed physical activity predicted greater % correct MSIT responses (�= .321, �= .019); likewise, less 

frequent fast-food consumption in the previous week predicted significantly greater % correct MSIT responses 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.08.20190835doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.08.20190835
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

15

(�= -.307, �= .023).  A reduced model predicting MSIT performance was created containing only average 

active minutes and fast-food consumption. This reduced model accounted for 24% of the variability in MSIT 

performance (∆R
2
= .244, � < .001). In the reduced model, higher average daily minutes of accelerometer-

assessed physical activity predicted greater % correct MSIT responses (�=.382, �= .004). Likewise, less 

frequent fast-food consumption in the past week predicted significantly higher % correct MSIT responses (�= -

.429, �= .001).
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Figure 1. Lifestyle behaviors predicting MSIT performance, controlling for age 
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To determine whether the strength of association between each predictor and MIST performance 

differed for male and female participants, moderated regression analyses were performed separately for each 

target behavior. Gender was a significant moderator of the relationship between active minutes and MSIT 

performance (∆R
2
= .077, F= 4.939 (1, 54), � =.031), such that active minutes had a significant effect on MSIT 

performance for females (� = 1.018, SE= .412, �= .017) but not for males (� =.041, SE= .155, �=.793). The 

corresponding effect sizes were .061 for males and .384 for females (Figure 2). Gender was not a significant 

moderator of the relationship between fast-food consumption and MSIT performance (∆R
2
= .011, F=.699 (1, 

59), � =.407). There was also no significant moderating effect of gender on the relationship between sleep 

(∆R
2
= .043, F= 2.194 (1, 47), � =.145) or substance use (∆R

2
=  .000, F=  .010 (1, 59), � =  .919) and MSIT 

performance. 

Figure 2. Effect sizes for average active minutes predicting MSIT performance (% correct) 
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Additional moderated regression analyses were performed to determine whether the strength of 

association between each predictor and MIST performance differed by body composition (quantified by BMI). 

BMI was calculated using percentile-based age and gender-specific cut-offs recommended by Centers for 

Disease Control and Prevention for children and adolescents (56). Results indicated that BMI was indeed a 

significant moderator of the relationship between substance use and MSIT performance (∆R
2
= .127, F= 8.916 

(1, 59), � =.004). The corresponding effect sizes were .119 for those for those whose BMI fell within the obese 

range and -.095 for non-obese (Figure 3). BMI was not a significant moderator of the relationship between 

active minutes (∆R
2
=  .008, F= .492 (1, 55), � =.486), fast-food consumption (∆R

2
= .019, F= 1.171 (1, 58), � 

=.284), or average sleep hours (∆R
2
= .027, F=  1.384 (1, 48), � =.245) and MSIT performance.  

Figure 3. Effect sizes for substance use predicting MSIT performance (% correct) 

 

Note. Age and gender-specific cut-offs were employed to define obesity categories as recommended by CDC 

(56). 

-0.543

0.119

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

Non-obese Obese

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.08.20190835doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.08.20190835
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

19

3.2 Multiple mediation models 

In order to examine mediational processes predicting academic achievement from target lifestyle 

behaviors via candidate brain health mediators (MSIT parameters, fNIRS ROI), multiple mediation models were 

fitted using the PROCESS Macro in SPSS. This analysis was completed separately for each lifestyle behaviour 

(i.e., average sleep hours, average active minutes, fast-food consumption and substance use) and each 

academic outcome variable (i.e., English and Math grades), while controlling for % correct MSIT responses.  

3.2.1 Math grades 

3.2.1.1 Physical activity multiple mediation model 

Figure 4 depicts the multiple mediation model predicting Math grades from average active minutes 

through brain health parameters. There was a significant effect of average active minutes on R-dlPFC OxyHb 

(� � .008 , SE= .004, ρ =.032), but no effect of average active minutes on L-dlPFC OxyHb (� � .003 , SE= .003, 

ρ = .295), L-mPFC OxyHb (� � .003, SE= .003, ρ =.401), or R-mPFC OxyHb (� � 
.003 , SE= .003, ρ= .266). 

Figure 5 a) displays a heat map showing channel specific effects of average active minutes, and figure 5 b) 

shows areas of significant activation overlaid on a 3-dimentional anatomical brain. There was also no direct 

effect of average active minutes on Math grades (�=.106, ��=.070, ρ= .139), and no effect of average active 

minutes on either the MSIT mean RT (�= −.006,  ��=.005, ρ= .184), or on the MSIT SD (� � .002, �� �

.004, � � .676�. None of the brain health parameters were significant predictors of Math grades.  

The indirect effect of average active minutes on Math grades through R-dlPFC OxyHb was not 

significant; the upper and lower bound for the 95% confidence interval for the indirect effect included zero 

(est.= .011 (SE= .025); CILL = -.039, CIUL = .064), suggesting a null mediational effect. None of the other indirect 

effects involving brain health parameters were significant (See supplementary materials).  
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Figure 4. Multiple mediation model predicting Math grades from accelerometer-assessed active minutes of 

physical activity through brain health parameters, controlling for MSIT % correct responses 
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Figure 5. a) Heat map portraying F statistics for the effect of average active minutes on mean OxyHb levels in 

each channel and b) anatomical position of significant effects 
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3.2.1.2 Substance use multiple mediation model  
 

Figure 6 depicts the multiple mediation model predicting Math grades from substance use through 

brain health parameters. There was a significant direct effect of substance use on Math grades; specifically, 

more frequent substance use in the past month predicted significantly worse math grades (�= -3.702, ��= 

1.563, ρ= .022). There was no effect of substance use on either the MSIT mean RT (�=.017, ��=.112,  ρ= .883), 

or on the MSIT SD (�=.159, ��=.099, � � .113�. There was also no significant effect of substance use on L-

dlPFC OxyHb (�= −.015, ��=.064, ρ = .813), R-dlPFC OxyHb (�=−.107, ��=.090, ρ = .240), L-mPFC OxyHb 

(�=−.106, ��=.074, ρ = .176), or R-mPFC OxyHb (�=−.036, ��=.067, ρ= .630). None of the brain health 

parameters were significant predictors of Math grades, and none of the indirect effects involving brain health 

parameters were significant (See supplementary materials).  
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Figure 6. Multiple mediation model predicting Math grades from self-reported substance use through 

brain health parameters, controlling for MSIT % correct responses 

 

Substance 
Use 

Oxy 
L-dlPFC 

Oxy 
R-dlPFC 

Oxy 
L-mPFC 

Oxy 
R-mPFC 

Math 
Grades 

� �  � 2.949 
��� �  3.953� 

� �  � .532 
��� � 2.842� 

� �  � .860 
�� � 3.315� 

� �  2.289 
��� � 4.117� 

��� � �. !"�� 
� �  � �. ��� * 

� �  � .015 
��� � .064� 

� � �.107 
��� � .090� 

� � �.106 
��� � .074� 

� � �.036 
��� � .067� 

MSIT mean 
RT 

� � �2.941 
��� �  2.082� 

� � .017 
��� � .112� 

MSIT Std 

� �  3.031 
��� � 2.375� 

� � .159 
��� � .099� 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.08.20190835doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.08.20190835
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

24

3.2.1.3 Fast-food consumption multiple mediation model 
 

A multiple mediation model predicting Math grades from fast-food consumption through brain health 

parameters found was no direct effect of fast-food consumption on Math grades (�= −.882, ��=1.297, ρ= 

.500), and no effect of fast-food consumption on either the MSIT mean RT (�= -.037, ��= .088,  ρ= .679), or on 

the MSIT SD (�= .128, ��=.078, � �  .109�. There was also no significant effect of fast-food consumption on L-

dlPFC OxyHb (�=.008, ��=.050, ρ = .874), R-dlPFC OxyHb (�= -.061, ��= .072, ρ = .406),  L-mPFC OxyHb 

(�= .021, ��=.060, ρ = .731), or R-mPFC OxyHb (�=.008, ��=.053, ρ= .885). None of the brain health 

parameters were significant predictors of Math grades, and none of the indirect effects involving brain health 

parameters were significant (See supplementary materials).  

 

3.2.1.4 Average sleep hours multiple mediation model 
 

A multiple mediation model predicting Math grades from average sleep hours through brain health 

parameters found no direct effect of average sleep hours on Math grades (�=−.742, ��=1.807, ρ= .684), and 

no effect of average sleep hours on either the MSIT mean RT (�=.090, ��=.129,  ρ= .488), or on the MSIT SD 

(�=.025, ��=.110, � �  .823�. There was also no significant effect of average sleep hours on L-dlPFC OxyHb 

(�=.065, ��=.074, ρ = .385), R-dlPFC OxyHb (�=.167, ��=.104, ρ = .114), L-mPFC OxyHb (�= −.046, ��=.081, ρ 

= .577), or R-mPFC OxyHb (�=−.077, ��=.081, ρ= .346). None of the brain health parameters were significant 

predictors of Math grades, and none of the indirect effects involving brain health parameters were significant 

(See supplementary materials). 
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3.2.2 English grades  

3.2.2.1 Physical activity multiple mediation model 

The above multiple mediation models were repeated with English grades as the outcome variable. 

Figure 7 depicts the multiple mediation model predicting English grades from average active minutes through 

the brain health parameters. There was a significant effect of average active minutes on R-dlPFC OxyHb 

(� � .008 , SE= .004, ρ =.032), but no effect of average active minutes on L-dlPFC OxyHb (� � .003 , SE= .003, 

ρ = .295),  L-mPFC OxyHb (� � .003, SE= .003, ρ =.401), or R-mPFC OxyHb (� � 
.003 , SE= .003, ρ= .266). 

There was also no direct effect of average active minutes on English grades (�=−.070, ��= .055, ρ= .659), and 

no effect of average active minutes on either the MSIT mean RT (�= −.006,  ��=.005, ρ= .184), or on the MSIT 

SD (� � .002, �� � .004, � � .676�. None of the brain health parameters were significant predictors of 

English grades.  

The indirect effect of average active minutes on English grades through R-dlPFC OxyHb was not 

significant; the upper and lower bound for the 95% confidence interval for the indirect effect included zero 

(est.= .020 (SE= .027); CILL = -.023, CIUL = .081), suggesting a null mediational effect. None of the other indirect 

effects involving brain health parameters were significant (See supplementary materials). 
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Figure 7. Multiple mediation model predicting English grades from accelerometer-assessed active minutes of 

physical activity through brain health parameters, controlling for MSIT % correct responses 
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3.3 Conditional process models  
 

A set of conditional process models were tested to examine the extent to which lifestyle behaviour 

associations with academic performance mediated through brain health variables might be conditional upon 

age, gender and BMI. A significant moderation effect emerged regarding BMI on the indirect effect of average 

active minutes on English and Math grades through MSIT SD (∆R
2
= .086, F=6.318 (1, 45), � =.016). Specifically, 

average active minutes had a stronger effect on the MSIT SD for those in the highest BMI category (� = .431, 

SE= .192, �= .030).  The corresponding effect sizes were .112 for those in the obesity range (� 95
th 

percentile) 

and -.095 for all others (�95
th

 percentile; Figure 8). All additional models produced null moderated 

mediational effects (See supplemental material).  

Figure 8. Effect sizes for active minutes predicting MSIT SD 

 

  

Note. Age and gender-specific cut-offs were employed to define obesity categories as recommended by CDC 

(56). 
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Discussion  
 

The purpose of this study was to examine the extent to which the relationships between health 

behaviors and academic performance might be mediated by brain health parameters in a sample of 

adolescents. A prospective observational design was employed, utilizing a combination of accelerometery and 

self-reported measures of health behaviors as well as fNIRS and MSIT quantifications of brain health. Findings 

revealed that higher levels of accelerometer-assessed physical activity, as well as less frequent fast-food 

consumption both independently predicted significantly better interference task performance. Higher levels of 

physical activity were associated with larger increases in task-related oxygenation in the right dlPFC during 

interference blocks, and relative to baseline. There were, however, no significant links between physical 

activity or fast-food consumption and academic achievement, either directly or mediated by brain health 

parameters.  

A multiple mediation approach was used to investigate the relationship between each lifestyle 

predictor and academic outcomes, as mediated through all brain health mediators (task performance and 

functional imaging parameters). Fast-food consumption was associated with MSIT performance, but eating 

habits were not significantly associated with any other MSIT indicator (i.e., MSIT mean RT and SD) or 

oxygenation in any ROI. Higher levels of self-reported substance use were associated with poorer performance 

in Math. Finally, average sleep hours were not significantly associated with either of the academic outcomes, 

or indirectly associated with the brain health parameters.   

Conditional process (i.e., moderated mediation) models found a significant moderating effect for BMI 

on the indirect effect of average active minutes on English and Math grades through reaction time variability 

on the interference task. Initial models also suggested that BMI was a significant moderator in the relationship 

between substance use and task performance, where performance on the interference task was better for 
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those whose BMI fell within the obese range. However, there was no moderating effect of BMI in the 

relationship between substance use and task mean reaction time, or reaction time variability when utilizing 

the conditional process models.  

 Although there was no direct effect of physical activity on either English or Math achievement, greater 

levels of physical activity were associated with better performance on the cognitive interference task and 

higher levels of neuronal activation in the R-dlPFC during the interference task. This is consistent with a wealth 

of experimental findings, which have found cognitive benefits of physical activity across age ranges (17,21,28), 

when investigating the effects of activity on task related performance using various interference tasks (e.g., 

Stroop, Flanker; 58,110,111), and when utilizing various neuroimaging techniques (18,22,23,34). Although 

stronger activation in the L-dlPFC is commonly associated with interference tasks, the association between 

active minutes and oxygenation in the R-dlPFC still supports the notion that physical activity does promote 

greater activation within the PFC.  

Contrary to hypotheses, there was no direct association between physical activity and either indicator 

of academic achievement. It is possible that such activity-induced brain benefits were simply not strong 

enough to induce changes in academic achievement. Meta-analyses on the topic have shown a small effect of 

physical activity on academic performance in children (38,58), and so a high statistical power may be required 

to detect a translatable effect. Alternatively, academic performance is an outcome that is highly multi-

determined, such that it relies on the cooperation of many cognitive processes (3,59) and is a construct that 

can be influenced by many external factors, including socioeconomic status, race and gender (116,117). 

Consequently, activity may only marginally impact academic performance because the total universe of 

influences is so expansive. Likewise, the time-competition hypothesis, which implies a negative association 

between physical activity and academic performance, or an interaction between the brain benefit and time-
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competition hypotheses, could cause this pattern of findings such that any brain health benefits of activity 

could be offset by the time detracted from academic pursuits. The pattern of data in the current study is most 

consistent with this latter interpretation. 

Interestingly, performance on the cognitive interference task was moderated by gender, such that the 

effect of physical activity on task performance was stronger for females than for males. Sex has previously 

been shown to moderate the effects of physical activity effects on the brain, but primarily in older adults (62). 

It has been hypothesized that differences between females and males sex steroid hormones could impact 

cognition and that the hormonal environment during pubertal development may have enduring effects on 

both the structure and function of the brain from the adolescent developmental period and onwards (62,63). 

This may explain why the current findings suggest that such sex differences may extend to lower age ranges. It 

could be argued from this perspective that greater emphasis on physical education for females could be 

undertaken in schools, if any associated time competition effects could be offset.  

In addition to the effects of physical activity on task performance, more frequent fast-food 

consumption was associated with poorer performance on the cognitive interference task. However, the 

correlational nature of this study does not allow for interpretations of the temporal relationship between 

these two variables. Previous studies have identified a negative relationship between poor dietary habits and 

reduced executive functioning (10,64), but experimental studies involving transient up- or down-regulation of 

the lateral PFC have produced causal changes in food consumption, which supports the alternative temporal 

relationship (65,66). Notwithstanding, the results of this study do emphasize importance of dietary quality on 

executive functioning in this age group. 

Furthermore, greater substance use was found to predict poorer Math grades. This is consistent with 

hypotheses, and prior findings that substance use among adolescents negatively impacts academic 
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achievement (16,67). Substance use experimentation and substance use disorders often emerge in 

adolescents (68) and this variable was the only significant predictor of academic achievement, high schools 

should be especially aware of the impact of substance use when tailoring preventative initiatives.     

Limitations of this study include the observational research design, which limits the extent to which 

causal effects can be identified. Likewise, some variables were studied with temporal lags but not others, 

making directionality inferences challenging in the latter. In addition, the small sample size may have resulted 

in reduced statistical power to detect effects, which could have impacted the ability to detect significant 

associations. Furthermore, the field setting introduced noise into the fNIRS measurements, and the use of self-

reported academic achievement variables may have been subjected to social desirability bias, which in turn 

may have contributed to and lower quality data.  

Key strengths of this study included the use of objective measures of brain activation, physical activity 

and sleep; the latter two in particular are thought to be more reliable and valid than self-report measures 

(45,69). In addition, the use of both fNIRS imaging and a standardized cognitive task allowed for the derivation 

of several indicators of brain health, both in terms of behavioural markers of executive function and task 

related activation in the PFC. Furthermore, the field setting allowed for direct recruitment of students in a 

naturalistic environment. Finally, there are relatively few studies that employ a brain imaging protocol in order 

to investigate how lifestyle behaviours impact academic performance through brain health parameters in 

adolescents and so this study fills a gap in the current literature on the subject. 

3.4  Conclusion 
 

 Utilizing a sample of adolescents, this study aimed to identify to what extent the relationship between 

lifestyle behaviours and academic performance was mediated by brain health. Although there was no direct 

association present between accelerometer-assessed physical activity and either English or Math grades, 
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greater active minutes did have a positive effect on interference task performance and on lateral PFC 

recruitment. The effect of active minutes on cognitive task performance was also moderated by gender, such 

that females experienced a greater cognitive benefit of physical activity compared to males. Investigation into 

the other lifestyle behaviours found that more frequent fast-food consumption and substance use were 

negatively associated with performance on the cognitive interference task and Math grades respectively. This 

study provides support for the cognitive enhancement potential of physical activity, but not for the 

hypothesized mediating role of brain health on academic achievement. Overall, the results speak to the 

importance of lifestyle behaviours in adolescent cognitive function and academic performance. 
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