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ABSTRACT 
 
Genome-wide association studies (GWAS) are a valuable tool for understanding the biology of 
complex traits, but the associations found rarely point directly to causal genes. Here, we introduce 
a new method to identify the causal genes by integrating GWAS summary statistics with gene 
expression, biological pathway, and predicted protein-protein interaction data. We further propose 
an approach that effectively leverages both polygenic and locus-specific genetic signals by 
combining results across multiple gene prioritization methods, increasing confidence in prioritized 
genes. Using a large set of gold standard genes to evaluate our approach, we prioritize 8,402 
unique gene-trait pairs with greater than 75% estimated precision across 113 complex traits and 
diseases, including known genes such as SORT1 for LDL cholesterol, SMIM1 for red blood cell 
count, and DRD2 for schizophrenia, as well as novel genes such as TTC39B for cholelithiasis. 
Our results demonstrate that a polygenic approach is a powerful tool for gene prioritization and, 
in combination with locus-specific signal, improves upon existing methods. 
 
 
INTRODUCTION 
 
Genome-wide association studies (GWAS) have identified thousands of genetic loci associated 
with common complex traits and diseases1. Nonetheless, for the vast majority of GWAS significant 
loci, the identity of the causal gene(s) underlying the association remains unknown, limiting the 
biological insight gained into common disease mechanisms2,3. There are several major 
challenges to pinpointing the causal gene. First, linkage disequilibrium (LD) between variants 
masks the identity of the causal variant4. Second, most associated loci do not contain coding 
variants but, instead, the causal variant acts through gene regulatory mechanisms3, and 
incomplete maps from regulatory element to gene hinder causal gene identification5. Many 
computational approaches try to resolve these challenges6–10, yet methods in the field of gene 
prioritization often fail to nominate causal genes with high confidence. 
 
Gene prioritization strategies can be placed into two broad categories: first, locus-based methods 
that leverage local GWAS data by connecting the causal variants to the causal gene(s) using 
protein coding variants, genomic distance, enhancer-gene maps11–16, or eQTLs7,8; second, 
similarity-based methods that search for global patterns in associated genes and nominate those 
with similar functions, pathways, or network connections6,10. Across both categories, existing 
methods lack consensus and have high false positive rates17. At the same time, related work also 
suggests that combining results from different methods, specifically combining locus-based and 
similarity-based approaches, can yield better predictions18. Among similarity-based approaches, 
no method we are aware of leverages the full genome-wide association data, despite the fact that 
single-nucleotide polymorphisms (SNPs) that do not reach genome-wide significance explain the 
majority of narrow sense heritability for most complex traits19. Moreover, recently-generated 
single-cell RNA-seq datasets hold promise for more accurately characterizing shared functions 
among genes and thus improving the accuracy of similarity-based gene prioritization. Yet, to our 
knowledge, these data sets have not been systematically leveraged in this way.  
 
Here, we propose a new similarity-based gene prioritization method, a gene-level Polygenic 
Priority Score (PoPS), that leverages the full polygenic signal, excluding GWAS data at the locus 
of interest, and incorporates data about genes from a variety of sources, including 73 publicly 
available single-cell RNA-seq data sets. PoPS is computationally efficient and requires only 
summary statistics and an LD reference panel. Across 113 complex traits and diseases, we show 
that PoPS outperforms other similarity-based gene prioritization methods. Using a unique set of 
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gold standard genes, we show that, while neither PoPS nor any existing locus-based method 
based on non-coding variants alone achieves precision above 52%, PoPS combined with these 
locus-based gene prioritization methods achieves precision between 75% and 86% and prioritizes 
8,395 unique gene-trait pairs. Finally, in several illustrative cases where the causal gene is known, 
we show that PoPS correctly identifies the correct gene even when the causal variant has been 
experimentally demonstrated to regulate multiple genes. 
 
 
RESULTS 
 
Overview of PoPS 
 
Our method, PoPS, is predicated on the assumption that causal genes share functional 
characteristics. Specifically, we assume genes whose physical locations on the genome are near 
associated SNPs and who share similar biological annotations are most likely to be causal. PoPS 
uses gene-level associations computed from GWAS summary statistics to learn joint polygenic 
enrichments of gene features derived from cell-type specific gene expression, biological 
pathways, and protein-protein interactions (PPI). To nominate causal genes, PoPS then assigns 
a priority score to every protein coding gene according to these enrichments (Fig. 1). 
 
First, PoPS applies MAGMA9 to compute gene-level association statistics and gene-gene 
correlations using GWAS summary statistics and LD information from an ancestry matched 
reference panel (see Methods). Next, PoPS performs marginal feature selection by using MAGMA 
to perform enrichment analysis for each gene feature separately. MAGMA tests a gene feature, 
𝑓, for enrichment by modeling the gene-level associations, 𝑦, by 
[1] 𝑦 = 𝑋%𝛽% + 𝜀,  𝜀 ∼ 𝑀𝑉𝑁(0, 𝑅) 
where 𝑋% is a column vector corresponding to gene feature 𝑓 (e.g. a binary indicator of 
membership in a pathway), and 𝑅 is a covariance matrix designed to account for the LD between 
nearby genes computed from a reference panel. The model is fit by generalized least squares 
(GLS), and MAGMA reports both 𝛽2% and a p-value for the hypothesis that 𝛽% ≠ 0. We use these 
results to perform marginal feature selection, retaining only features that pass a nominal 
significance threshold (P < 0.05), to reduce the noise and computational complexity of fitting the 
joint model. 
 
Second, PoPS computes a joint enrichment of all selected features simultaneously by replacing 
the vector 𝑋% in Equation 1 with a matrix 𝑋 that includes these features. (See Supplementary 
Fig. 1 for comparison of model-fitting choices.) In the joint model, we additionally include a matrix 
𝐶 of gene-level covariates, (e.g. length of the gene, see Methods). 
[2] 𝑦 = 𝐶𝛼 + 𝑋𝛽 + 𝜀,  𝜀 ∼ 𝑀𝑉𝑁(0, 𝑅) 
We extend the GLS method used by MAGMA to incorporate L2 regularization to account for the 
large number of features and improve test set prediction.  We estimate 𝛽2 in a leave one 
chromosome out (LOCO) framework, obtaining estimates 𝛽2789:; … 𝛽2789:<<.  
 
Finally, PoPS computes polygenic priority scores for each gene, 𝑔, on a chromosome, 𝑖, by 
multiplying its row vector of gene features, 𝑋?, by 𝛽2789:	A. For example, to compute priority scores 
for gene 𝑔 on chromosome 1, we compute 𝑦B? = 𝑋? 𝛽2789:;. We refer to 𝑦B?  as the polygenic 
priority score (PoP score) for gene g. Ultimately, the PoP score for a gene is independent of the 
GWAS data on the chromosome where the gene is located. We say PoPS 
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Figure 1 | Overview of PoPS. We compute gene-level z-scores from GWAS summary statistics with an 
LD reference panel, using MAGMA. We create gene features from gene expression data, biological 
pathways, and predicted PPI networks and use marginal feature selection to narrow down to a smaller set 
of features most likely to be relevant. We then fit a linear model for the dependence of gene-level 
associations on gene features in a leave one chromosome out (LOCO) framework using generalized least 
squares (GLS) to account for LD and an L2 penalty to account for the large number of features. This results 
in a vector of joint polygenic enrichments of gene features, 𝛽2 , which we use to assign gene priority scores 
on the left-out chromosome. 
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prioritizes a gene if it is in a 1 Mb locus centered on a genome-wide significant variant and has 
the highest PoP score of genes in the locus (see Methods). 
 
 
Application of PoPS to 113 complex traits 
 
We applied PoPS to 18 diseases with publicly available GWAS summary statistics and 95 
complex traits from the UK Biobank (Supplementary Table 1) using EUR individuals from the 
1000 Genomes Project20 as a reference panel (see Methods). The full set of gene features used 
in these analyses included 57,543 total features – 40,546 derived from gene expression data, 
8,718 extracted from a protein-protein interaction network21, and 8,479 based on pathway 
membership22–25 (Supplementary Table 2; see Methods). After marginal feature selection, 3,717 
to 27,254 features per trait were included in the predictive model (Supplementary Fig. 2). For 
each trait, we score 18,383 protein coding genes and prioritize one gene in each genome-wide 
significant locus. In total, PoPS prioritized 18,179 unique gene-trait pairs in 25,341 loci across 
113 complex traits. 
 
 
Evaluation of PoPS 
 
To evaluate the performance of PoPS for prioritizing likely causal genes, we avoided 
benchmarking using curated sets of gold standard genes that may be biased towards well-studied 
genes or genes in well-characterized pathways. We instead evaluated PoPS with two metrics 
unaffected by prior knowledge of trait etiology by taking advantage of the fact that PoPS does not 
use GWAS data at the locus of interest when scoring genes. First, we applied the Benchmarker 
method26, which estimates the average contribution of SNPs near genes with high priority scores 
to per SNP heritability (see Methods).  We refer to this quantity as normalized 𝝉. After correction 
for multiple testing, we found our estimates for normalized 𝝉 were significantly greater than zero 
for 106 of 113 traits tested, indicating that genes with high PoP scores are enriched for heritability, 
even after accounting for the contributions of 53 other genomic annotations (Fig. 2a, 
Supplementary Table 3). As a second evaluation metric, we focused on the performance of 
PoPS in GWAS significant loci. Following the assumption that the causal gene is often the closest 
gene to the lead variant in the locus18, we tested whether PoPS prioritized genes were more often 
the closest gene than expected by chance (see Methods). Although this test is underpowered for 
traits with a small number of significant loci, we found that PoPS prioritized genes were 
significantly enriched for being the closest gene for 86 of 113 traits tested after Bonferroni 
correction (Fig. 2b, Supplementary Table 3). These results imply that, even though PoPS does 
not leverage any GWAS data at the locus, PoP scores are informative about the causal gene(s) 
at a locus. 
 
 
Comparison to other similarity-based methods 
 
After evaluating PoPS on its own, we investigated how PoPS compares to existing similarity-
based methods: DEPICT6 and NetWAS10. We applied PoPS, DEPICT, and NetWAS to the same 
set of 113 summary statistics and, again, used Benchmarker26 to evaluate the methods by 
comparing estimates of normalized 𝝉. We found that PoPS showed the strongest performance 
among the three methods for all 113 traits tested (Supplementary Table 3). In a meta-analysis 
over 46 traits chosen to have low genetic correlation (see Methods), we confirmed that PoPS 
significantly outperformed both DEPICT and NetWAS overall (Fig. 2c). Similarly, we found that  
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Figure 2 | Evaluation of PoPS and comparison to other similarity-based methods. a, Results using 
Benchmarker to evaluate PoPS, grouped by trait domain and sorted by the lower bound of the 95% 
confidence interval of normalized 𝝉. Normalized 𝝉 provides an estimate for the average contribution of SNPs 
near genes with high priority scores to per SNP heritability, normalized by average per SNP heritability. 
Error bars represent 95% confidence intervals. Dark bars passed the Bonferroni significance threshold (P 
< 0.05/113). For IBD and Alzheimer’s we retained summary statistics from both UK Biobank and other 
publicly available sources with a greater sample size; asterisk (*) denotes the public version. b, Results 
using closest gene enrichment to evaluate PoPS, grouped by trait domain and sorted by lower bound of 
the 95% confidence interval of the observed/expected ratio. Error bars represent 95% confidence intervals. 
P-values were computed using a normal approximation to the null distribution, and dark bars passed the 
Bonferroni significance threshold (P < 0.05/113). c, Results using Benchmarker to compare similarity-based 
gene prioritization methods, meta-analyzed within each trait domain across independent traits. Error bars 
represent 95% confidence intervals.  
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genes prioritized by PoPS showed the greatest enrichment for being the closest gene for 96 of 
113 traits tested, and significantly outperformed DEPICT and NetWAS in a meta-analysis over 
independent traits (Supplementary Fig. 3a, Supplementary Table 3). We attribute the superior 
performance of PoPS to leveraging the full genome-wide association signal and integrating a 
broader array of gene features. 
 
 
Most informative gene features used by PoPS 
 
We next evaluated the relevance of each category of features included in the PoPS model: gene 
expression, pathways, and PPI networks. We created three alternate versions of PoPS, training 
on features from each category separately, to produce three new sets of results for each 
phenotype. We applied Benchmarker to evaluate which set of features demonstrated the 
strongest performance on its own as measured by normalized 𝝉. We meta-analyzed the estimates 
for normalized 𝝉 within 11 trait domains across 46 independent traits. Overall, we found that 
including all features yielded the strongest performance, followed by gene expression and 
pathways performing similarly, and finally followed by PPI networks (Fig. 3a, Supplementary 
Table 3). We similarly found that including all features showed the strongest enrichment using 
the closest gene metric (Supplementary Fig. 3b, Supplementary Table 3). We additionally 
evaluated the relevance of gene expression features based on bulk and single-cell RNA seq 
separately and found that the single-cell features performed significantly better than the bulk 
features by both the Benchmarker and closest gene metrics (Supplementary Fig. 4, 
Supplementary Table 3). 
 
To better understand the relevant tissues, cell-types, and pathways learned by PoPS, we 
investigated which groups of features were most informative for prioritized genes. Because many 
highly correlated features were included in the joint model for PoPS, the individual coefficients, 𝛽2, 
lacked direct interpretability. We instead grouped related features for a trait by performing 
hierarchical clustering on the selected features (see Methods). For each cluster, we computed 
the total contribution of the features in the cluster to the PoP scores of prioritized genes. We 
ranked clusters by their PoP score contribution and annotated top-ranked clusters (Fig. 3b). The 
features that composed the top clusters recapitulated known trait biology and included examples 
from each type of feature (Supplementary Data 1). For LDL cholesterol, we observed clusters 
composed of lipid synthesis pathways, lipoprotein PPI-interactions, and liver gene expression 
features27. For HbA1c, a test that measures average blood sugar levels but is also affected by 
red blood cell levels28, we observed both glucose and hemoglobin related clusters of features. 
For rheumatoid arthritis, an autoimmune disease29, we observed a range of immune features 
describing expression, signaling, and production of immune cells. Finally, for schizophrenia, we 
observed clusters corresponding to several distinct mechanisms previously implicated in 
schizophrenia including chromatin remodeling30 and calcium channel dysfunction30,31.  Taken 
together, these results suggest that PoPS is able to prioritize the causal genes underlying 
complex traits and diseases by learning biologically relevant properties from multiple types of 
gene features. 
 
 
Comparison to locus-based methods 
 
Noting previous work on the utility of ensemble gene prioritization18, we hypothesized that 
combining PoPS, a similarity-based method, with existing locus-based gene prioritization 
strategies would allow us to nominate genes with higher confidence than with either method alone  
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Figure 3 | Most informative gene features used by PoPS. a, Results using Benchmarker to compare 
PoPS using different feature sets, meta-analyzed within each trait domain across independent traits. Error 
bars represent 95% confidence intervals. b, Rank-order plots for selected traits highlighting the feature 
clusters with the greatest contribution to the PoP scores of prioritized genes.	
 
 
 
– particularly for non-coding GWAS signals, where identifying the causal gene has been 
challenging. Towards that end, we applied several additional gene prediction methods to the set 
of 95 traits from the UK Biobank (see Methods), where we had not only summary statistics, but 
fine-mapping results (Ulirsch and Kanai, In preparation). We focused our analysis on the 
22,548/24,728 (91%) of the 95% credible sets (CSs) that did not contain a fine-mapped (posterior 
inclusion probability, PIP > 0.10) coding variant, and evaluated the following methods:  

(1) We overlapped fine-mapped (PIP > 0.1) non-coding variants with predicted enhancer-
gene connections from (a) correlating enhancer and promoter activity (E-P 
correlation)15,16, (b) 3-D loops from promoter capture Hi-C (PCHi-C)12–14, and (c) activity-
by-contact (ABC)11 maps to identify genes regulated by fine-mapped variants. 
(2) We incorporated eQTL data and (a) applied TWAS8 with GTEx v732 weights to identify 
significantly associated genes and (b) computed co-localization posterior probabilities 
(CLPP)7 with fine-mapping results from GTEx v833 to identify genes where the causal 
variant is shared between the complex trait and the gene expression trait. 
(3) We identified the closest gene to the lead variant. 

 
These locus-based methods rely on GWAS data at the locus of interest, thus neither of the 
evaluation methods described above are applicable. Curated gold standard gene sets are often 
biased towards well-studied and more readily identifiable causal genes, so we leveraged our fine-
mapping data to construct a large set of gold standard genes using fine-mapped protein coding 
variants. Specifically, we identified 1,348 1 Mb loci centered at non-coding credible sets that 
additionally contained at least one of a set of 589 gold standard genes harboring a fine-mapped 
(PIP > 0.5) protein-coding variant for the same trait. This construction formalizes our intuition that 
an associated protein coding variant is often the relevant functional variant and that a nearby, 
secondary signal is much more likely to act through this gene than through a separate, distinct 
gene (see Discussion). 
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We evaluated the performance of each method in these non-coding loci (after removing coding 
signals, see Methods) using precision, the fraction of prioritized genes in the gold standard set, 
and recall, the fraction of gold standard genes in the prioritized set. We first confirm that PoPS 
outperforms DEPICT and NetWAS using these metrics (Supplementary Fig. 5, Supplementary 
Table 4). Before comparing locus-based methods to each other and to PoPS, we evaluated 
multiple prioritization criteria using both absolute thresholds and relative rank within a locus for 
each method (Supplementary Fig. 6, Supplementary Table 5). For many methods including 
TWAS, PCHi-C, and E-P correlation, it is common to prioritize any gene with a predicted 
connection or significant association; however, across all methods, we found that prioritizing the 
best ranked gene in the locus had higher precision than including any gene passing a global 
threshold. These results are consistent with the idea that a regulatory variant can affect the 
expression of multiple genes32, yet only a select few of these genes, perhaps often the most 
strongly regulated, have a direct effect on the complex trait of interest. Our evaluation of different 
criteria for each locus-based method led us to prioritize genes that passed global thresholds that 
were also the best ranked gene in the locus (see Methods).  
 
All individual methods for prioritizing genes from the non-coding signal showed precision less than 
50% except CLPP, which had both the highest precision, 52%, and the lowest recall, 4% (Fig. 
4a, Supplementary Table 4). PoPS and distance performed similarly to each other and had the 
next highest precision, 47% and 46%, and the highest recall, 47% and 48%, respectively. Other 
methods, including TWAS, E-P correlation, and ABC-Max, yielded comparable precision but 
substantially lower recall (10-27%). The low recall of these methods can be attributed in part to 
limited power to disentangle the causal variant from LD and to missing trait-relevant cell types in 
the variant-to-gene regulatory maps. These challenges may also contribute to the variability of 
precision and recall estimates observed across traits (Supplementary Fig. 7, Supplementary 
Table 6). Overall, few genes could be prioritized with confidence greater than 50%, so we sought 
to devise an approach achieving greater precision. 
 
 
Combining PoPS with locus-based methods 
 
Towards improving overall gene prioritization, we investigated the extent of agreement among 
methods evaluated above, additionally comparing to genes with fine-mapped (PIP > 0.1) coding 
variants. For each pair of methods, we computed the number of loci in which both methods 
prioritized a gene and the proportion of those loci where they prioritized the same gene (Fig. 4b, 
Supplementary Table 7). Overall, we found low concordance among methods. For example, 
PCHi-C prioritized a gene in 8,777 loci, while ABC-Max prioritized a gene in 7,913 loci, yet there 
are only 5,196 loci where both methods prioritized any gene, and of these loci, the two methods 
agreed only 42% of the time. In general, ABC-Max, E-P correlation, CLPP, and coding agreed 
more with each other than other methods but prioritized many fewer genes overall. PoPS had 
mild agreement with most other methods, prioritizing the same gene in up to 43% of loci. Together 
with the results on gold standard genes, these results suggest that PoPS is a less redundant but 
similarly accurate method compared to existing locus-based methods and may help to identify a 
unique set of causal genes. 
 
The range of precision and recall of individual methods and their overall lack of agreement 
suggests that combining methods may enable better performance for gene prioritization. We 
evaluated the performance of intersecting pairs of methods, i.e. prioritizing genes nominated by 
both methods individually, on our set of gold standard genes (Fig. 4a, Supplementary Table 4). 
First, we observed that intersecting pairs of locus-based methods often increased precision but  
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Figure 4 | Comparing and combining PoPS with locus-based methods. a, Precision-recall plot showing 
performance of locus-based methods, PoPS, intersections of pairs of locus-based methods, and 
intersections of PoPs with locus-based methods on the gold-standard set of 589 genes with fine-mapped 
protein coding variants. Precision is the proportion of prioritized genes in the gold standard set. Recall is 
the proportion of genes in the gold standard set that were prioritized. b, Overlap and agreement among 
methods across all genome-wide significant loci. Each square represents a pair of methods. The size 
corresponds to the number of loci where both methods prioritize a gene, and the color corresponds to the 
proportion of these loci where both methods prioritize the same gene. c, Number of unique gene-trait pairs 
prioritized across all genome-wide significant loci by PoPS, locus-based gene prioritization methods, and 
intersections of PoPs with locus-based methods, sorted by estimated precision. The full height of each bar 
represents the total number of genes prioritized. The dark portion of each bar represents the expected 
number of true causal genes prioritized. Methods to the left of the dashed line achieve precision greater 
than 75%. 
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never yielded precision above 71%. Second, we observed that intersecting PoPS with any locus-
based method yielded precision of at least 75% and up to 86%. Notably, PoPS intersected with 
TWAS sees the greatest increase in precision and achieves the highest precision of any 
combination of methods, increasing precision for TWAS from 32% to 86% while maintaining 17% 
recall. We also find that PoPS intersected with distance increases precision from 46% to 83%, 
while achieving 28% recall, suggesting that PoPS can substantially improve the precision of the 
commonly-used nearest gene approach. We conclude that leveraging the polygenic patterns 
learned by PoPS along with locus-specific genetic information will boost gene prioritization efforts. 
 
 
High-confidence prioritized genes 
 
After demonstrating that we can prioritize genes with high precision on our set of gold standard 
genes, we prioritized genes across all genome-wide significant loci for 95 UK Biobank traits and 
18 additional complex traits for which we only had summary statistics. For the UK Biobank traits, 
we intersected PoPS with TWAS, distance, ABC-Max, E-P correlation, CLPP, or PCHi-C to 
prioritize between 353 and 6,961 genes each, with estimated precision greater than 75% (Fig. 
4c, Supplementary Table 8). For the traits for which we only had summary statistics, we 
intersected PoPS with TWAS or distance, prioritizing 47 and 240 genes, respectively, with 
estimated precision greater than 83% (Supplementary Fig. 8, Supplementary Table 9). In total, 
we prioritized 8,402 unique gene-trait pairs in 45% of loci with greater than 75% precision. 
 
Genes with high PoP scores and support from multiple lines of evidence include many well-known 
causal genes (Fig. 5). For example, the lipid metabolism genes34, APOE, APOA1, LDLR, APOB, 
and CETP, were the top 5 genes by PoP score for LDL cholesterol. For mosaic loss of Y (LOY) 
chromosome in circulating blood35, a phenotype with genetic relevance to multiple malignancies, 
the top genes by PoP score are involved in the DNA damage response (TP53) and apoptosis 
(BCL2, BAX, BCL2L11). For schizophrenia, the top genes by PoP score are the well known 
dopamine receptor (DRD2)36,37, calcium channel genes (CACNA1C, CACNB2)31, an important 
transcriptional regulator underlying developmental delay (BCL11A)37,38, and the gene encoding 
for the histone acetyltransferase p300.  
 
 

 
 
Figure 5 | High confidence genes for selected traits. Top five genes prioritized by PoPS and at least 
one locus-based method, ranked by PoP score, for selected traits. Shaded boxes indicate if a method 
prioritized the gene.	
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We highlight four specific examples where the causal variant has been shown to regulate multiple 
genes or where the causal gene is not the nearest gene, but PoPS, leveraging polygenic patterns, 
uniquely identified the causal gene. First, for multiple red blood cell traits, rs1175550 was fine-
mapped with PIP > 0.9, predicted to be an eQTL for SMIM1 and LLRC47 by CLPP, and 
demonstrated experimentally to affect the expression of SMIM1, LRRC47, and CEP10439. In the 
locus, PoPS correctly prioritized SMIM1, which encodes for the rare Vel blood group protein 
involved in red blood cell production40 (Fig. 6a). Also for red blood cell traits, the variant rs737092 
was fine-mapped with PIP = 0.72 for mean corpuscular hemoglobin (MCH), and experimental 
evidence shows that the expression of both RBM38 and RAE1 are affected by this variant39 (Fig. 
6b). While other methods do not agree on a causal gene for this locus, PoPS prioritized RBM38, 
which has been shown to play a role in splicing key erythroid transcripts during terminal 
erythropoiesis39. Next, at the 1p13 locus which is associated with LDL cholesterol and several 
cardiovascular traits, the variant rs12740374 was fine-mapped with PIP > 0.99, co-localized 
(CLPP > 0.9 for all) with an eQTL for the proximal genes CELSR2 and PSRC1, as well as SORT1 
(Fig. 6c). Here, PoPS is able to correctly identify SORT1, which has been shown to encode for a 
protein that modulates hepatic very low-density lipoprotein levels, altering plasma LDL-C41. 
Finally, for bone mineral density (BMD), the variant rs1550270 falls in an intron of MSMO1, was 
fine-mapped with PIP = 0.39, co-localized with an eQTL for CPE in osteoclasts42, and was 
predicted to have a role in regulating CPE as well as four other nearby genes (Fig. 6d). PoPS 
correctly prioritized CPE, the knockout of which in mice resulted in low bone mineral density and 
showed indications of increased bone turnover43. These examples demonstrate the power of 
PoPS to provide an important line of independent evidence in cases where the causal variant can 
be tied to multiple candidate genes and current methods are unable to distinguish the causal 
gene. 
 
Leveraging PoPS with locus-specific information, we propose a potential novel gene for 
cholelithiasis (gallstones), along with the causal variant and variant-to-gene mechanism. 
Gallstones are small stones, often composed of cholesterol, that form in the gallbladder due to 
excess cholesterol in bile44. The variant rs686030:C>A, intronic to TTC39B, showed genome-
wide significant marginal association and was fine-mapped with PIP = 0.38 for gallstones, 
although fine-mapping for the pleiotropically associated traits HDL cholesterol and ApoA levels 
resolved this association down to a single variant (PIP > 0.98 for both, Fig. 7a). We found five 
genes in the locus within 500 Kb of this lead variant but overwhelming support for TTC39B from 
PoPS, ABC-Max, E-P correlation, and CLPP (Fig. 7b). A previous pathway analysis failed to find 
support for TTC39B in gallbladder disease45 but, here, PoPS uniquely identified TTC39B as the 
causal gene. In the GTEx fine-mapping results, rs686030:C>A demonstrated the greatest effect 
on reducing the expression of TTC39B in the liver compared to other tissues (𝛽= -0.31, PIP=0.43). 
In other work, decreased TTC39B has then been shown to result in increased levels of HDL 
cholesterol in mouse knockdown and knockout studies, although the exact tissue in which 
TTC39B functions to regulate HDL cholesterol levels remains unclear27,46. By leveraging our fine-
mapping results, we find that rs686030 lies within a relatively tissue-specific regulatory region 
(accessible in 22/733 cell-types biosamples). Of note, we observed that this region is not only 
accessible in certain liver and intestinal cell-types, consistent with the results from conditional 
knockout mice, but that it is most accessible in white blood cell types, such as B cells and 
monocytes (Fig. 7c). Therefore, we hypothesize that rs686030:C>A reduces the expression of 
TTC39B via an enhancer in liver, intestinal, or white blood cell subsets, resulting in increased 
levels of HDL cholesterol and the formation of gallstones. 
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Figure 6 | Known biological examples. Top: summary statistics colored by LD to the lead variant and 
fine-mapping results for variants in the locus colored by credible set. Bottom: results from PoPS and locus-
based methods for all genes in the locus. Genes are colored by strength of prediction for each method, with 
a star denoting the prioritized gene. a, rs1175550, SMIM1 for red blood cell (RBC) count. b, rs737092, 
RBM38 for mean corpuscular hemoglobin (MHC). c, rs12740374, SORT1 for LDL cholesterol. d, 
rs1550270, CPE for bone mineral density. 
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Figure 7 | PoPS identifies TTC39B as a candidate gene for Cholelithiasis. a, Summary statistics 
colored by LD to the lead variant, rs686030, and fine-mapping results for variants in the locus colored by 
credible set. b, Results from PoPS and locus-based methods for all genes in the locus. Genes are colored 
by strength of association for each method, with a star denoting the prioritized gene. c, DNase I 
hypersensitivity tracks shown in read counts per million for four cell-types where rs686030 lies in accessible 
chromatin. 
 
 
 
DISCUSSION 
 
We developed a new computational method, PoPS, for prioritizing causal genes from GWAS that 
leverages the genome-wide genetic association information and integrates data from gene 
expression data sets, protein-protein interaction networks, and pathway databases. We applied 
PoPS to summary statistics from 113 traits and used unbiased metrics to validate and show that 
PoPS improves upon other similarity-based methods. In addition, we benchmarked several 
existing locus-based gene prioritization methods and demonstrated that PoPS performs strongly 
in comparison while leveraging a distinctive signal. Finally, we proposed a strategy for prioritizing 
genes more confidently by combining PoPS with existing locus-based methods and achieved 
precision on a large set of gold standard genes above 75%. To our knowledge, our approach 
nominates causal genes at non-coding GWAS loci with greater confidence than any existing 
method. These findings highlight the importance of leveraging data at multiple levels and, 
specifically, combining gene prioritization results from locus-based and similarity-based methods. 
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Although our polygenic approach to gene prioritization allows for confident prediction of causal 
genes, it has several limitations. First, our approach relies on the assumption that causal genes 
share biological characteristics captured by the gene features included in the model. Causal 
genes that act through unrelated mechanisms or genes whose shared functions are not described 
by our features would not be identified using PoPS. As new gene expression, protein network, 
and pathway datasets are generated and incorporated into PoPS, its performance will improve. 
Furthermore, to leverage the polygenic signal, we assume the causal mechanisms are shared 
between top loci and sub-significant loci. Second, while informative for ranking genes, the 
polygenic priority score lacks interpretable units, is not comparable across traits, and does not 
quantify the uncertainty in the predictions. Third, PoPS alone does not provide a prediction for the 
causal variant or a variant-to-gene mechanism for prioritized genes. Fourth, PoPS does not 
directly link causal genes with their relevant cell types. The joint linear model includes many highly 
correlated features, hindering the interpretability of the features and their coefficients. Although 
we identified meaningful feature clusters with large contributions to PoP scores for prioritized 
genes, we leave further investigation of the pathways, cell-types, and tissues predicted by PoPS 
to future work. 
 
We leveraged genes with fine-mapped coding variants and nearby non-coding signals to evaluate 
similarity-based methods, locus-based methods, and combinations of methods. This set serves 
as a powerful tool that, unlike other commonly-used gold standard gene sets such as Mendelian 
disease genes or drug targets, allows us to evaluate both similarity-based methods that leverage 
pathway databases and locus-based methods that leverage local signal across a large number 
of traits and in a framework that is unbiased by previous trait-specific knowledge. However, we 
note that this set also has several limitations. First, the accuracy of the validation rests on the 
assumption that non-coding signals near genes with fine-mapped coding variants are explained 
by the same gene. As the number of independent signals discovered for highly polygenic traits 
continues to grow, the likelihood that two nearby signals do not point to the same gene also grows; 
thus, this evaluation may be less accurate for traits with very large numbers of independent 
associations (Supplementary Fig. 9). Second, the set of genes harboring fine-mapped coding 
variants may skew towards less constrained genes, introducing a bias. Finally, many methods 
rely on having data measured in the specific cell-types and tissues relevant to the trait of interest. 
In the evaluation framework described here, it is not possible to distinguish whether the 
performance of a method is limited by the methodology or the availability of the necessary data. 
 
In conclusion, leveraging polygenicity improves causal gene prioritization. In doing so, PoPS is a 
powerful tool for identifying causal genes from GWAS summary statistics and marks an important 
step towards building functional understanding from genetic associations. The ability to more 
confidently prioritize causal genes will aid in understanding the underlying trait biology and 
nominate genes that are strong candidates for experimental follow-up.  
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URLs 
Gene features, https://github.com/FinucaneLab/gene_features; fine-mapping in the UK Biobank, 
https://www.finucanelab.org/data; precomputed TWAS weights for GTEx v7 tissues, 
http://gusevlab.org/projects/fusion/weights/GTEX7.txt. 
 
Data availability 
A repository of processed gene features, visualizations of top derived features, and code to 
reproduce these analyses are available on GitHub at  
https://github.com/FinucaneLab/gene_features. Complete PoPS results for 95 complex traits in 
the UK Biobank and 18 additional disease traits as well as results for PoPS and locus-based 
methods in genome-wide significant loci are available at https://www.finucanelab.org/data. 
 
Code availability  
PoPS is available as an open-source Python package at https://github.com/FinucaneLab/pops. 
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ONLINE METHODS 
 
MAGMA gene z-scores 
We applied MAGMA9 to the summary statistics for each trait using the 1000 Genomes Project 
reference panel20 to compute gene-level association statistics and gene-gene correlations using 
the SNP-wise mean gene analysis and a 0 Kb window around the gene body for mapping SNPs 
to genes. For each gene, MAGMA computes a gene p-value from the mean chi-square statistic 
of SNPs in the gene body and its approximate sampling distribution. The gene p-value is 
converted to a z-score using the probit function. The resulting z-score reflects the gene-trait 
association after correcting for linkage disequilibrium (LD) among SNPs within the gene body. 
MAGMA approximates the gene-gene correlation matrix, R, using the correlations between the 
model sum of squares of each gene pair under the joint null hypothesis of no association. These 
correlations are a function of the LD between SNPs in each pair of genes and represent the LD 
on a gene level. To ensure a positive semidefinite correlation matrix we add a small value to the 
entries of R along the diagonal. Specifically, if the minimum eigenvalue, 𝜆EAF, of R is less than 0, 
we add |𝜆EAF| + 0.05 to each element along the diagonal. 
 
PoPS covariates 
We included covariates corresponding to gene density, effective gene size, and inverse of the 
mean minor allele count (MAC) of SNPs in the gene as well as the log of these variables as 
computed by the MAGMA9 software. MAGMA defines gene density as the ratio of the effective 
number of independent SNPs in the gene to the total number of SNPs in the gene and defines 
effective gene size as the effective number of independent SNPs in the gene. We additionally 
include a covariate corresponding to gene size and the log of this variable, defined as the length 
of the gene in base pairs. 
 
Locus definition 
From the set of associated variants with P < 5x10-8, we designated independent lead variants 
from which to define loci. For the 18 traits where we used publicly available summary statistics, 
we performed PLINK clumping using EUR individuals in the 1000 Genomes Project reference 
panel with a p-value threshold of  5x10-8 and r2 threshold of 0.1. Within each clump, we defined 
the variant with the most significant p-value as the lead variant. For the 95 traits from the UK 
Biobank where we had fine-mapping results for regions containing genome-wide significant 
variants, we defined one locus for every independent credible set (CS). For each fine-mapped 
CS, we defined the variant with the highest posterior inclusion probability (PIP) as the lead variant. 
This yields better resolution on the identity of the likely causal variant and allows us to account 
for multiple independent signals contributing to a single GWAS hit. We then defined the locus 
boundaries as 500 Kb on either side of the lead variant and included all genes that fell within or 
overlapped with the locus boundaries. (See Supplementary Fig. 9 for sensitivity to boundary 
size.) 
 
Complex traits and disease associations 
GWAS for 95 heritable traits in the UK Biobank were performed as part of an ongoing study 
(Ulirsch and Kanai, In preparation). Up to 361,194 individuals of white British ancestry with 
available phenotypes and variants with INFO > 0.8, minor allele frequency (MAF) > 0.01%, and 
Hardy-Weinberg equilibrium (HWE) p-value > 1e-10 were included in the GWAS. Covariates for 
the top 20 PCs, sex, age, age2, sex*age, sex*age2, and dilution factor where applicable were 
controlled for in the association studies. Quantitative traits were inverse rank transformed and 
associations were estimated using BOLT-LMM47. For binary traits, associations were estimated 
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using SAIGE48. Publicly available summary statistics were downloaded for an additional 18 
diseases (Supplementary Table 1). 
 
Gene features 
We created gene features from three main data types: (1) bulk and single-cell gene expression 
datasets, (2) curated biological pathways, and (3) predicted protein-protein interaction networks.  
 
(1) For each of the 77 gene expression datasets (Supplementary Table 2), we uniformly re-
processed the raw count (or normalized count when raw counts were not provided) matrices using 
Seurat v349. First, cells with total counts outside of the 5-95th quantiles were removed and only 
the 18,383 protein coding genes used in the PoPS analysis were included. Counts were then 
scaled to counts per million (CPM), log normalized, and scaled such that each gene had a mean 
of 0 and variance of 1 across cells. Principal components and gene loadings were computed on 
scaled expression values for the top 1,000-3,000 variable genes using truncated SVD50. 
Independent components and gene loadings were computed using fastICA51. A k-nearest 
neighbor graph was created using the top principal components (PCs, based upon inspection of 
elbow plot) and clusters were identified using the Louvain algorithm. The uniform manifold 
approximation and projection (UMAP) algorithm52 was used to visualize clusters and investigate 
batch effects. When batch effects were visually apparent and pre-defined batch annotations were 
provided, we attempted to remove batch effects using the anchor approach outlined in Stuart et 
al. Finally, we performed differential expression between clusters using a one-vs-all approach 
with a two-sided Welch’s t-test. We provide code to reproduce these analyses, a repository of 
processed features, and visualizations of top derived features at 
https://github.com/FinucaneLab/gene_features.  
 
We then derived features for PoPS (a) on the whole dataset, (b) within clusters representing 
different cell populations, and (c) between clusters. (a) On the whole dataset, we derived features 
of gene loadings from principal component analysis (PCA) and gene loadings from independent 
component analysis (ICA). (b) Within each cluster, either predefined (when available) or identified 
in our analysis, we derived features of average scaled gene expression and gene loadings from 
the top 10 PCs. (c) Comparing across clusters (1-vs-all), we derived features of a t-statistic for 
differential expression and a binary indicator for differentially up- and down-regulated genes 
(Benjamini–Hochberg FDR < 0.05 and |log2(fold-change)| > 2).   
 
(2) We created features from biological pathways curated for DEPICT from KEGG23, Gene 
Ontology22, Reactome24, and the Mouse Genome databases25. Each feature was encoded as a 
binary indicator for membership to a pathway. (3) We created features using the predicted 
InWeb_IM protein-protein interaction (PPI) network21. For each gene, we included as a feature a 
binary indicator for the set of genes that were its first-degree neighbors.  
 
Finally, for each distinct dataset, we included a control feature as a binary indicator for the set of 
genes that were reported in that dataset. All features were centered and scaled to have mean of 
0 and variance of 1 across genes.  
 
Benchmarker 
Benchmarker26 is an unbiased, data-driven approach to evaluate gene prioritization methods. 
Based on the assumption that SNPs near causal genes should be enriched for trait heritability, 
Benchmarker uses stratified LD score regression (S-LDSC)53 to estimate the average contribution 
of SNPs near prioritized genes to per SNP heritability. Using S-LDSC, Benchmarker jointly models 
a SNP annotation corresponding to prioritized genes along with 53 annotations in the “baseline 
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model” which include genic, regulatory, and conserved regions. To evaluate performance, we use 
the regression coefficient, 𝝉, and its p-value for the hypothesis 𝝉 > 0. 𝝉 measures the contribution 
of SNPs near prioritized genes to per SNP heritability after controlling for the baseline annotations. 
To make 𝝉 comparable across traits, we normalized 𝝉 by the average per-SNP heritability for each 
trait and refer to this quantity as normalized 𝝉.  
 
For our analyses, we selected the 500 genes with the highest PoP scores for each trait as the set 
of prioritized genes and used a 100 Kb window on either side of the transcription start site of each 
gene for mapping SNPs to genes. 
 
Closest gene enrichment 
We used a normal approximation to the null distribution for our test statistic, 𝑐, the number of 
genes that are PoPS prioritized and the closest gene to the lead variant in a locus. Under the null, 
PoPS prioritizes the closest gene in a locus at random with probability ;

FJ
, where 𝑛L is the number 

of genes in a locus, 𝑙. Across all 𝐿 loci, the distribution of 𝑐 under this null is a sum of independent 
Bernoullis with different biases.  For computational tractability when 𝐿 is large, we approximate 
this by a normal with matched moments. 
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We performed a one-sided test for 𝑐 > ∑ ;
FJ;:T	  under the null. We additionally computed the 

enrichment of the number of PoPS prioritized genes that are the closest as the ratio of the 
observed to the expected, 8

∑ ]
^J]:_	

, and estimated the standard error of the enrichment. We used 

the bootstrap to estimate the standard error of the enrichments, not assuming a null distribution, 
and performed 1024 bootstrap repetitions resampling the 𝐿 loci for each trait. 
 
Independent traits 
To identify independent traits, we first computed genetic correlations between all pairs of traits 
using cross-trait LD score regression54 with LD scores from UK10K55. Next, we created an 
adjacency matrix of traits with edge weights corresponding to whitened (|rg| < 0.2 were set to 0), 
absolute genetic correlations. We then identified the maximum independent set of vertices (traits) 
such that no two were adjacent using the igraph package56 in R 3.5. The resulting set contained 
46 independent traits (Supplementary Table 1). 
 
Feature clustering 
For each trait, 50 PCs were derived from the scaled gene by feature matrix using truncated SVD. 
A feature by feature distance matrix was then created as the dissimilarity between features using 
one minus the squared Pearson correlation (r2) between PCs. Complete linkage hierarchical 
clustering was then performed on this distance matrix. Clusters were determined such that 
Pearson r2 > 0.12 for all features within a cluster. This inclusive threshold was chosen in order to 
reduce the impact of multicollinearity when interpreting the contribution of top clusters to PoP 
scores and was validated by manual investigation of within-dataset composition of large clusters 
as well as biological interpretability of the top clusters. 
 
Fine-mapping 
Fine-mapping aims to disentangle the effects of LD to identify causal genetic variants underlying 
complex trait associations and was performed as part of an ongoing study (Ulirsch and Kanai, In 
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preparation). Fine-mapping was performed using the Sum of Single Effects (SuSiE) method57, 
allowing for up to 10 causal variants in each region. Prior variance and residual variance were 
estimated using the default options, and single effects (potential 95% CSs) were pruned using 
the standard purity filter such that no pair of variants in a CS could have r2 > 0.25. Regions were 
defined for each trait as +/- 1.5 Mb around the most significantly associated variant, and 
overlapping regions were merged. As inputs to SuSiE, summary statistics for each region were 
obtained using BOLT-LMM47 for quantitative traits and SAIGE48 for binary traits, in sample dosage 
LD was computed using LDStore58, and phenotypic variance was computed empirically. Variants 
in the MHC region (chr6: 25-36 Mb) were excluded as were 95% CSs containing variants with 
fewer than 100 minor allele counts. Coding (missense and predicted loss of function) variants 
were annotated using the Variant Effect Predictor (VEP) version 8559. 
 
ABC-Max 
We used the Activity-by-Contact (ABC) model11 to predict enhancer-gene connections in 131 
biosamples from 74 distinct cell-types and tissues based on measurements of chromatin 
accessibility (ATAC-seq or DNase-seq) and histone modifications (H3K27ac ChIP-seq). For each 
trait, we included only predicted enhancer-gene connections where the enhancer contained a 
fine-mapped variant (PIP > 0.1) in a credible set that did not contain any coding or splice site 
variants. We assigned each gene in a locus a single score for the corresponding fine-mapped CS 
by taking the highest ABC score of predicted enhancers for that gene-CS pair across all 
biosamples that are enriched for overlapping fine-mapped variants for that trait. Finally, to predict 
a single gene for each credible set, ABC-Max prioritizes the gene with the highest ABC score in 
the locus. 
 
Enhancer-promoter correlation 
We downloaded predicted enhancer-promoter maps based upon the correlation of biochemical 
marks at regulatory regions and expression of nearby genes across cell types for 808 tissues and 
cell-lines from the FANTOM5 project15, 127 tissues and cell-lines from the ROADMAP 
Epigenomics project16, and also for 16 primary blood cell types13. For the FANTOM5 dataset, we 
filtered to interactions with Benjamini–Hochberg FDR < 10-5 for a non-zero Pearson correlation. 
For the ROADMAP dataset, we filtered to interactions with a confidence score > 2.5. For the 
Ulirsch et al. dataset, we filtered to interactions with a Pearson correlation > 0.7 and a Storey FDR 
< 10-4. Finally, for each trait, we included only predicted interactions where the enhancer 
contained a fine-mapped variant (PIP > 0.1). We assigned each gene in a locus a single score 
for each corresponding fine-mapped CS by taking the highest confidence score or correlation of 
predicted enhancers for that gene-CS pair across all tissues and cell-lines. 
 
Promoter capture Hi-C 
We downloaded promoter capture Hi-C datasets (PCHi-C) containing observed physical 
interactions between fragmented DNA and targeted genic promoters for 28 diverse human tissues 
and cell-lines12 and 15 primary blood cell types14. For the Jung et al. dataset, we filtered to 
interactions with p-values for interaction < 0.01 and raw frequency counts > 5. For the Javierre et 
al. dataset, we filtered to interactions with CHiCAGO60 scores > 5. In both cases, we defined a 
variant-gene interaction as a variant with PIP > 0.10 overlapping with a relevant region of 
accessible chromatin, based upon 39 ROADMAP tissues61 for Jung et al. and 44 primary blood 
cell types13,62 for Javierre et al.). Finally, for each trait, we included only predicted interactions 
where the enhancer contained a fine-mapped variant (PIP > 0.1). We assigned each gene in a 
locus a single score for each corresponding fine-mapped CS by taking the highest connection 
strength of predicted enhancers for that gene-CS pair across all tissues and cell-lines. 
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TWAS 
We applied TWAS8 using the FUSION software package and precomputed expression reference 
weights for 48 tissues from GTEx v732. To avoid leveraging the coding signal for the precision-
recall analysis, we excluded all variants in LD (r2 greater than 0.2 to a coding variant with PIP > 
0.1). For all other analyses we included all variants in the GWAS summary statistics. In both 
cases, we took the most significant association across tissues for each gene. 
 
Co-localization 
Using fine-mapping results for 95 complex traits from the UK Biobank and for eQTLs in 49 tissues 
from GTEx v833 we computed co-localization posterior probabilities (CLPP), analogous to those 
reported by the eCAVIAR software7. For each variant, 𝑖, fine-mapped for a complex trait, 𝑔, and 
an eQTL trait, 𝑒, the CLPP was computed as𝑃(𝐶A?, 𝐶Ab) = 𝑃(𝐶A?)𝑃(𝐶Ab), where 𝑃(𝐶A?) is the PIP 
of variant 𝑖 in complex trait 𝑔 and 𝑃(𝐶Ab) is the PIP of variant 𝑖 in eQTL trait 𝑒.  This quantity is an 
estimate of the probability that the variant is causal for both the complex trait and the gene 
expression trait. Within each fine-mapped CS and for each gene, we took the maximum CLPP 
across all variants and GTEx tissues. 
 
Gene prioritization criteria 
We evaluated multiple prioritization criteria for each locus-based method and PoPS including 
various absolute thresholds and the relative rank of genes within a locus (Supplementary Fig. 6, 
Supplementary Table 5). We chose the following prioritization criteria to maximize precision: 

(1a-c) E-P correlation, PCHi-C, ABC-Max: for each locus such that at least one gene has 
a predicted connection with an enhancer containing a variant with PIP > 0.1, the gene that 
has the highest correlation or connection score. To combine across datasets for E-P 
correlation and PCHi-C, we included any gene prioritized in at least one dataset. 
(2a) TWAS: for each locus such that at least one gene is significantly associated after 
Bonferroni correction, the gene with the most significant p-value.  
(2b) CLPP: for each locus such that at least one gene has a variant with CLPP > 0.1, the 
gene with the highest CLPP.  
(3) Distance: for each locus, the gene that is closest to the lead variant by distance to the 
gene body.  
(4) PoPS: for each locus, the gene that has the highest PoP score. 

 
DNase I hypersensitivity annotations  
We lifted over uniformly re-processed DNase I hypersensitivity data63 for 733 biosamples from 
GRCh38 to hg19 to investigate the potential cell-type of action for fine-mapped causal variants. 
Data are shown in aligned read counts per million for ENCODE samples ENCFF220IWU, 
ENCFF619LIB, ENCFF659BVQ, and ENCFF842XRQ. 
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