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A well-known characteristic of pandemics such as COVID-19 is the high level of transmission
heterogeneity in the infection spread: not all infected individuals spread the disease at the same
rate and some individuals (superspreaders) are responsible for most of the infections. To quantify
this phenomenon requires the analysis of the effect of the variance and higher moments of the
infection distribution. Working in the framework of stochastic branching processes, we derive an
approximate analytical formula for the probability of an outbreak in the high variance regime of the
infection distribution, verify it numerically and analyze its regime of validity in various examples.
We show that it is possible for an outbreak not to occur in the high variance regime even when
the basic reproduction number R0 is larger than one and discuss the implications of our results for
COVID-19 and other pandemics.

PACS numbers: 87.10.+e

I. INTRODUCTION

The classic SIR models provide an epidemiology frame-
work for studying the spread of a disease [1]. The ba-
sic reproduction number R0 in these models is the mean
value of secondary infections caused by an infected indi-
vidual. It determines the threshold R0 > 1 for an out-
break. Alternatively, it determines the fraction of the
population that will be infected before herd immunity
is reached. In view of the importance of this parameter,
major measures (such as lockdowns) are taken in order to
reduce the value of R0. The estimation for the COVID-19
pandemic, for example, is R0 ∼ 2− 3.

The structure underlying the epidemic spreading is
that of a complex heterogeneous network, where a small
number of the nodes act as hubs while the majority of
nodes have few contacts (for a review and references
therein see [2]). Indeed, not all people cause a similar
number of secondary infections and there is clear empiri-
cal evidence for high levels of transmission heterogeneity
in the infection spread (see e.g. [3–5]). The analysis in [4]
for the COVID-19 pandemic suggests that between 5%
to 10% of infected individuals are responsible for 80% of
secondary infections. This may be due to differences in
the number of contacts, in protective equipment, in levels
of hygiene, in time of diagnosis or biological effects such
as tendency to cough and sneeze.

Individuals with high secondary infection rate are com-
monly referred to as superspreaders. This is encoded in
the degree distribution of the epidemic spread network
corresponding to the infection distribution. While homo-
geneous random networks such as the Erdos-Renyi model
exhibit a statistical homogeneity of the nodes and the
degree distribution is peaked around the average value,
heterogeneous networks such as the scale free models re-
veal a power law structure of the degree distribution and
nodes with very large degree.

The infection distribution is taken not over a random
individual, but rather over a random infected individual,

i.e. it is weighted according to the a priori probability of
each individual to be infected. For instance, an individual
in contact with many people has a higher likelihood both
to be infected and to infect others and this is reflected in
the degree of the corresponding node in the network.

Studying the phenomenon of superspreaders, which
seems to follow the Pareto-type Principle [6], as well as
its implications on the spread of the disease is crucial
when devising and implementing control policies [6, 7].
In order to analyze the impact of the superspreaders on
the epidemic spread we have to consider the effect of the
variance and the higher moments of the infection dis-
tribution. The main goal of this paper, is to study a
question of utmost importance when facing pandemics
such as COVID-19, namely:“what is the probability that
a disease will disappear without a major outbreak?”

An outbreak is often referred to as a sudden rise in
the number of infected individuals. In this paper, how-
ever, we define an outbreak with reference to the total
fraction of infected individuals in the long term and not
at any specific point in time. Thus, we consider that an
outbreak has not occurred if the disease has disappeared
with a negligible herd immunity. Note, that we will anal-
yse the natural evolution of the disease irrespective of the
measures—social and others—taken to reduce R0.

We will work in the framework of Galton-Watson
branching processes (for a review see e.g. [8]), and use
it to predict the probability of an outbreak as a func-
tion of the infection distribution, that is the probability
distribution for an individual to infect a given number
of people. We derive an approximate analytical formula
for the probability of an outbreak in the high variance
regime of the infection distribution, verify it numerically
in various examples, compare it to COVID-2 data and
discuss its implications for the COVID-19 pandemic. In
particular, we will show that it is possible for an outbreak
not to occur in the high variance regime even when the
basic reproduction number R0 is larger than one. This
phenomenon has been observed in numerical simulations
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[9].

II. THE HIGH VARIANCE REGIME

The infection distribution specifies, for each natural
number k, the probability of an infected individual to
infect k others. We denote by R0 and V the mean and
variance of the number of people infected. When R0 < 1,
it is well established that the disease would disappear on
its own, while when R0 − 1 is not small compared to the
variance V , one can use deterministic models such as SIR
that provide an accurate description.

Let us thus focus on the high variance regime:

0 < R0 − 1� V . (II.1)

Our main result can be stated as follows. The probability
that a disease will disappear without herd immunity is:

Pr = γn, (II.2)

where n is the current number of infected individuals and
γ in the regime (II.1) can be approximated as:

γ ≈ 1−Q , (II.3)

where

Q =
2(R0 − 1)

R2
0 + V −R0

. (II.4)

Below, the corrections to the approximate formula (II.3)
and (II.4) are bounded by higher powers of the ratio Q as
well as the higher moments of the infection distribution.

In section III we formulate the main result precisely
and prove it. However, before delving into the proof let
us consider some of its qualitative implications, compare
it to pandemic data and numerically verify its accuracy.
First, the larger the variance V compared to R0 − 1,
the higher the probability for the disease to disappear
before herd immunity is reached. Thus, the fate of the
disease does not depend only on R0−1. Second, the fewer
infected individuals, the higher the probability for the
disease to disappear and, consequently, the less stringent
the pandemic measures that must be taken, even when
R0 > 1. Third, the effective dependence on the variance
is V

n .
Let us numerically compare our approximate analyti-

cal formula to the exact γ for the re-scaled infection dis-
tribution of COVID-2 [3]. The latter is based on fitting
pandemic data to a distribution obtained by sampling
a Poisson distribution whose mean is sampled from a
Gamma distribution, which we will call Gamma-Poisson
distribution. Since R0 of COVID-2 is high, we define the
infection distribution for lower values of R0 by re-scaling
the original one, that is, we fix the shape of the distribu-
tion that is determined by a parameter k and re-scale the
parameter θ that determines the scale of the distribution.

FIG. 1: Our approximate formula 1−Q vs. the exact Galton-Watson
coefficient γ for the re-scaled infection distribution of COVID-2 [3].

The latter fits data to a distribution obtained by sampling a Poisson
distribution with mean being sampled from a Gamma distribution.

The parameter k ≈ 0.19 for COVID-2 controls the shape of the
Gamma distribution, while the parameter θ controls its scale. We

constructed our data by fixing k and scale θ to give different values of
R0 = kθ. We reach R0 ≈ 1.6 for the lower value of k.

The results are depicted in figure 1 and, as expected, we
see that lower R0 implies better accuracy.

We use our formula to estimate the probability to
avoid an outbreak for the COVID-2 and COVID-19 pan-
demics as a function of R0 and the number of infected
n—requiring an estimate of the ratio V

R2
0
. Based on [3]

we set V = 5R2
0 for COVID-2. As noted above, the

analysis in [4] estimates that the ph value (the percent-
age of the infected population responsible for 80% of all
secondary infections) is around 5% − 10%. Assuming
Gamma-Poisson distribution, ph = 10% implies k = 0.1
and V = 10R2

0, and lower ph values correspond to even
higher variance. We plot the results in figures 2 and 3:
for given values of R0 and n, the higher the variance the
higher the probability of avoiding an outbreak.

While it is clear that γ cannot be determined precisely
by R0 and V alone and the information about the higher
moments of the infection distribution is necessary, our
numerical analysis reveals that for certain distributions
that are often being employed for real world pandemics
the accuracy of (II.3) is mostly determined by the value
of R0 − 1 as depicted in figure 4 and figure 5.

In figure 4, the Poisson distributions has λ values in
the range 1.0 to 1.1, the geometric distributions has p
values in the range 0.43 to 0.5, the Poisson10x distribu-
tion is obtained by selecting a Poisson distribution with
10 ≤ λ ≤ 20 value with probability 10% or the zero dis-
tribution with probability 90%, and the Truncated Power
Law distributions has a cut-off at 100 with powers rang-
ing from 2.1 to 2.375. In figure 5 we consider the ratio
between the logarithms since this determines the ratio
between the values of n that would give a specific prob-
ability to avoid an outbreak.
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FIG. 2: The probability to avoid an outbreak when V = 5R2
0

(COVID-2) as a function of the basic reproduction number and the
number of infected individuals.

FIG. 3: The probability to avoid an outbreak when V = 10R2
0

(COVID-19) as a function of the basic reproduction number and the
number of infected individuals.

FIG. 4: The exact Galton-Watson coefficient γ vs. our approximate
formula 1−Q for various infection distributions. The line y = x
corresponds to γ = 1−Q. The accuracy of the formula depends

mostly upon the value of R0, which explains the different deviations
of the distributions from the y = x line: R0 for the Poisson,

Geometric, Poisson10x and the truncated power law distributions are
in the ranges [1, 1.1], [1, 1.32], [1, 2], [1, 1.72], respectively.

III. FORMAL STATEMENTS AND PROOFS

We define the infection distribution by a sequence of
real variables ak, where ak is the probability that a carrier
infects k individuals and is removed. The normalization
condition is: ∑

k

ak = 1. (III.1)

Denote by Mi the ith moment of the infection distri-

FIG. 5: A comparison of our formula to the exact value of γ for
various distributions as a function of R0, and the larger R0 the larger

the deviation. We tested our results for several distributions:
Gamma-Poisson distributions for COVID-2 [3], Poisson and

Truncated Power Law distributions.

bution:

Mi =
∑
k

akk
i, M1 = R0, M2 = V +R2

0 , (III.2)

and the quantity η by:

η =
1

R2
0 + V −R0

∑
i≥3

(
3Q
2

)i−2
Mi

i!
. (III.3)

Let p(x) be the polynomial

p(x) =
∑
k

akx
k − x . (III.4)

The proof of our result (II.2) and (II.3) consists of prov-
ing three statements:

• Pr = γn where 0 ≤ γ < 1 is a root of p(x).

• p(x) has a root within a small neighborhood of 1−
Q.

• p(x) has at most a single root in [0, 1).

Let us prove the following claims:

Claim III.1 (Galton-Watson analysis). If R0 > 1 then
the probability that the disease will disappear without herd
immunity is γn where γ satisfies p(γ) = 0 and 0 ≤ γ < 1.

Claim III.2 (Approximate Formula). There exist c and
η0 > 0 s.t. if η < η0 then p(x) has a root within the
interval

[1− (1− cη)Q, 1− (1 + cη)Q]

Claim III.3 (Single Root). p(x) has exactly one root in
the interval [0, 1).

Combining the above assertions, we see that if:
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• R0 > 1 (condition for Claim III.1)

• η < η0 (condition for Claim III.2)

• Q < 1
(1+cη0) (the root in Claim III.2 is positive)

then we arrive at our main result:

1− γ ∈ [1− cη, 1 + cη]Q . (III.5)

Claim III.1 is a standard analysis of Galton-Watson
processes [8], which we will now briefly review for com-
pleteness.

One views the number of sick individuals as a Markov
process, where at each point we pick a sick individual,
add the number of people infected by him and remove
him. As above, ak is the transition probability from a
state with n sick people to a state with k added infected
people and one removed:

n→ n+ k − 1 . (III.6)

Denote by f(n) the probability that no major outbreak
will occur at any time t > 0 if we have at t = 0 n infected
people, and define γ = f(1) ∈ [0, 1].

For the disease to die out, every branch that begins
from one of the n infected individuals at t = 0 should
disappear. Since we neglect the interaction between the
infected individuals, these are independent random vari-
ables and f(n) = f(1)

n
= γn.

Using time independence and the total probability, one
gets the recursion relation:

f(n) =
∑
k

akf(n+ k − 1) . (III.7)

Setting n = 1 in (III.7) we have:∑
k

akγ
k − γ = 0 , (III.8)

that is, γ is a root of the polynomial p(x) (III.4).
Finally, in order to complete the proof of Claim III.1,

we have to show that γ 6= 1. This is not surprising, as
we are dealing with the R0 > 1 regime and setting γ = 1
would make the probability of an outbreak 1 − 1n = 0
regardless of the number of infected at t = 0. In order
to prove the claim, we have to show that the probability
of an outbreak converges to 1 as n→∞, but this is easy
to see (for instance, by applying Chebyshev’s inequality
on the probability that n sick will infect less than R0+1

2 n
individuals).

Consider next Claim III.2. It is convenient to denote
γ = 1 + δ and analyze the roots of p(x) :

p(1 + δ) =
∑
k

ak(1 + δ)k − (1 + δ) = 0 . (III.9)

Expanding (III.9) and using (III.1) and (III.2) we get:

p(1+δ) = (R0−1)δ+
1

2

(
R2

0 + V −R0

)
δ2+ corrections .

(III.10)

From (III.10) we get the approximate formula (II.3)
where the corrections are bounded by:

corrections ≤
∑
i≥3

Mi

i!
δi . (III.11)

Let η0 = 1
10 and c = 5. We are interested in the case

where

δ ∈ [−1− cη,−1 + cη]Q

⊆ −
[

3Q
2
,
Q
2

]
.

(III.12)

Therefore:

p(1 + δ) =

= (R0 − 1)δ +
1

2

(
R2

0 + V −R0

)
δ2±

(R2
0 + V −R0)δ2η ,

(III.13)

where we denote X = Y ± Z iff |X − Y | < Z. It is
straightforward to see that when δ = −(1 + 5η)Q we
have p(1 + δ) ≥ 0, while when δ = −(1 − 5η)Q, we
have p(1 + δ) ≤ 0. Combining these results with the
Intermediate Value Theorem, we conclude the proof of
Claim III.2.

In order to prove Claim III.3, consider the second
derivative of p(x):

p′′(x) =
d2p(x)

dx2
=
∑
k≥2

k(k − 1)xk−2 , (III.14)

and p′′(x) > 0 for x > 0. Thus, p(x) is convex in R+, and
must have at most two non-negative roots. Using (III.1)
we see that x = 1 is one of these non-negative roots.
Furthermore, x = 1 is not a local minimum of p(x), since

p′(1) =
∑
k

kak − 1 = R0 − 1 > 0 , (III.15)

and in particular it cannot be the global minimum for
p(x) in x ∈ R+. This implies that p(x) must have a
negative value.
∀x > 1: p′′(x) > 0 implies that p′(x) > p′(1) > 0

and hence p(x) > 0. Therefore, p reaches its minimum
in the R+ region at some point b, 0 ≤ b < 1. From
the Intermediate Value Theorem, there is a point c, 0 ≤
c < b < 1 such that p(c) = 0, and it is clearly unique,
concluding our proof.

IV. DISCUSSION AND OUTLOOK

We have carried out an analysis of the stochastic
spread of a disease in the high variance regime of the
infection distribution. This allowed us to study an im-
portant characteristic of the COVID-19 and other pan-
demics where not all infected individuals spread the dis-
ease at the same rate and superspreaders are responsible
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for most of the infections. We derived an approximate
analytical formula (II.2 and II.3) for the probability to
avoid an outbreak in the high variance regime (II.1) and
estimated its accuracy numerically and analytically. We
found out that R0 − 1 is the main control parameter for
the higher moment corrections. Curiously, for all the
distributions that we analyzed we found that γ ≤ 1−Q,
giving us an upper bound on the approximation. We
compared the formula to infection distribution data and
discussed its implications for the COVID-2 and COVID-
19 pandemics.

Our analysis reveals the general coarse-grained struc-
ture of the infectious diseases irrespective of the detailed
graph or network structure of the disease spread. We
studied the natural evolution of the disease under the
assumption that the infection and recovery are time-
independent random variables. There are several rea-
sons to consider the time dependence of R0, V and the
higher moments, an obvious one being the measures, so-
cial and other, taken to reduce them. A less obvious one
is related to the time-dependent details of the disease’s

evolution structure. There can be a major change due
to a reduction in the number of superspreaders that are
removed, which leads to interesting insights about the
disease spread, such as reaching herd immunity faster
than previously assumed [10].
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