














 
FIGURE 8 Different stages of Synthetic OCT data for 3 prototypes,   a) Reference image, 
b) Noise free synthetic image, c) Adding noise to the synthetic image, d) Adding synthetic 
blood vessels.  

 
To demonstrate applicability of our method in validation of retinal image analysis 
algorithms, we provide 2 frameworks for quantitative analysis: measurement of 
segmentation performance and monitoring the denoising performance. In first step, the 
performance of an automatic segmentation algorithm in different noise levels of synthetic 
data is tested on 15 randomly selected two-dimensional synthetic data. Figure 9 shows 
samples of synthetic images with our method and corresponding segmentations. The tested 
segmentation method is a semiautomatic method based on live wire theory [29].The mean 
signed and unsigned border positioning errors for each border with different noise levels 
are presented in Tables 2 and 3.  

 
FIGURE 9   Segmentation results, a) Synthetic images, b) Synthetic boundaries, c) 

Segmentation boundaries. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 8, 2020. ; https://doi.org/10.1101/2020.09.05.20181917doi: medRxiv preprint 



In second framework, we tested a number of famous denoising algorithms to demonstrate 
the performance of our dataset in evolution of denoising method. BM3d [30] is a baseline 
algorithm in image denoising which achieved competitive results. We also use the method 
described in [31] to evaluate the generated images. This method is a numerical optimization 
framework based on the maximum-posterior estimation of noise-free OCT image and 
combines a novel speckle noise model, derived from local statistics of empirical spectral 
domain OCT (SD-OCT) data, with a Huber variant of total variation regularization for edge 
preservation.  This method is expected to exhibit satisfying results in terms of speckle noise 
reduction as well as edge preservation. The results of using these two methods on 15 
randomly selected synthetic images with three different speckle noise levels with variances 
of (0.04, 0.09, 0.2), are presented with PSNR value in table 4. Furthermore, Figure10 and 
11 demonstrates the performance of both methods on two samples of our synthetic data 
with different noise variations. 

 

FIGURE 10 First samples for comparison of denoising methods, a) Synthetic noisy images, 
b) BM3d method, c) Li method [31]. 

 
FIGURE 11 Second samples for comparison of denoising methods, a) Synthetic noisy 
images, b) BM3d method, c) Li method. 
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4. Conclusion 

Unlike other studies on OCT synthesis [16, 17], which only rely on segmented data from 
internal limiting membrane (ILM), outer segment layer (OSL) and retinal pigment 
epithelium (RPE), the proposed method is more detailed by incorporating information from 
nine layers of retina. ASM method is also novel in producing new OCT shape parameters. 
Furthermore, model construction for making the blood vessels is totally new in this paper. 
One more emphasized characteristics of the proposed method is production of labeled data 
which makes it an ideal candidate for performance measurement of segmentation 
algorithms. Finally, created images can be used to train deep learning algorithms for layer 
segmentation which need abundant number of labeled data. 
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Table 1. A review of related work 

 
Table 2: Summary of mean signed border positioning errors (mean ± std). 

Noise 
levels 

B1 B2 B3 B4 B5 B7 B8 B9 

V=0.04 
 

-1.25±0.81 -0.84±1.17 -1.28±0.61 -1.44±0.78 -0.53±0.41 -1.91±0.50 -1.76±0.58 0.02±0.92 

V=0.09 
 

-1.51±0.78 -0.73±0.39 -1.26±0.43 -1.60±0.90 -0.42±0.25 -2.42±0.24 -1.89±0.88 0.21±1.01 

V=0.2 
 

-1.54±0.16 -0.76±0.28 -1.22±0.60 -2.27±1.08 -0.26±0.69 -2.10±1.26 -1.95±0.74 0.10±1.03 

Table 3: Summary of mean unsigned border positioning errors (mean ± std). 

Noise 
levels 

B1 B2 B3 B4 B5 B7 B8 B9 

V=0.04  
 

1.89±0.33 1.231±0.12 1.40±0.51 1.55±0.60 1.32±0.46 1.95±0.39 1.81±0.55 1.02±0.19 

V=0.09  
 

1.98±0.27 1.26±0.22 1.51±0.41 2.03±0.68 1.10±0.13 2.34±0.19 2.14±0.63 1.25±0.36 

V=0.2  
 

1.91±0.20 1.39±0.15 1.56±0.41 2.45±1.03 1.15±0.25 2.15±1.18 2.00±0.72 1.24±0.36 

 

Table4. PSNR values. 

Speckele noise 
variance 

PSNR dB 
 (BM3d method) 

PSNR dB  (Li 
method) 

PSNR dB  
(Nois free synthetic 

images)  
0.04 36.83 37.25 27.31 
0.09 32.34 33.10 24.88 
0.2 26.11 31.56 21.48 

 

Feature added to synthetic image  
Number of 
synthetic 

data 

 
Segmentation 

method 

 
Number 

of segmentation 
layer 

 
method 

 
OCT system 

 
Data set 

 
Investigator 

Intensity 
of layers 

pathology and 
textural 

information 
noise 

Blood 
vessel 

* - * - 10 manual 3(ILM, OSL, 
RPE) 

 

Mathematical 
models 

Carl Zeiss Meditec, 
Dublin, CA, USA 

10 healthy 
volunteers 

 Serranho. 
2011[16]. 

* - * * 14 manual 7 (NFL-GCL, IPL, 
INL, OPL, ONL, 

PRL, RPE) 
 

Statistical 
Model 

within three 
different C-Scan 
volumes 

14 animals Kulkarni. 
2011[19].  

- - * * Not 
Determined 

manual 2(ILM, RPE) 
 

Appearance 
Models 

Spectralis CT, 
Heidelberg 
Engineering and 
Cirrus HD-OCT, 
Carl Zeiss Meditec 

20000OCT 
scans of 
over 1000 
patients 

Montuoro. 
2014[18]. 

* * * - 5 manual 2(ILM, RPE) 
 

Mathematical 
Models 

 5pathologies 
such as cysts  

Shahrian. 
2016[17]. 
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