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Abstract 
COVID-19 presents with a wide range of severity, from asymptomatic in some individuals to 
fatal in others. Based on a study of over one million 23andMe research participants, we report 
genetic and non-genetic associations with testing positive for COVID-19, respiratory symptoms, 
and hospitalization. Risk factors for hospitalization include advancing age, male sex, elevated 
body mass index, lower socio-economic status, non-European ancestry, and pre-existing 
cardio-metabolic and respiratory conditions. Using trans-ethnic genome-wide association 
studies, we identify a strong association between blood type and COVID-19 diagnosis, as well 
as a gene-rich locus on chr3p21.31 that is more strongly associated with outcome severity.  
While non-European ancestry was found to be a significant risk factor for hospitalization after 
adjusting for socio-demographics and pre-existing health conditions, we did not find evidence 
that these two primary genetic associations explain differences between populations in terms of 
risk for severe COVID-19 outcomes.  
 

Introduction 
 
The COVID-19 pandemic has caused unprecedented disruption to modern societies throughout 
the world. Since the emergence of the disease, it has become clear that the course of disease 
can vary considerably between individuals1, with some experiencing mild or non-existent 
symptoms and others experiencing severe outcomes, including hospitalization or even death. It 
has been well documented that a number of host factors are correlated with disease 
progression, with primary risk factors including sex, age, ethnicity, and the presence of 
underlying medical conditions2. 
 
Much less is known about the genetic basis of COVID-19 disease risk, both in terms of 
susceptibility to infection and severity of outcomes following infection. It has been well-
established that genetics plays a role in host susceptibility to infection and disease 
pathogenesis in humans3. Notable examples include the protective effects of the CCR5Δ32 
mutation on infection with the HIV-1 virus4 and the sickle-cell mutation in the HBB gene offering 
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protection against the malaria-causing Plasmodium falciparum5. Over the past decade, genome-
wide association studies (GWAS) have proved to be a useful tool for uncovering novel infectious 
disease susceptibility loci, identifying loci associated with pathogen clearance or persistence, 
and providing supporting evidence for the role of certain host factors implicated in disease 
progression and severity6,7.  
 
Given the rapid emergence of COVID-19, pre-existing genetic cohorts offer a path to rapid data 
collection that can address questions surrounding the relationship between host genetics and 
COVID-19 in a timely fashion. Amongst the largest pre-existing genetic cohorts are those that 
have been developed via direct-to-consumer (DTC) genetic testing. 23andMe is a DTC genetic 
testing company with over 10 million genotyped customers. As part of the 23andMe service, 
customers are genotyped on SNP microarrays and offered the opportunity to participate in 
scientific research, and approximately 80% of customers consent to do so. In general, research 
participation is conducted via online surveys, which research participants can complete at any 
time. Research participants are re-contactable and can be invited to participate in new surveys 
that are developed over time.  
 
In this paper, we describe the engagement of the 23andMe research cohort to address 
questions surrounding COVID-19 risk factors and host genetics. Having collected data from 
over one million research participants, we identified 15,434 individuals who reported a positive 
COVID-19 test, of whom 1,131 reported hospitalization with COVID-19 symptoms. We first 
investigated non-genetic risk factors associated with COVID-19 severity and found that lower 
socio-economic status, African American ancestry, obesity, and pre-existing conditions 
associated with a higher risk of hospitalization. We subsequently conducted a GWAS of 
phenotypes related to both COVID-19 diagnosis and severity. We performed GWAS separately 
in samples of European, Latino, and African American ancestries and used the resulting data to 
perform a trans-ethnic meta-analysis. We identified a strong association with the ABO gene, 
which appears to be connected with COVID-19 diagnosis, and another strong association within 
a gene-rich locus at chr3p21.31, which appears to be connected with COVID-19 severity.  

Methods 

Overview of study recruitment and data collection 
Participants in this study were recruited from the customer base of 23andMe, Inc., a personal 
genetics company. All individuals included in the analyses provided informed consent and 
answered surveys online according to our human subjects research protocol, which was 
reviewed and approved by Ethical and Independent Review Services, a private institutional 
review board (http://www.eandireview.com). 
 
Primary recruitment was carried out by email to approximately 6.7 million 23andMe research 
participants over 18 years of age and living in the United States or the United Kingdom. 
Additionally, pre-existing customers were invited to participate in the study through promotional 
materials on the 23andMe website, the 23andMe mobile application, and via social media. 
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Study participation consisted solely of web-based surveys, including an initial baseline survey, 
and three follow-up surveys fielded 1-month following completion of the baseline survey. 
Because enrollment is ongoing, not all participants would have received, or completed all of the 
follow-up surveys. All (4) surveys included questions about symptoms of cold or flu-like illnesses 
from February of 2020 onward, COVID-19 diagnosis and testing, hospitalization, severity of 
illness, COVID-19 diagnosis of first and second degree family members, and potential sources 
of exposure to COVID-19. Other respondent characteristics, such as age, sex, pre-existing 
conditions, educational attainment, zip code, and smoking status had been collected via 
previously deployed surveys for the majority of participants, but were also queried in the 
COVID-19 baseline survey if the data were missing. 
 
Due to the geographically localized nature of the COVID-19 outbreak during the study period, 
we geo-targeted the email recruitment campaign to follow the outbreak as it moved through the 
United States (Figure 1). Emails to each state/country were batched into tranches on the basis 
of the anticipated timing of the hospitalization demand peak within each region, as assessed 
from the Institute for Health Metrics and Evaluation (IHME) prediction model8. Each tranche was 
recruited via email a minimum of two weeks after estimated peak hospitalization demand, as 
determined by the IHME predictive models. IHME predictions varied over the course of the 
study, and the order in which regions were targeted was adjusted accordingly. The email send 
dates are detailed in Supplementary Table 1.  
 

 
Figure 1: COVID-19 email-based study recruitment in the United States between 6 April 
and 25 July 2020.  
 
To visualize the estimated prevalence of test positive COVID-19 study participants across the 
United States, we calculated the proportion of test positive cases among participants for each 
county with greater than 10 responses. In order to generate a smoothed representation of the 
data, we identified the 15 nearest counties for each county, and calculated a prevalence 
estimate weighted by sample size across those counties. To highlight how the smoothed 
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version represents the raw data, we also generated a version without smoothing, with a random 
10% of study participants removed in order to eliminate the possibility of reidentification in the 
dataset.   

Social, demographic, and pre-existing conditions evaluated as risk factors for COVID-19 
hospitalization 
To explore non-genetic factors associated with hospitalization for COVID-19, age, sex, ancestry, 
median household income of the residential zip code, educational attainment, body mass index, 
and pre-existing conditions were evaluated as risk factors in bivariate and multivariate logistic 
regression models. Ancestry was inferred via a previously described genetic ancestry 
classification algorithm9,10 to ensure compatibility with the GWAS methodology described below. 
As social and demographic factors are strongly associated with COVID-19 hospitalization and 
many of the pre-existing conditions, final models estimating the relationship between the pre-
existing condition and COVID-19 hospitalization were adjusted for age (10-year increments), 
sex, ancestry, high school or below education, and median household income of the residential 
zip code (in $10,000 increments). Finally, a multivariate logistic regression model was specified 
to quantify the risk of the top conditions after adjusting for each other, and for socio-
demographic characteristics related to risk of hospitalization for COVID-19.  
 
The relationship between age and COVID-19 and hospitalization was determined by 
categorizing cases by 10-year age increments between 30 and 80, and then calculating the 
percentage of cases in each age group and the percentage of cases which reported 
hospitalization. To describe differences in hospitalization by ancestry, age-standardized 
estimates were calculated by applying the percent of cases hospitalized within age strata for 
European, African American, and Latino respondents and applying that percentage to the age 
structure of all cases in the study population. While our data also included respondents of other 
ancestries, such as East Asian and South Asian, the sample sizes for these populations were 
too small for robust inferences to be performed. All analyses were conducted in R statistical 
software, version 3.3. 

Phenotype definitions for GWAS 
Using the information derived from the surveys, we defined a set of phenotypes that aimed to 
capture aspects of COVID-19 diagnosis and severity. Following preliminary analysis, we 
selected one ‘diagnosis’ phenotype that contrasts positive and negative outcomes from a 
COVID-19 test, and four phenotypes that capture aspects of COVID-19 disease ‘severity’, 
including pneumonia, hospitalization, or the need for respiratory support (Supplementary Table 
2). For the severity phenotypes, we explored different choices of how to define controls, and 
found that using controls who had not reported a COVID-19 diagnosis (were neither diagnosed 
with nor tested positive for COVID-19) provided a large-scale control set that appeared to 
maximize power in the GWAS. 
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Genotyping and SNP imputation 
DNA extraction and genotyping were performed on saliva samples by CLIA-certified and CAP-
accredited clinical laboratories of Laboratory Corporation of America. Samples were genotyped 
on one of five genotyping platforms. The V1 and V2 platforms were variants of the Illumina 
HumanHap550 + BeadChip and contained a total of about 560,000 SNPs, including about 
25,000 custom SNPs selected by 23andMe. The V3 platform was based on the Illumina 
OmniExpress + BeadChip and contained a total of about 950,000 SNPs and custom content to 
improve the overlap with our V2 array. The V4 platform was a fully custom array of about 
950,000 SNPs and included a lower redundancy subset of V2 and V3 SNPs with additional 
coverage of lower-frequency coding variation. The V5 platform was based on the Illumina GSA 
array, consisting of approximately 654,000 pre-selected SNPs and approximately 50,000 
custom content variants. Samples that failed to reach 98.5% call rate were re-analyzed. 
Individuals whose analyses failed repeatedly were re-contacted by 23andMe customer service 
to provide additional samples, as is done for all 23andMe customers. 
 
Participant genotype data were imputed using the Haplotype Reference Consortium (HRC) 
panel11, augmented by the Phase 3 1000 Genomes Project panel12 for variants not present in 
HRC. We phased and imputed data for each genotyping platform separately. For the non-
pseudoautosomal region of the X chromosome, males and females were phased together in 
segments, treating the males as already phased; the pseudoautosomal regions were phased 
separately. We then imputed males and females together, treating males as homozygous 
pseudo-diploids for the non-pseudoautosomal region. 

Genome-wide association study (GWAS) 
Genotyped participants were included in GWAS analyses on the basis of ancestry as 
determined by a genetic ancestry classification algorithm10. For each phenotype, we selected a 
set of unrelated individuals so that no two individuals shared more than 700cM of DNA identical 
by descent (IBD). For case-control phenotypes, if a case and a control were identified as having 
at least 700cM of DNA IBD, we preferentially discarded the control from the sample. 
 
For case-control comparisons, we tested for association using logistic regression, assuming 
additive allelic effects. For tests using imputed data, we use the imputed dosages rather than 
best-guess genotypes. We included covariates for age, age squared, sex, a sex:age interaction, 
the top ten principal components to account for residual population structure, and dummy 
variables to account for genotyping platform. The association test p-value was computed using 
a likelihood ratio test, which in our experience is better behaved than a Wald test on the 
regression coefficient. Results for the X chromosome were computed similarly, with men coded 
as if they were homozygous diploid for the observed allele. 
 
We ran GWAS for each phenotype separately, and combined both genotyped and imputed 
data. When choosing between imputed and genotyped GWAS results, we favored the imputed 
result, unless the imputed variant was unavailable or failed quality control (QC). For imputed 
variants, we removed variants with low imputation quality (r2 < 0.5 averaged across batches, or 
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a minimum r2 < 0.3) or with evidence of batch effects (ANOVA F-test across batches, p-value < 
10-50). For genotyped variants, we removed variants only present on our V1 or V2 arrays (due to 
small sample size) that failed a Mendelian transmission test in trios (p-value < 10-20), that failed 
a Hardy-Weinberg test in Europeans (p-value < 10-20), failed a batch effect test (ANOVA p-value 
< 10-50), or had a call rate < 90%. 
 
We repeated the GWAS analysis separately in each population cohort for which we had 
sufficient data (European, Latino, African American), and then performed trans-ethnic meta-
analysis using a fixed effects model (inverse variance method13), restricting to variants of at 
least 1% minor allele frequency. 
 
Within each GWAS, we identified regions with genome-wide significant (GWS) associations. We 
define the region boundaries by identifying all SNPs with p-value < 10−5 within the vicinity of a 
GWS association, and then grouping these regions into intervals so that no two regions are 
separated by less than 250 kb. We consider the SNP with the smallest p-value within each 
interval to be the index SNP. We also annotated our findings based on linkage disequilibrium 
(LD) with results from published GWAS, coding variation, and expression quantitative trait loci 
(eQTL), specifically by finding annotations with r2 > 0.5 and within 500kb of the index SNP. 

Blood group analyses 
We classified haplotypes into blood groups on the basis of genotypes at three SNPs: 
rs8176747, rs41302905, and rs817671914,15. A deletion at rs8176719 confers a type O 
haplotype, as does a T allele at rs41302905. If neither rs8176719 nor rs41302905 confers type 
O, then rs8176747 distinguishes between types A and B. This assignment paradigm is 
described in Supplementary Table 3. 
 
Given haplotype assignments, individuals were assigned a blood type on the basis of their 
diploid combination of haplotypes, with type O being recessive, so that individuals with two O 
haplotypes were assigned type O, individuals with one O and one A haplotype were assigned 
type A, and so on. 
 
We note that the blood group assignment methodology described above is incomplete, and 
there are other rare variants that can influence blood group14. In order to understand the 
accuracy of the genetic blood group assignments, we compared to self-reported blood groups 
from over 1.47 million research participants. We found that the genetic assignments achieved 
90-94% precision and 72-96% recall compared to the self-reported data, depending on blood 
group (Supplementary Table 4). 
 
We tested for association between ABO blood group and COVID-19 phenotypes in each 
population using logistic regression, testing blood group pairs separately (e.g. individuals with 
blood group O vs individuals with blood group A) and only testing unrelated individuals. We 
included covariates for age, age squared, sex, a sex:age interaction, and the top ten principal 
components. We meta-analysed across populations using a fixed effects model. We repeated 
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these analyses using self-reported blood group assignments in place of genetically determined 
assignments and found the results to be qualitatively similar (data not shown). 
 
We performed a similar analysis between ABO blood groups and experience of influenza by 
considering research participants who answered the question “Have you had influenza (flu) in 
the past 12-months? Common symptoms of flu are fever over 100o F (38o C), muscle aches, 
chills and sweats, headache, dry cough, fatigue, nasal congestion and sore throat. As compared 
to the common cold, symptom onset for influenza is faster, more severe, and can last 1-2 
weeks.” In order to avoid overlap with individuals reporting experiences with COVID-19, we 
tested for association between influenza and the ABO blood groups using a sample of 
individuals that answered the question during either the 2017-2018 flu season, defined as 
starting in October 2017 and ending in September 2018, or the 2018-2019 flu season, defined 
as starting in October 2018 and ending in September 2019. 
 
To test for differences between rhesus positive and negative blood groups, we use the structural 
variant esv3585521 to obtain rhesus type. This variant, located within the RHD gene, has a 
39.4% frequency in European populations and associates very strongly with self-reported 
rhesus type in 23andMe data (OR = 22.1, p-value = 1.8e-298). We take individuals imputed as 
homozygous for the deletion as being rhesus negative. Within each blood group, we tested for 
association between rhesus type and COVID-19 phenotypes in the European-ancestry 
population using logistic regression. We included covariates for age, age squared, sex, a 
sex:age interaction, and the top ten principal components.  

Results 

Respondent characteristics 
As of July 25th 2020, just over 1.05 million research participants took the COVID-19 baseline 
survey. Respondents were included in this analysis if they had consented to research and had a 
non-missing response to the question, “Have you been tested for COVID-19?”. Of those, 15,434 
self-reported a positive test result, and 1,131 reported hospitalization with a positive test (Table 
1). The majority of respondents were currently based in the United States (93.2%), followed by 
the United Kingdom (2.4%), with the remainder responding from other countries around the 
world (4.4%). The majority of respondents were of European ancestry (80.3%), although the 
study also included substantial  representation from Latino (11.3%, n = 118, 787), and African 
American or Black (2.7%, n = 28,592; hereafter referred to as African American) ancestries. 
Study participants were 63% female with a median age of 51 years.  
 
Those reporting a positive test were more likely to be male (OR = 1.22, 95% CI 1.18-1.26, p-
value < 2.2e-16), younger on average (43.0 vs. 51.0, p-value <0.001), and less likely to be of 
European ancestry (70.3% COVID-19 positive test were European vs. 80.3% of all study 
participants, p-value <0.001), compared to other survey respondents. Comparing those who 
tested positive to all other study participants, living in an urban environment (90.5% of 
respondents vs. 95% of those with a COVID-19 positive test, p-value <0.001) and employment 
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as a healthcare professional (9.2% of respondents but 21.7% of COVID-19 positive tests, p-
value <0.001) were associated with a higher likelihood of reporting a positive test. Pre-existing 
conditions were negatively associated with reporting a COVID-19 positive test, as was current 
smoking status (Table 1).  
 
Table 1: Demographic and health characteristics of COVID-19 survey respondents. 

 
All study 

participants 
Reported a 

COVID-19 test 

Reported a 
COVID-19 

positive test 

Reported a 
COVID-19 

positive test 
and 

hospitalization 

Sample size 1,051,032 136,555 15,434 1,131 

Median age (SD) 51.0 (16.9) 50.0 (16.3) 43.0 (15.5)*** 53.0 (17.5)*** 

Female N (%) 660,709 (62.9) 84,724 (62.0) 8,991 (58.3)*** 573 (50.7)*** 

Current country of residence     

United States N(%) 979,909 (93.2) 127,875 (93.6) 14,159 (91.7)*** 1,021 (94.2) 

United Kingdom N(%) 25,138 (2.4) 2,222 (1.6) 410 (2.7)* 38 (3.5) 

Other N(%) 45,985 (4.4) 6,458 (4.7) 865 (5.6)*** 25 (2.3) 

Ancestry     

European N(%) 843,567 (80.3) 105,962 (77.4) 10,849 (70.3) 769 (68.0) 

Latino N(%) 118,787 (11.3) 18,137 (13.3) 2,882 (18.7)*** 197 (17.4) 

African American or Black N(%) 28,592 (2.7) 4,331 (3.2) 627 (4.1)*** 75 (6.6)*** 

Other non-European N(%) 60,086 (5.7) 8,395 (6.1) 1,076 (7.0)*** 90 (8.0) 

Education     

High school or less N(%) 89, 427 (8.5) 9,208 (6.7) 1,233 (8.0) 119 (10.5)*** 

Some college or associate's 
degree N(%) 262,155 (24.9) 33,415 (24.5) 3,906 (25.3)* 302 (26.7)* 

Bachelor's degree N(%) 279,873 (26.6) 36,874 (27.0) 4,155 (26.9)* 232 (20.5)*** 

Master’s or above N(%) 246,209 (23.4) 36,096 (26.4) 3,395 (22.0) 243 (21.5) 

Missing education level N(%) 173,368 (16.5) 20,962 (15.4) 2,745 (17.8) 235 (20.8) 

Median household income in 
residential zip code USD (SD) 

67,950 
(28,975) 

68,720 
(30,230) 

69,820 
(30,636)*** 

67,280 
(27,959)*** 

Metropolitan residential area N(%) 854,539 (90.5) 113,940 (92.3) 12,975 (94.9)*** 938 (94.5) 

Health care professional N(%) 92,929 (9.2) 24,707 (18.8) 3,183 (21.7)*** 174 (15.8)*** 

Pre-existing conditions     

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188318doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.04.20188318
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

9 

Current smoker N(%) 85,801 (8.4) 11,222 (8.5) 1,133 (7.6)*** 74 (6.8) 

Type 2 diabetes N(%) 60,266 (5.8) 8,439 (6.3) 788 (5.2)*** 146 (13.3)*** 

Hypertension N(%) 298,599 (29.0) 40,060 (29.8) 3,669 (24.3)*** 468 (42.8)*** 

Fatty liver disease N(%) 44,022 (4.3) 7,725 (5.8) 727 (4.8)*** 106 (9.7)*** 

Obesity N(%) 359,220 (35.2) 47,957 (35.9) 5,557 (37.1)*** 568 (52.6)*** 

Significance testing was carried out in logistic regression models predicting a COVID-19 positive test 
(compared to all other study participants), and hospitalization for COVID-19 (compared to all those with a 
positive COVID-19 test), * p-value <0.05, ** p-value <0.01, *** p-value <0.0001. Ancestry was modeled 
as a factor variable (reference = European), whereas education was modeled as dummy variables. 
 
 
In addition to being more likely to report a positive test (1.7% vs. 1.4%, p-value < 2.2e-16; chi-
squared test), male respondents were more likely to report hospitalization (10.1% vs. 7.4%) 
than female respondents (p-value = 4.3e-8; chi-squared test). While the proportion of individuals 
reporting a positive test declined as a function of age, hospitalization rates increase dramatically 
with age (Figure 2a). Generally, non-European ancestry was associated with higher rates of 
self-reported COVID-19 infection and higher proportions of hospitalization. For Latinos, the 
higher proportion of hospitalization was consistent with a higher proportion of individuals 
reporting a positive COVID-19 test as compared to other groups (O/E = 0.93, p-value = 0.27; 
chi-square test). However, for African Americans, the proportion reporting hospitalization was 
almost twice as high as expected from the proportion reporting a positive COVID-19 test (O/E = 
1.96, p-value = 3e-11; chi-square test), implying either more severe outcomes for those that 
became infected or an under reporting of test positive status (Figure 2b). 

 

 
Figure 2: a) Distribution of COVID-19 cases and percent of total cases hospitalized by 
age. b) Age-standardized percent of cases reporting hospitalization by ancestry.  
 
In models taking into account age, sex, education, ancestry, education level, and median 
household income in the residential zip code, among those with a COVID-19 positive test, 
several cardiometabolic and respiratory conditions were associated with an elevated risk of 
hospitalization. However, the strongest association was with obesity, which conferred a 2.5 fold 
increased risk of hospitalization (aOR = 2.45, 95% CI: 1.99-3.02). Type 2 diabetes, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188318doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.04.20188318
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 

cardiovascular disease, hypertension, respiratory conditions including asthma, fatty liver 
disease, and gastro-esophageal reflux disease (GERD) were all positively associated with 
COVID-19 hospitalization, in models adjusting for BMI (Table 2).   
 
Table 2: Adjusted odds ratios and 95% confidence intervals estimating the association 
between pre-existing conditions and hospitalization with COVID-19. 
 COVID-19 hospitalization 

Pre-existing condition Adjusted OR 95% CI 

Body Mass Index   

Underweight 1.30 0.81 - 2.09 

Normal weight 1.00 REF 

Overweight 1.34 1.07 - 1.68*** 

Obese 2.45 1.99 - 3.02*** 

Other cardio-metabolic   

Type 2 diabetes 1.66 1.30 - 2.11*** 

Any cardiovascular disease 1.35 1.15 - 1.60*** 

Coronary artery disease 1.48 1.02 - 2.14* 

Arrhythmia 1.49 1.22 - 1.83*** 

Hypertension 1.40 1.18 -1.66*** 

Renal/hepatic   

Chronic kidney disease 1.35 0.94 - 1.94 

Fatty liver disease, including NASH 1.76 1.36 - 2.28*** 

Hepatitis 0.89 0.60 - 1.33 

Respiratory   

Any underlying lung or respiratory condition 1.44 1.21 - 1.72*** 

COPD 1.35 0.88 - 2.07 

Asthma 1.27 1.07 - 1.51** 

Other   

GERD 1.24 1.06 - 1.45** 

All models were adjusted for sex, age (10 yr increments), education level, BMI (categorical), genetic 
ancestry (categorical), and income ($10,000 increments), * p-value <0.05, ** p-value <0.01, *** p-value 
<0.0001. Note that the model evaluating BMI as a primary risk factor did not also adjust for BMI as a 
covariate. 
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Combining the most common risk factors into a single logistic regression model (obesity, type 2 
diabetes, fatty liver disease, and high blood pressure), the most significant risk factor for 
hospitalization remained obesity (defined as BMI >30), which accounted for a doubling in the 
risk of hospitalization (aOR = 2.07, 95% CI = 1.66 - 2.58) after adjusting for age, sex, ancestry, 
education, and household income and the other conditions (Table 3). In this model, African 
Americans were 83% more likely to be hospitalized for COVID-19 (aOR = 1.83, 95% CI 1.33 - 
2.52). Socio-economic status was inversely associated with hospitalization risk, with a 4% 
decrease in hospitalization per $10,000 increase in median income in the zip code of residence. 
High school or less education conferred a 38% increased risk in hospitalization (aOR=1.39, 
95% CI 1.10 - 1.74).  
 
Table 3: Adjusted odds ratios and 95% confidence intervals from a multivariate logistic 
regression model estimating the relationship between socio-demographic and pre-
existing health conditions on COVID-19 hospitalization among all test positive cases.  

Model variable Adjusted OR 
95% confidence 

interval 

Sex (female) 0.79 0.68 - 0.93** 

Age (10-yr increase) 1.39 1.31 - 1.46*** 

Socio-economic status   

HH income zip code ($10k increase) 0.96 0.94 - 0.99** 

High school or less education 1.38 1.10 - 1.74** 

Body Mass Index   

Underweight BMI (19.9 or less vs. normal) 1.24 0.76 - 2.03 

Overweight BMI (24.9-29.9 vs. normal) 1.27 1.01 - 1.60* 

Obese BMI (30+ vs. normal) 2.07 1.66 - 2.58*** 

Race/ ethnicity   

Latino vs. European 1.24 1.01 - 1.52* 

Other non-European vs. European 1.38 1.00 - 1.89* 

African American or Black vs. European 1.83 1.33 - 2.52*** 

Pre-existing conditions   

High blood pressure 1.29 1.08 - 1.54** 

Type 2 diabetes 1.48 1.15 - 1.91** 

Fatty liver disease 1.61 1.24 - 2.10*** 

All variables shown were in the model predicting hospitalization out of all those with 
a COVID-19 positive test. * p-value <0.05, ** p-value <0.01, *** p-value <0.001 
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Geographic distribution of cases 
The prevalence of infection, estimated as the number of reported test positives in a state 
relative to the number of study participants in the state, varied across geographic regions. The 
highest proportions of positive COVID-19 tests were reported in New York (4.4%) and New 
Jersey (3.3%), and the lowest proportions were reported in Maine (0.4%) and West Virginia 
(0.4%). As the majority of case data was collected between late April and early June, hotspots 
that developed earlier in the pandemic are better represented compared to those that arose 
later in the course of the pandemic (Figure 3a; Supplementary Figure 1). Nonetheless, the self-
reported prevalence of positive COVID-19 tests at the US state level was reasonably well 
correlated with the number of positive tests reported per capita16 as of July (Figure 3b; Pearson 
r = 0.85). However, the prevalence of self-reported COVID-19 test positive status was higher in 
the 23andMe database than per-capita estimates, likely reflecting differences in the composition 
of the 23andMe database and the general population, and potential selection bias arising from 
individuals with a positive test potentially being more likely to choose to participate in the study.  
 
 

 
Figure 3: a) Proportion of test positive COVID-19 study respondents in the continental 
United States combining all reported cases from February - July 2020. The map has been 
smoothed using a weighted local sum for each county combining data from 15 
neighboring counties and weighting by sample size. b) Scatter plot of state-level COVID-
19 test positive prevalence as assessed in the 23andMe database compared to that 
obtained from national statistics16.  

GWAS 
 
Across the 5 phenotypes, the trans-ethnic meta-analysis identified 11 genome-wide significant 
associations from 7 distinct regions of the genome (Figure 4; Supplementary Figures 2 - 4; 
Supplementary Table 5).  
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Figure 4: Manhattan and QQ plots for ‘COVID-19 test +ve vs COVID-19 test -ve’ a) and 
‘COVID-19 severe respiratory symptoms’ b) from trans-ethnic meta-analysis. The nearest 
gene to the index SNP is indicated above each association peak. 
 
ABO: In our phenotype contrasting COVID-19 test positive individuals to test negative 
individuals, we identified an association at chr9q34.2, with index SNP rs9411378 (p-value = 
5.3e-20, C allele OR = 0.857; Figure 5). This index SNP is in LD with a functional variant in the 
ABO gene, specifically rs8176719 (r2 = 0.57 in the European population), which is a well-known 
single-nucleotide deletion that usually confers a type O blood group when present in the 
homozygous form. While multiple rare variants elsewhere within the ABO gene can contribute to 
blood group determination, individuals heterozygous for the deletion are most likely to have 
blood groups A or B, whereas individuals without any copies of the deletion are most likely to 
have blood groups A, B, or AB.  
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Figure 5: a) Regional plot around the ABO locus for phenotype ‘COVID-19 test positive vs 
COVID-19 test negative’ from  trans-ethnic meta-analysis. Imputed variants are indicated 
with ‘+’ symbols or ‘x’ symbols for coding variants. Where imputed variants weren’t 
available, genotyped variants are indicated by ‘o’ symbols or diamond symbols for 
coding variants. b) Odds ratios and 95% confidence intervals for each population. 
 
To further understand the relationship between COVID-19 test positive status and ABO blood 
group, we used genetically determined blood group assignments (see Methods) and estimated 
the contribution to risk by comparing each blood group against each of the others. For all 
COVID-19 phenotypes, we found that the O blood group was protective when compared to 
other blood groups, whereas blood groups A, B, and AB did not differ from each other (Figure 6; 
Supplementary Figure 5, Supplementary Table 6). Direction of effect was broadly consistent 
across populations (Supplementary Figure 6). We see a similar size of effect in both the 
diagnosis and severity phenotypes, albeit with the severity phenotypes not achieving statistical 
significance, possibly due to smaller sample size. We also note that the association with 
COVID-19 diagnosis is in contrast to the ABO results obtained when considering individuals that 
reported influenza symptoms in the years before the COVID19 pandemic, where blood group O 
appears to be a risk factor (see Discussion). 
 
There have been preliminary reports suggesting that the rhesus factor (Rh) can also contribute 
to differences in susceptibility and severity17. We do not detect a genetic association at the RHD 
locus, which suggests that Rh is not a major risk factor by itself independent of ABO blood 
group. In order to further investigate, we also compared positive and negative forms of each 
ABO blood group, and detected no significant difference in any comparison (Supplementary 
Table 7). 
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Figure 6: Comparison of blood groups across phenotypes. Statistically significant 
associations (p-value < 0.001) are highlighted in red. Blood group AB did not show 
differentiation from groups A or B (Supplementary Figure 5). 
 
 
chr3p21.31: We identified an association at chr3p21.31, which was shared across all 
phenotypes (Figure 7a; Supplementary Figure 7). The association appeared strongest in our 
phenotypes related to respiratory symptoms, with the lowest p-value observed in the severe 
respiratory symptoms phenotype (index SNP rs13078854, alleles A/G, p-value = 1.6e-18), and 
with a relatively large estimated effect size (G allele OR = 0.592, 95% CI 0.527 - 0.665). The 
majority of support for this association comes from the European population (Figure 7b), likely 
reflecting the larger sample size for this cohort. However, the risk allele is also more common in 
the European population, with the rs13078854 A allele having frequency 7.8%, 5.8%, and 2.7% 
in the European, Latino, and African American populations, respectively.  
 
The credible set for this locus overlaps the LZTFL1 gene, although none of the variants in the 
credible set alter the resulting protein. The locus also contains other nearby genes that could 
plausibly be driving the association, including SLC6A20, CCR9, FYCO1, CXCR6, and XCR1. In 
our data, the index SNP is in high LD (r2 >= 0.85) with eQTLs for SLC6A20, as detected in 
GTEx within breast epithelium and esophagus muscularis mucosa17, suggesting increased 
expression of SLC6A20 correlates with increased risk of severe outcomes.  
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Figure 7: a) Regional plot around the chr3 locus for the COVID-19 severe respiratory 
symptoms phenotype. Imputed variants are indicated with ‘+’ symbols or ‘x’ symbols for 
coding variants. Where imputed variants weren’t available, genotyped variants are 
indicated by ‘o’ symbols or diamond symbols for coding variants. b) Odds ratio estimate 
and 95% confidence interval for each population.   
 
Given the reported differences in outcome severity between males and females, we tested for a 
difference in effect at the chr3p21.31 locus. Testing rs13078854 separately in males and 
females for the severe respiratory symptoms phenotype gave an OR = 0.49 (95% CI: 0.41 - 
0.59) in males and OR = 0.69 (95% CI: 0.58 - 0.82) in females, with the difference being 
moderately significant (p-value = 0.003; z-test). On the basis of the association between ABO 
and COVID-19, we further hypothesized that the chr3p21.31 locus may show a difference in 
effect size depending on ABO blood type. Conditioning on blood type O, we estimated the OR 
of rs13078854 to be 0.63 (95% CI: 0.52 - 0.77), whereas conditioning on any other blood type 
gave an OR of 0.57 (95% CI: 0.49 - 0.66). We therefore conclude that ABO blood type does not 
modulate the effect at the chr3p21.31 locus (p-value = 0.80; z-test).  
 
Other associations: In addition to the two main associations, we observed 5 weaker 
associations which, while achieving genome-wide significance, typically only include a small 
number of low-frequency variants within the association peak, and may represent false-positive 
associations (Supplementary Table 5).  

Discussion 
 
The COVID-19 pandemic represents a unique emergency in recent human history, and has 
dramatically accelerated the pace of scientific investigation into the effects of the virus on 
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human health. In this paper, we have utilized a direct-to-consumer research platform to collect 
data regarding experiences of COVID-19 at large scale and over a compressed timeline.  
 
Both Latino and African American groups reported a higher rate of COVID-19 infection and, as 
reported elsewhere2,18,19, our data show an elevated risk of hospitalization in these populations. 
For Latino respondents, the higher rate of hospitalization was broadly consistent with the higher 
rate of infection. However, for African American respondents, the risk of hospitalization was 
disproportionately high, and remained so after adjusting for socio-demographic characteristics, 
age, sex, obesity, type 2 diabetes, hypertension, and fatty liver disease.  
 
Our data also strengthens the evidence for a role for ABO in COVID-19 host genetics. ABO 
blood group has been reported as a risk factor for both COVID-19 susceptibility20 and severity15, 
and is notable given the reported links between COVID-19 and blood clotting complications21,22.  
Our data supports a role in susceptibility to infection, suggesting that blood group O is protective 
in contrast to non-O blood groups. Whereas previous reports suggested protection was limited 
to the rhesus positive group23, our data does not support that conclusion.  
 
The mechanism by which ABO is associated with COVID-19 is unclear, but ABO blood groups 
can play a direct role in pathogen infection by serving as receptors and/or coreceptors24. SARS-
CoV-2 is an enveloped virus that carries ABO antigens on the viral spike (S) glycoprotein and 
host envelope glycolipids. Recent work has shown the SARS-CoV-2 S protein interacts with 
multiple host C-type lectin receptors in a glycosylation-dependent manner25,26, similar to 
previous work on the SARS-CoV virus from the earlier SARS outbreak27,28. Differential 
glycosylation of the spike protein or the envelope glycolipids from expression of different ABO 
glycosyltransferases may then impact the binding and internalization of SARS-CoV-2 viral 
particles. Others have speculated that the lower susceptibility of blood group O could be linked 
to anti-A blood antibodies inhibiting the adhesion of coronavirus to ACE2-expressing cells, 
thereby providing protection29.  
 
The ABO locus is also highly pleiotropic30 and exhibits complex population structure31. 
Interestingly, while old literature regarding the association between ABO and influenza is 
inconsistent32, our own data suggests that blood type O is actually a risk factor for seasonal flu. 
This is notable because COVID-19 testing in the United States was largely restricted to 
individuals with flu-like symptoms at the time we were collecting the majority of our data. As 
such, it is possible that the population of individuals receiving COVID-19 tests was enriched for 
influenza cases, and the apparent protective nature of ABO for COVID-19 could arise from a 
subtle form of collider bias. However, our data also shows that blood type O is protective in the 
severe-outcome population, which wouldn’t be expected under the collider bias hypothesis. 
 
Likewise, our data strengthens the evidence of association at the chr3p21.31 gene cluster, first 
identified by Ellinghaus et al.15. The locus contains multiple genes (SLC6A20, LZFTL1, CCR9, 
CXCR6, XCR1, FYCO1) that could be functionally implicated in COVID-19 pathology. In 
particular, SLC6A20 can be linked to the association via eQTLs in relevant tissue and has been 
noted15 as potentially forming a complex with angiotensin converting enzyme 2 (ACE2), the cell 
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surface receptor for SARS-CoV-2 viral entry33,34. It is possible that increased SLC6A20 
expression leads to increased ACE2 protein levels and greater viral uptake. LZFTL1 has been 
implicated in ciliogenesis and intracellular trafficking of ciliary proteins, which may impact airway 
epithelial cell function. As noted elsewhere15, CXCR6 promotes NKT cell and tissue resident 
memory CD8+ T cells residence in the lung35 and plays a role in the trafficking of T lymphocytes 
to the bronchial epithelia during respiratory infection and inflammatory lung disease. CCR9 
predominantly regulates T cell homing to the gut, which may indirectly impact the response in 
the lung, however it has also been shown to regulate eosinophil recruitment to the lung36. 
Recent studies have identified elevated chemokines and eosinophilia as a hallmark of severe 
disease37–39, but additional work will be required to define any functional contribution of these 
genes to the genetic association with COVID-19.  
 
In phenotypes contrasting individuals with severe COVID-19 symptoms to controls without a 
COVID-19 diagnosis, the risk variants at the chr3p21.31 locus achieve odds ratios of 
approximately 2.0 in our data, which is relatively large in the context of GWAS studies. Given 
the risk alleles are also relatively common (~3 - 8% frequency, depending on population), it is 
likely that this locus makes a meaningful contribution to determining why some individuals 
experience severe COVID-19 outcomes. However, while the population sample sizes in our 
study differ considerably, we found little evidence to suggest that allele frequency differences at 
this locus could account for the higher rate of severe outcomes from COVID-19 for non-
European ancestry groups. In fact, the primary risk allele at the chr3p21.31 locus is most 
common in European populations, and less common in Latino, and African American 
populations.  
 
This study is a testament to the power of the 23andMe research platform, which in less than 
four months enabled over one million research participants to contribute to the study of a novel 
disease. However, there are notable caveats to relying on self-reported data for a disease with 
lethal outcomes. Namely, the cases identified in this study were healthy enough to respond to 
the survey therefore are likely biased towards a healthier case population than otherwise exists. 
In addition, 23andMe research participants are a self-selected group and may not reflect the 
general population. Furthermore, the scarcity of testing has likely further obscured the true 
picture of SARS-CoV-2 infections in the United States, leading to misclassification of true cases 
as controls in this study if they did not receive a positive test result. The effect of these types of 
error would bias the reported effect estimates towards the null, meaning that the true impact of 
risk factors reported here may be expected to be larger if the sample were randomly drawn from 
the broader population and had perfect case and control classification.  

Data availability 
 
The full set of de-identified summary statistics can be made available to qualified investigators 
who enter into an agreement with 23andMe that protects participant confidentiality. Interested 
investigators should visit the following: https://research.23andme.com/covid19-dataset-access/.  
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Supplementary Material 
 
Supplementary Figure 1: Estimated prevalence of COVID-19 test positive individuals on a per-
county basis within the continental United States.  
 
Supplementary Figure 2: Manhattan and QQ plots for ‘COVID-19 test positive with 
hospitalization’ phenotype from trans-ethnic meta-analysis. Cases reported a positive COVID-19 
test and were hospitalized with their symptoms. Controls did not report a COVID-19 diagnosis 
(were neither diagnosed with nor tested positive for COVID-19). 
 
Supplementary Figure 3: Manhattan and QQ plots for ‘COVID-19 test positive with respiratory 
support’ from trans-ethnic meta-analysis. Cases reported a positive COVID-19 test and received 
respiratory support in the form of supplementary oxygen or ventilation. Controls did not report a 
COVID-19 diagnosis (were neither diagnosed with nor tested positive for COVID-19). 
 
Supplementary Figure 4: Manhattan and QQ plots for ‘COVID-19 test positive with pneumonia’ 
from trans-ethnic meta-analysis. Cases reported a positive COVID-19 test and experienced 
pneumonia. Controls did not report a COVID-19 diagnosis (were neither diagnosed with nor 
tested positive for COVID-19). 
 
Supplementary Figure 5: Comparison of AB blood group to other ABO blood groups in the 
trans-ethnic meta-analysis. Statistically significant associations (p-value < 0.001) are highlighted 
in red.  
 
Supplementary Figure 6: Comparison of blood groups across phenotypes and across 
populations: European, African American, and Latino. Statistically significant associations (p-
value < 0.001) are highlighted in red.  
 
Supplementary Figure 7: Forest plot of chr3p21.31 index SNP (rs13078854) in the trans-ethnic 
analysis and for each population. Genome-wide significant associations are highlighted in red. 
 
 
 
 
Supplementary Table 1: Geo-targeted send of COVID-19 study emails to 23andMe customers 
between April and June 2020. 
 
Supplementary Table 2: GWAS phenotype definitions. 
 
Supplementary Table 3: ABO assignments derived from haplotypes defined by 3 SNPs. 
 
Supplementary Table 4: Precision and Recall of ABO haplotype model, compared to self-
reported ABO blood group. 
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Supplementary Table 5: Genome-wide significant association index SNP from the trans-ethnic 
meta analysis.  
 
Supplementary Table 6: Pairwise comparisons of ABO blood groups. 
 
Supplementary Table 7: Comparison of rhesus factors within ABO blood groups. 
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