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Abstract 

Understanding the demand for hospital beds for COVID-19 patients is key for decision-making 
and planning mitigation strategies, as overwhelming healthcare systems has critical 
consequences for disease mortality. However, accurately mapping the time-to-event of hospital 
outcomes, such as the length-of-stay in the ICU, requires understanding patient trajectories while 
adjusting for covariates and observation bias, such as incomplete data. Standard methods, like 
the Kaplan-Meier estimator, require prior assumptions that are untenable given current 
knowledge. Using real-time surveillance data from the first weeks of the COVID-19 epidemic in 
Galicia (Spain), we aimed to model the time-to-event and event probabilities of patients 
hospitalized, without parametric priors and adjusting for individual covariates. We applied a 
nonparametric Mixture Cure Model and compared its performance in estimating hospital 
ward/ICU lengths-of-stay to the performances of commonly used methods to estimate survival. 
We showed that the proposed model outperformed standard approaches, providing more 
accurate ICU and hospital ward length-of-stay estimates. Finally, we applied our model estimates 
to simulate COVID-19 hospital demand using a Monte Carlo algorithm. We provided evidence 
that adjusting for sex, generally overlooked in prediction models, together with age is key for 
accurately forecasting ICU occupancy, as well as discharge or death outcomes. 

Main Text 

Introduction 

As of September 2020, SARS-CoV-2 transmission continues to increase in most countries 
worldwide [1], and in those countries where control has been achieved, resurgences are 
expected [2] before an effective vaccine is widely available. Within the main challenges of the 
pandemic, overwhelming healthcare systems has critical consequences on disease mortality [3]. 
Thus, understanding and predicting inpatient and critical-care demand remains one of the major 
components of outbreak monitoring for decision-making and contingency planning. 

Predicting hospital demand entails estimating a patient’s length-of-stay (LoS) in a hospital ward or 
in the ICU. Estimating the LoS from data is challenging as it requires investigating the patients’ 
trajectories, and it must account for complexities in the processes and the availability of data. For 
example, some outcome data may be missing because the study ends before the patient leaves 
the hospital; this missing data is referred to as right censored data. The duration of hospitalization 
of COVID-19 patients has been studied using parametric models [4], semiparametric methods [5], 
and nonparametric estimators [3, 6]. 

Parametric and semiparametric approaches are often preferred due to their simplicity and ease of 
interpretation, but they require the LoS to conform to a predefined fixed model. Estimations based 
on non-validated assumptions can be significantly biased. Thus, nonparametric approaches, 
which do not require model assumptions, should be used when estimating COVID-19 LoS in the 
absence of solid knowledge.  

The Kaplan-Meier (KM) estimator [8] is the simplest and most often used nonparametric estimator 
in medical survival analysis of time-to-event data. It assumes that all patients with missing 
outcomes would experience the event in the end. This assumption applies when analyzing the 
duration of hospitalization, that is, the total time in the institution of the hospital (which includes 
time in hospital ward and time in ICU), as all patients eventually leave the hospital. However, this 
assumption does not apply to a patient’s LoS in the hospital ward until admission to the ICU or 
until death (that is, not all hospital patients experience admission to the ICU or death). Thus, the 
KM estimator should not be used to estimate those LoS, as it is wrongly specified. Alternatively, 
Mixture Cure Models (MCM) [9] account for the situations when it is known that a proportion of 
individuals will not experience the event being analyzed. 
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Here, we propose a nonparametric Mixture Cure Model (NP-MCM) for estimating the lengths-of-
stay until specific final events that are not experienced by all the patients (Safari et al., 2020). We 
estimated -in a completely nonparametric way without any dependence on preliminary model 
assumptions- the following 5 lengths-of-stay: LoS in hospital ward until admission to ICU, LoS in 
hospital ward until discharge from hospital ward, LoS in hospital ward until death in hospital ward, 
LoS in ICU until discharge from ICU; and LoS in ICU until death in ICU. We also estimated the 
probability of each event. To illustrate how our model improves data fitting, we compared the NP-
MCM to the standard KM estimator (which assumes that all the individuals will experience the 
final event) and to the empirical (E) estimator (which discards all observations which event is not 
observed) for a dataset of COVID-19 patients from the first weeks of the epidemic in Spain. We 
further simulated inpatient and critical care cumulative incidence during an outbreak, along with 
the final outcome (discharge or death), using the estimated values, and adjusting for age and sex. 
Our model shows the importance of these individual variables for predicting hospital demand 
during transmission. 

 
Materials and Methods 
 
Data source 

The dataset used in this paper contains 10454 confirmed COVID-19 cases reported in Galicia, a 
region in Spain’s northwest, from March 6 to May 7, 2020. Data was provided for analysis by the 
regional public health authority, Dirección Xeral de Saúde Pública [10]. The data included 
information on age and sex; the dates of COVID-19 diagnosis, admission to the hospital and/or 
ICU; and the patient’s last known clinical status. A summary of the dataset can be found in the 
Appendix. 

Model formulation 

Mixture cure models [9], a special case of cure models [11], explicitly model survival as a mixture 
of two types of patients: those who will experience the final outcome and those who will not (that 
is, they are “cured” and therefore will not experience the event). Note that here a “cured” 
individual is defined as being free of experiencing the event of interest and is not necessarily 
cured in medical terms. The goal of MCM is to estimate the probability of experiencing the event 
and the distribution of the time to the event. The model is formulated as follows. 

Let us denote Y as the time to the event of interest (admission to ICU, death, or discharge), with 
survival function S(t) = P(Y > t). Let p = P(Y < ∞) be the probability that the event will happen, and 
S0(t) = P(Y > t | Y < ∞) be the survival function of the individuals experiencing the event. MCM 
write the survival function as S(t) = (1 – p) + pS0(t). Then the probability of the event, p, and the 
survival function of the time-to-event, S0(t), can be estimated using a proper estimator of the 
survival function, S(t), and the relations: 

𝑝𝑝 = 1 − 𝑆𝑆(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎  𝑆𝑆0(𝑡𝑡) = 𝑆𝑆(𝑡𝑡)−(1−𝑝𝑝)
𝑝𝑝

                                                                         (eq1)     
 

Under right censoring, the observations are not {yi, i = 1,…,n} but {(ti, di, xi), i = 1,…,n} with t1 ≤ t2 
≤ … ≤ tn, where ti is the observed time, di the indicator of whether the final outcome has been 
observed, and xi the indicator of whether patient i is known not to experience the event (cured). 
Hence, patients can be classified into three groups: (a) the event is observed (ti = yi, di = 1, xi = 
0); (b) the final outcome is not observed and it is unknown if it would have happened eventually (ti 
< yi, di = 0, xi = 0); and (c) the event is not observed because it is known that it will never happen 
(ti < yi, di = 0, xi = 1). In classical survival analysis when it is assumed that all the patients will 
experience the final outcome, only groups (a) and (b) are considered. 
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When there is a group of patients known not to experience the event, the survival function S(t) 
can be estimated nonparametrically as follows (Safari et al, 2020): 

𝑆̂𝑆(𝑡𝑡) = ∏ �1 − 𝑑𝑑𝑖𝑖
𝑛𝑛−𝑖𝑖+1+∑ 𝑥𝑥𝑗𝑗

𝑖𝑖
𝑗𝑗=1

�𝑡𝑡𝑖𝑖<𝑡𝑡                                                                                                (eq2) 

To note, this estimator reduces to the well-known KM estimator in a classical time-to-event 
analysis when the event happens for all patients.  

The estimator of S(t) in (eq2) is computed with R software [2] and used to estimate the probability 
of the event, p, and the time-to-event survival function S0(t) using the relationships in (eq1) for the 
following 5 lengths-of-stay: a) LoS in hospital ward until admission to ICU; b) LoS in hospital ward 
until death in hospital ward; c) LoS in hospital ward until discharge; d) LoS in ICU until death in 
ICU; e) LoS in ICU until ICU discharge. Details on each LoS, along with an R script for the 
computation of the different estimators, can be found in the Appendix. 

The NP-MCM survival estimator of S0(t) is compared to the KM estimator computed with two 
different datasets: (a) the complete set of observations, considering as simply right censored all 
the patients who did not experience the event, regardless if they might experience it in the future 
or not (complete KM), and (b) a reduced dataset, dismissing the patients who, it is known, will not 
ever experience the event (reduced KM). The empirical (E) estimator, which considers only 
patients whose final event is observed and disregards the right censored observations, has also 
been considered. 

The NP-MCM estimator of the probability, p, of the event was computed using the estimator of 
S(t) in (eq2) and the relationships in (eq1). The empirical estimator of p, given by the ratio 
between the number of observed events and the total number of patients, was computed to 
motivate the proposed NP-MCM estimator of p. 

As for the KM estimator, the NP-MCM estimator in (eq2) does not incorporate possible covariate 
effects, such as those of sex and age. The extension of the KM estimator to handle covariates is 
the generalized product-limit estimator [13] of the conditional survival function, S(t|x). When the 
final outcome is not experienced by all the patients but only a group of them, the incorporation of 
covariates for the estimation of S0(t|x) has been studied recently. Specifically, if no patients in the 
dataset can be distinctly identified as being free from the event, the estimator of S0(t|x) and the 
probability of the final outcome p(x) [14-16] are implemented in the R package npcure [17], which 
also performs significance tests for the cure probability. The extension of these methods to 
situations where some patients are clearly known not to experience the final outcome, as it 
happens for our COVID-19 data, has been recently addressed (Safari et al., 2020), where 
evidence of the superiority of the NP-MCM over the traditional methods is shown. These 
conditional estimators of S(t|x) and S0(t|x) can handle continuous covariates such as age, using 
the information from all the individuals to provide estimates of the survival function for one single 
value of the covariate, e.g., 40 years. Ignoring the effect of age and sex on these time estimates 
can produce important bias in the statistical analysis. 

COVID-19 outbreak simulation model 

We further simulated a COVID-19 outbreak based on the NP-MCM estimates of the 5 lengths-of-
stay considered, with two different models: 1) the simplest possible where the distributions of 
times and probabilities of moving from one state (hospital ward, ICU) to another (hospital ward, 
ICU, death, discharge) do not depend on individual covariates; and 2) a more realistic one with 
the LoS and transition probabilities depending on the available covariates of age and sex. 

The simulated outbreak consisted of N = 1000 infected individuals. For the i-th infected individual 
i= 1, …, N we simulated the sex Gi (0 = male, 1 = female) and the age Ai (years) using the real 
distributions of the reported COVID-19 cases in Galicia on May 7, 2020 (see Table 2 in the 
Appendix for details in case counts). Let 𝐻𝐻 ∈ {1, …, N} be the set of indices corresponding to 
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infected subjects admitted to the hospital. The trajectory of every hospitalized patient i ∈ H is 
obtained by simulating the transitions between states (hospital ward, ICU, discharge, death) using 
the NP-MCM estimated probabilities, and the times in each state were simulated from the Weibull 
distributions that best fitted the NP-MCM estimates, both in the unconditional setting as in the 
case of conditioning on the age and sex of the patient (see Appendix for further details; Figure 8 
for the density estimations; Figure 9 for the survival curves; Table 3 gives a numerical summary 
of each simulated time, Table 4 shows the Weibull parameters of all the time distributions). Using 
these estimated times and going through all the hospitalized patients, it is straightforward to 
compute the number of patients in every state as a function of time. The mean number of 
reported cases and the mean number of patients in a hospital ward, in the ICU, who have died, 
and who have been discharged can be approximated by a Monte Carlo simulation as a function 
of time. 

 

Results 

Using a dataset of hospitalizations of COVID-19 patients in Galicia (Spain) during the first weeks 
of the outbreak, we first compared the NP-MCM estimates with estimates from the E estimator, 
and the KM estimator by (a) treating as right censored all the data from patients who did not 
experience the event, whether or not they might experience it in the future (hereafter referred to 
as complete KM), and by (b) dismissing the data from patients who we knew would never 
experience the event (hereafter referred to as reduced KM). When an event (“leave the hospital”) 
happens for all patients, the LoS estimates from the NP-MCM and the KM estimators are exactly 
the same, while the E estimator underestimates the LoS (see Figure 1 for the survival estimates, 
and Figure 6 in the Appendix for the corresponding density estimations). The NP-MCM and KM 
estimators consider n = 2453 patients who have ever been hospitalized, and 2142 patients who 
experienced the event (that is, they left the hospital within the study’s timeframe). The E estimator 
considers only n = 2142 patients who left the hospital (discharged or died), disregarding the 
information from the 311 patients still in the hospital. This biases the E estimate toward shorter 
LoS, as hospitalized patients with longer LoS cannot be included in the estimation. 

Figure 1. Estimates of the survival function of LoS using NP-MCM (thick black line), KM with the 
complete dataset (thin grey line), KM with the reduced dataset (thin black line) and the empirical 
E estimator (red line) for all the COVID-19 hospitalized cases (n = 2453) in Galicia (Spain), when 
the LoS is the duration of hospitalization (top left), time in hospital ward until admission to ICU 
(top right), time in hospital ward until death in hospital ward (middle left), time in hospital ward 
until discharge (middle right), time in ICU until death in ICU (bottom left) and time in ICU until 
discharge from ICU (bottom right). 

Further, the LoS until a final outcome that will be experienced by only a proportion of patients is 
estimated with the NP-MCM and KM using both the complete and the reduced data sample. This 
is the case when estimating 5 key LoS: from admission into the hospital ward (HW) to admission 
into the ICU, from admission into HW to discharge (alive), from admission into HW to death, from 
admission into the ICU to discharge, and from admission into the ICU to death. In this case, KM 
(with both the complete and reduced samples) overestimates the time-to-event showing longer 
LoS than the NP-MCM. Interestingly, we found small differences between the NP-MCM estimates 
and the E estimates. The E estimator only takes into account data from patients who experienced 
the event; thus it cannot handle right censoring. Nevertheless, we find that the E estimator 
underestimates the time-to-event due to right censoring, showing shorter values of LoS. Figure 1 
shows NP-MCM, KM, and E estimators for the 5 key LoS analyzed. Details can be found in the 
Appendix, including plots of all the density function estimates for alternative visualization of the 
LoS in Figure 6. 
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Importantly, for the individual’s probability of the medical event (admission from HW to ICU, and 
death or discharge from HW or ICU) we were able to show that not correcting for right censoring 
(i.e., using only individuals with the observed outcome) underestimates the true probability, as the 
event of the right-censored individuals could be recorded later in time. The NP-MCM can adjust to 
right censoring, providing more accurate estimates. This can be seen when comparing individual 
probabilities using NP-MCM and E estimators, as presented in Table 1. 

 

Table 1. Estimated probabilities of the different medical events for the COVID-19 patients in 
Galicia (Spain) using NP-MCM and empirical estimators. 

We then performed survival analysis using the NP-MCM estimator to assess if age and sex could 
play a role in the estimates of the time of hospitalization (both hospital ward and ICU) and the 
time in ICU. Figure 2 shows that the duration times differ significantly between male and female 
patients, and between middle-aged (40y) and older (70y) patients. Particularly, we found that 
middle-aged female patients showed shorter LoS in both the institution of hospital and the ICU, 
while older females showed longer LoS in the ICU (but not in the hospital) compared to their male 
counterparts. 

Figure 2. Generalized product-limit estimator [13] of the conditional survival function S(t|x) for the 
time of hospitalization, both in hospital ward and ICU, (top) and the time in ICU (bottom), 
incorporating the effect of the sex (male = black line, female = red line) and the ages 40y (left) 
and 70y (right) for all the COVID-19 hospitalized cases (n = 2453) in Galicia (Spain). 

Finally, we implemented a COVID-19 outbreak simulation using the NP-MCM estimates for the 
COVID-19 patients in Galicia (Spain) and accounting for age and sex heterogeneity in the LoS. 
Figure 3 shows the difference between considering age and sex in the estimated LoS or not. We 
found no large differences in the expected number of patients admitted to the hospital ward, 
regardless of age or sex. However, the unconditional distribution tends to overestimate the mean 
number of patients in the ICU with shorter stays, and to underestimate those with longer stays. 
The expected number of deaths was slightly higher for longer stays in the unconditional model 
than when age and sex were taken into account. Considering the age and sex of the patients did 
not yield a different number of discharges than when using the unconditional model. In general, 
the conditional model estimates longer stays (around 200 days in some cases) than the 
unconditional one. Furthermore, we compared the differences between the LoS in the HW and in 
the ICU for both the conditional and the unconditional models. Figure 4 shows the time interval in 
which the expected number of patients is above the maximum bed capacity for a range of values 
between 15 and 75 beds in the HW and between 5 and 11 beds in the ICU. In summary, while no 
large differences are observed in the predicted HW beds demand, the conditional model that 
considers the age and sex of the patients gives much more accurate estimates of the ICU beds 
demand, reducing the number of days the number of ICU beds needed exceeds the capacity. 

Figure 3. Simulated mean number of patients in hospital ward (top left), ICU (top right), deaths 
(bottom left) and discharges (bottom right), with distributions conditionally estimated depending 
on age and sex (blue) and unconditionally estimated, ignoring age and sex dependence (red) 

Figure 4. Simulated number of days demand is above the capacity (threshold) of hospital ward 
(left) and ICU (right), when distributions are estimated conditionally depending on age and sex 
(black) and unconditionally estimated, ignoring age and sex dependence (red). 
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Discussion  
We applied a NP-MCM to estimate time-to-event and event probability using survival functions of 
key variables of hospital services, including length-of-stay in ICU and time to death or discharge. 
The proposed model outperformed the KM and the empirical estimators for computing the time to 
a final outcome that is not experienced by all patients. Importantly, the model can be adjusted for 
the use of covariates, which is significant when conditioning for known heterogeneity in estimating 
LoS. Particularly, our analysis demonstrates that adjusting for age and sex is crucial in accurately 
understanding ICU LoS and, in turn, forecasting bed demand.  
 

Often studies with incomplete follow-up data on patients (called right censored data) choose to 
exclude these patients from the study altogether, which yields biased estimates [18]. Moreover, 
when forecasting hospital demand in (near) real time, information related to the most recent 
cases is not available, which again leads to right censored data. For instance, we showed that the 
empirical estimator introduced significant bias toward longer LoS for time from HW admission to 
ICU admission because it ignores patients discharged from the HW without ICU admission. 
Alternately, using information of patients without ICU admission by the end of the study period but 
ignoring that a proportion of patients will not require ICU yields biased estimates towards longer 
stays. The reason is that the KM estimator assumes that if the follow-up time was long enough, 
much longer stays would be observed (see Figure 1). 
 

Our findings resonate with previous work: a recent systematic review has shown that median 
overall hospital stays ranged from 4 to 21 days outside of China [19], while our model estimated a 
median overall hospital stay of 11 days (IQR 7 – 19); the LoS for patients who died in the HW 
was generally shorter than those discharged alive (median of 7 days and 10 days respectively). In 
contrast, our estimates show a different trend with regards to ICU LoS, with similar median 
estimates for both death and discharged (15 days vs 14 days), again consistent with that 
reviewed by Rees et al [19]. Of note, to our knowledge only two studies have adjusted LoS by 
age, all showing increased LoS for increased age, which is consistent with our findings [20, 4]. 
Furthermore, as far as we know this is the first study showing the influence of sex in the LoS, 
which has important implications for predicting hospital demand (Figure 2). With regards to 
prediction models, some approach adjust estimates based on age [21, 22], while sex has 
generally been overlooked in hospital demand forecasting [23, 21, 7]. 
 
Noteworthy, multi-state models [24, 25] are a possible alternative method to our approach. Yet, 
formulation is not straightforward: the literature under flexible nonparametric conditions [26] and 
in the presence of covariates [27] is limited and deals only with estimating the conditional 
transition probabilities of the event covariates. In addition, selection of the smoothing parameter 
remains an open problem [28]. As a consequence, multi-state models were not used in this 
paper, but remain as a potential alternative approach. 
 

Finally, we would like to highlight key limitations of our model: the lack of a parametric function 
limits interpretability to a great extent and complicates handling several covariates simultaneously 
[29]. Regarding the application of MCM, there must be good evidence that some individuals in the 
population will never experience the event of interest [30], and, the follow-up time must be long 
enough. Finally, data on patient comorbidities, which likely represents an important source of 
heterogeneity in the LoS, were not available for the analysis. Thus, more accurate estimates of 
the different LoS can be obtained if more complete datasets are available. 
 

In summary, we implemented a NP-MCM that improved the standard survival methodology when 
estimating the LoS in the HW and in the ICU until final outcomes that will not happen for a 
proportion of patients. We also found that the LoS in the ICU is sensitive to age and sex, which in 
turn is relevant when forecasting hospital demand in real-time for public health response. We 
believe our proposed approach can be easily implemented in other settings and can provide more 
accurate estimates of COVID-19 health demand compared to previous methods. 
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Figure 1. Estimates of the survival function of LoS using NP-MCM (thick black line), KM with the 
complete dataset (thin grey line), KM with the reduced dataset (thin black line) and the empirical 
E estimator (red line) for all the COVID-19 hospitalized cases (n = 2453) in Galicia (Spain), when 
the LoS is the time of hospitalization both in hospital ward and ICU (top left), time in hospital ward 
until admission to ICU (top right), time in hospital ward until death in hospital ward (middle left), 
time in hospital ward until discharge (middle right), time in ICU until death in ICU (bottom left) and 
time in ICU until discharge from ICU (bottom right). 
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Figure 2. Generalized product-limit estimator [13] of the conditional survival function S(t|x) for the 
time of hospitalization, both in hospital ward and ICU, (top) and the time in ICU (bottom), 
incorporating the effect of the sex (male = black line, female = red line) and the ages 40y (left) 
and 70y (right) for all the COVID-19 hospitalized cases (n = 2453) in Galicia (Spain). 
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Figure 3. Simulated mean number of patients in hospital ward (top left), ICU (top right), deaths 
(bottom left) and discharges (bottom right), with distributions conditionally estimated depending 
on age and sex (blue) and unconditionally estimated, ignoring age and sex dependence (red). 
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Figure 4. Simulated number of days demand is above the capacity (threshold) of hospital ward 
(left) and ICU (right), when distributions are estimated conditionally depending on age and sex 
(black) and unconditionally estimated, ignoring age and sex dependence (red). 
 

Table 1. Estimated probabilities of the different medical events for the COVID-19 patients in 
Galicia (Spain) using NP-MCM and empirical estimators.   

  

 NP-MCM Empirical 

Need for ICU 0.0845 0.0828 

Death in HW 0.1561 0.1503 

Discharge from HW 0.7953 0.7503 

Death in ICU 0.2222 0.1963 

Discharge from ICU  0.6820 0.6481 

HW: Hospital ward; ICU: Intensive care unit 
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Details on the dataset 

From a total of 10454 reported cases, 2484 were admitted to the hospital, though 31 of them 
were discharged on the same day. Among the 2453 patients admitted to the hospital for at least 
one day, 281 needed care in the ICU (11.45%), and 270 stayed in the ICU for at least one day. 
These 270 patients with long stays in the ICU can be divided into 197 patients admitted from the 
hospital ward, and 73 admitted directly from the emergency service. On May 7, 2020, 57 of the 
long-stay ICU patients had died, 119 had been discharged to the hospital ward, and 43 were still 
in the ICU. Figure 5 includes a flowchart related to the database. For the distribution of cases for 
different ages and sex, see Table 2. 

 

 

Figure 5. Flowchart of the confirmed COVID-19 cases reported in Galicia (Spain) from March 6 to 
May 7, 2020. 

Table 2. Distribution of the total number of reported COVID-19 cases, and the number of reported 
cases hospitalized in Galicia (Spain) from March 6 to May 7, 2020. 

 Reported Hospitalized 
Age Women Men Women Men 
+90 397 146 127 71 

80-89 743 495 307 286 

70-79 736 758 258 401 

60-69 919 735 190 274 

50-59 1150 705 118 161 

40-49 1096 609 96 84 

30-39 724 378 45 26 

20-29 402 205 17 9 

10-19 81 83 4 4 

 0-9 34 58 2 2 

Total 6282 4172 1164 1320 
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Details on NP-MCM, KM and E estimates of time-to-event when there is a group of patients 
who will not experience the final outcome: ICU admission from the hospital ward, death or 
discharge 

The estimator of S(t) in (eq2) is used to estimate the probability, p, of the event and the 
distribution of the times-to-event S0(t) using the relationships in (eq1) for the following lengths of 
stay. 

Time in hospital ward (HW) until admission to ICU 

The goal is to estimate the probability that a patient in HW will need admission to ICU, and the 
distribution of the LoS in HW of those patients. The observations are {(ti, di, xi), i = 1,…,n} with ti 
the observed LoS in HW of all the patients, di indicates if the patient was admitted to ICU, and xi 
the indicator of whether the admission to ICU was not observed because it will never happen 
because the patient died in HW or was discharged.  

There were 2453 COVID-19 patients admitted to the hospital. In order to study the time in HW 
until ICU, we worked with the n = 2380 patients who were admitted first to HW, discarding the 73 
patients who went to ICU directly from the emergency service. In the group of n = 2380 patients 
in HW, 197 of them required ICU. This gives an estimated empirical (E) probability of need for 
ICU pemp = 197/2380 = 0.0828. But note that some of the patients still in HW at the end of the 
study would be admitted to ICU eventually, so the real probability is expected to be larger. NP-
MCM approach estimates that probability to be pNP-MCM = 0.0845. The classical KM estimator 
considers n = 2380 patients in HW where 197 patients with admission to ICU is observed. This 
classical KM assumes that all the patients who had been admitted to HW will experience the 
event (admission to ICU) if followed for long enough, overestimating the LoS. This bias is partially 
corrected by the improved KM estimator, which takes into account that 1638 patients were 
discharged without ICU, and 328 died before being admitted to ICU. So it considers only n = 2380 
– 1638 – 328 = 414 patients in HW with 197 patients where the event (admission to ICU) is 
observed. It still biases towards larger LoS, as patients still in HW by the end of the study are 
assumed to require ICU sometime in the future. The empirical estimator considers only n = 197 
patients who were admitted to ICU, disregarding the information from the other right censored 
patients. 

Time in hospital ward (HW) until death in HW 

The aim is to estimate the probability that a patient will die in HW, and the distribution of the LoS 
in HW of those patients. The observations are {(ti, di, xi), i = 1,…,n} with ti the observed LoS in 
HW of all the patients, di indicates if the patient died in HW, and xi the indicator of whether the 
patient will not die in HW since he/she was discharged alive.  

There were 2453 COVID-19 patients admitted to the hospital (into a hospital ward or the ICU). To 
study the time in HW until death, we worked with the n = 2183 patients who never required 
admission to ICU. In that group, 328 patients died, which gives an estimated empirical probability 
of death pemp = 328/2183 = 0.1503. However some of the 2183 patients were still in HW at the 
end of the study, and they might die eventually, so the probability of death in HW is expected to 
be larger. NP-MCM approach estimates that probability to be pNP-MCM = 0.1561.  

Note that 1638 patients will never die in HW because they have been discharged; they are the 
known “cures” from death in HW. The classical KM estimator considers n = 2183 patients in HW 
with 328 observed events. The improved KM estimator takes into account that 1638 patients were 
discharged alive. So it considers only n = 2183 – 1638 = 545 patients in HW with 328 patients 
where the event (death) is observed. The empirical estimator considers only the n = 328 patients 
whose event is observed, that is, those who died in HW, disregarding the information from the 
other patients. 
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Time in hospital ward (HW) until discharged without ICU 

The goal is to estimate the probability that a patient in HW will be discharged without requiring 
ICU, and the distribution of the LoS in HW of those patients. The observations are {(ti, di, xi), i = 
1,…,n} with ti the observed LoS in hospital ward of all the patients, di indicates if the patient was 
discharged without need for ICU, and xi the indicator of whether discharge will not be observed 
because the patient died before that event happened.  

To study the time in HW until discharge, we worked with the n = 2183 patients in HW who did not 
need intensive care. In that group, 1638 were discharged, so the empirical estimator of the 
probability of discharge from HW without need for ICU is pemp = 1638/2183 = 0.7503. However 
there were patients still in HW at the end of the study, and many of them are expected to be 
discharged without admission to ICU, so the true probability of discharge from HW without ICU 
should be larger than pemp =0.7503. The NP-MCM estimator of that probability is pNP-MCM = 
0.7953. 

Note that 328 of the 2183 patients in HW will never be discharged because they died. They are 
the known “cures” from discharge. The classical KM estimator considers the n = 2183 patients in 
HW with 1638 patients where the event (discharge) is observed. The improved KM estimator 
takes into account that 328 patients died and will never be discharged. So it considers only n = 
2183 – 328 = 1855 patients in HW with 1638 patients discharged. The empirical estimator 
considers only the n = 1638 patients discharged from HW, disregarding the information from the 
other patients. 

Time in ICU until death in ICU 

The objective is to estimate the probability for a patient in ICU of dying, and the distribution of the 
LoS in ICU of those patients. The observations are {(ti, di, xi), i = 1,…,n} with ti the observed time 
in ICU of all the patients, di indicates if the patient died in ICU, and xi the indicator of whether the 
patient was discharged alive from ICU.  

There were n = 270 patients admitted to ICU, and 53 of them died in ICU, so the empirical 
probability of death in ICU is pemp = 53/270 = 0.1963. But in this group of n = 270 patients there 
were 42 patients still in ICU at the end of the study, and 52 in HW discharged from ICU who might 
need ICU again. Note that any patient within these two groups might die in ICU eventually, so the 
number of deaths in ICU for these 270 patients is expected to be larger than the 53 observed 
deaths. As a consequence, the true probability of death in ICU should be larger than pemp = 
53/270 = 0.1963. The NP-MCM estimation of this probability is pNP-MCM = 0.2222.  

To study the time in ICU until death, the NP-MCM estimator takes into account that some of the n 
= 270 patients in ICU will never die in ICU because they have been discharged from hospital 
(119) or died in HW after leaving ICU (4); they are the known “cures” from death in ICU. The 
classical KM estimator considers the n = 270 patients in ICU with n = 53 patients where the event 
(death) is observed. The improved KM estimator considers only n = 270 – 4 - 119 = 147 patients 
in ICU with 53 observed deaths. Finally, the empirical estimator considers only the n = 53 patients 
who died in ICU, disregarding the information from the other right censored times.   

 

Time in ICU until discharged from ICU to HW 

The goal is to estimate the probability that a patient in ICU will be sent back to the hospital ward, 
and the distribution of the times in ICU of those patients. The observations are {(ti, di, xi), i = 
1,…,n} with ti the time in ICU of all the patients, di indicates if the patient was discharged from 
ICU, and xi the indicator of whether the patient died in ICU. 
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There were n = 270 patients who required ICU. To estimate the probability of discharge from ICU, 
the empirical estimator considers the 175 patients who were discharged from ICU (4 dead in HW 
after ICU, 52 still in HW and 119 discharged at home at the end of the study). This yields an 
estimated probability of discharge from ICU of pemp = 175/270 = 0.6481. But some of the 42 
patients still in ICU at the end of the study (53 patients died in ICU) may be discharged, so the 
real probability of discharge from ICU is expected to be slightly larger than 0.6481. NP-MCM 
approach estimates that probability to be pNP-MCM = 0.6820.  

A total of 53 patients in ICU will never be discharged from ICU because they died in ICU; they are 
the known “cures” from discharge. The classical KM estimator considers the n = 270 patients in 
ICU with 175 observed events (discharge from ICU). The improved KM estimator takes into 
account that 53 patients died in ICU so they will never be discharged from ICU. It considers only 
n = 270 - 53 = 217 patients in ICU with 175 observed discharges. Finally, the empirical estimator 
considers only the n = 175 patients who have been discharged from ICU, disregarding the 
information from the other right censored patients. 

Table 3 shows the NP-MCM estimations of the time of hospitalization (which considers time in 
HW plus time in ICU) and the time in ICU for male and female patients, considering ages 40 and 
70 years. 

Table 3. NP-MCM estimation of the mean, median and IQR of the duration of hospitalization 
(which considers time in HW plus time in ICU) and time in ICU, computed with the COVID-19 
cases hospitalized in Galicia (Spain) from March 6 to May 7, 2020. 

 Duration of hospitalization Time in ICU 

 Mean1 Median IQR Mean1 Median IQR 

Total 16.80 11 7-19 23.94 17 9-38 

Women 13.92 11 7-20 21.76 17 8-38 

Men 18.41 10 6-17 23.88 18 10-NA 

40 years 15.36 9 6-16 21.82 16 8-28 

70 years 19.71 12 8-20 30.14 30 9-NA 

Women 40y  8.47 8 5-10 16.56 15 8-19 

Men 40y  16.84 10 6-18 23.58 16 8-NA 

Women 70y  16.63 11 7-17 28.12 27 10-NA 

Men 70y  19.60 12 7-21 24.28 17 8-38 

1 Underestimate 
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 Density estimations for the different LoS. 

The density functions in Figures 6 - 8 correspond to the survival estimates in Figures 1, 2 and 9 
respectively. Both the NP-MCM and empirical estimators yield proper survival functions (they go 
down to zero as time t increases), so the corresponding density functions are proper (area equal 
to 1). Note that, however, when there are individuals who will not experience the final outcome, 
the KM is wrongly specified and the curves reach a plateau at the largest observed time, t1n. This 
has two important implications in the density function corresponding to the KM curve: (a) the area 
is not 1 but lower (the difference between 1 and the plateau), so it should not be used for 
comparisons to proper density functions as those corresponding to the NP-MCM and E 
estimators; and (b) the KM curves estimate a large percentage of individuals (% = the value of 
the plateau) experiencing the event after the largest observed time, t1n, but the density function 
after t1n is zero. This zero value of the density function should not be interpreted as no events 
after that time t1n but simply lack of knowledge. 
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Figure 6. Estimates of the density function of LoS using NP-MCM (thick black line), KM with the 
complete dataset (thin grey line), KM with the reduced dataset (thin black line) and the empirical 
E estimator (red line) for all the COVID-19 hospitalized cases (n = 2453) in Galicia (Spain), when 
the LoS is the time of hospitalization (top left), time in hospital ward until admission to ICU (top 
right), time in hospital ward until death in hospital ward (middle left), time in hospital ward until 
discharge (middle right), time in ICU until death in ICU (bottom left) and time in ICU until 
discharge from ICU (bottom right). 
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Figure 7. Estimates of the density function of the times of hospitalization which considers HW 
plus ICU (top) and time in ICU (bottom), incorporating the effect of the sex (male = black line, 
female = red line) and the ages 40y (left) and 70y (right) for all the COVID-19 hospitalized cases 
(n = 2453) in Galicia (Spain). 
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Figure 8. Estimation of the density function of different times-to-event using the NP-MCM (black) 
and Weibull distribution (red) unconditionally without taking into account sex and age of the 
patients, of the LoS in hospital ward until admission in ICU (top left), LoS in hospital ward until 
death (top right), LoS in hospital ward until discharge (middle left), LoS in ICU until death (middle 
right) and LoS in ICU until discharge to hospital ward (bottom left) for all the COVID-19 
hospitalized cases (n = 2453) in Galicia (Spain).  
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Model for simulating outbreak 

 
We considered a simulated outbreak with N = 1000 infected individuals. We assumed that the 
infection times, Ii, i = 1, …, N, followed a log-Normal distribution, Log-N(μ, σ), with μ = 3.3 days 
and σ = 0.5  days [31]. For every i = 1, …, N, we simulated the sex Gi (0 = male, 1 = female) and 
the age Ai (years) of the i-th infected individual using  the real distributions of the reported 
COVID-19 cases in Galicia on May 7, 2020 (for details in case counts see Table 2). 
 

We defined H ∈ {1, …, N} as the set of indices corresponding to infected subjects admitted in 
hospital. The trajectory of every patient i ∈ H was obtained by simulating the transitions between 
states of the state space S = {HW, ICU, D, Dis}, where D (death) and Dis (discharge) are terminal 
states, using the NP-MCM estimates of the probabilities pj,k for j,k ∈ S. The duration times in 
states in S until transition to another state in S were also simulated using the Weibull distributions 
that best fitted the NP-MCM survival estimates. 
 

The proposed model was used to perform a Monte Carlo simulation as follows. For every patient i 
= 1, …, N with age Ai and sex Gi the probability of admission in hospital π(Ai, Gi) is estimated 
from the reported and hospitalized cases in Table 2. Based on a U(0,1) random variate, Ui, 
patient i is included in the set H of patients to be admitted into the hospital if Ui ≤ π(Ai, Gi). This 
gave us the set H. The time since infection until hospital admission Ti, of a patient i ∈ H was 
simulated from a normal distribution N(μi, σi) with μi = 12 - 0.05Ai days and  σi = 1. 
 

When a patient is admitted into the hospital, the probability of going directly to ICU is pH,ICU  = 
0.03, while the probability of staying in the hospital ward first is pH,HW = 0.97. In the simulated 
model conditioned on the age and sex of the patient, of those admitted in hospital ward, the 
probability of death without going to ICU is pHW,D(i) = 0.005exp(0.045Ai)  and the time (days) to 
death follows a Weibull age-dependent and sex-dependent distribution, W(αHW,D(i), λHW,D(i)), with 
parameters αHW,D(i) = 1.4 - 0.2Gi and 1/λHW,D(i) = 20exp(-0.008Ai) for every i ∈ H. The probability 
that a patient admitted in hospital ward finally has to enter ICU is pHW,ICU = 0.085, with the time 
(days) since hospital ward admission to ICU admission generated from a Weibull distribution 
W(αHW,ICU(i), λHW,ICU(i)) with αHW,ICU(i) = 2.75 - 0.025Ai and 1/ λHW,ICU(i) = 2.5exp(0.02Ai). As a 
consequence, the probability that a patient who was admitted to the hospital ward becomes 
discharged without entering ICU is pHW,Dis(i) = 0.915 - 0.005exp(0.045Ai). The time (days) since 
hospital ward admission to discharge follows a Weibull distribution W(αHW,Dis(i), λHW,Dis(i)), with 
αHW,Dis(i) = 1.75 (75 + 0.5Ai - 11Gi) / 100 and 1/ λHW,Dis(i)=13 ( - 2.5 + 1.5Ai – 7.5Gi ) / 100. After 
being admitted in ICU a patient may die, with probability pICU,D(i) =  0.0067exp((0.045 - 0.01Gi)Ai) 
or be transferred back to hospital ward, with probability pICU,HW(i) = 1 - pICU,D(i). Time from 
admission into ICU to death follows a Weibull distribution W(αICU,D(i), λICU,D(i)), with parameters 
αICU,D(i) = 0.8exp(0.009 + Ai)  and 1/ λICU,D(i) = 30exp(-0.012Ai) for every i ∈ H. The distribution of 
the time since admission into ICU until return to ward is again Weibull W(αICU,HW(i), λICU,HW(i)), with 
αICU,HW(i) = 1.6 (1 + Gi)exp(-0.003Ai(1+4Gi)) and 1/ λICU,HW(i) = 20exp(-0.003Ai(1 -Gi) - 0.22Gi) for 
every i ∈ H. A summary of the considered Weibull parameters is presented in Table 3 (see also 
Figures 8 and 9). Note that for the different Weibull distributions, the shape parameters α(i) are 
truncated to be higher than 0.5, whereas the scale parameters 1/λ(i) are truncated to be higher 
than 1. All the estimated probabilities pj,k for j,k ∈ S are truncated to fall between 0.05 and 0.95. 
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Figure 9 Estimation of the survival function of different times-to-event using the NP-MCM (black) 
and Weibull distribution (red) unconditionally without taking into account the age and sex of the 
patients, of the LoS in hospital ward until admission into ICU (top left), LoS in hospital ward until 
death (top right), LoS in hospital ward until discharge (middle left), LoS in ICU until death (middle 
right) and LoS in ICU until discharge to hospital ward (bottom left) for all the COVID-19 
hospitalized cases (n = 2453) in Galicia (Spain).  
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Table 4. Parameters of the Weibull distribution fitted to the different times-to-event, based on the 
hospitalized COVID-19 patients in Galicia (Spain) from March 6 to May 7, 2020. 
 
 Model age (Ai) and sex (Gi) dependent Unconditional 

Times α(i) 1/λ(i) α λ 

HW to ICU 2.75 - 0.025Ai 2.5 exp(0.02Ai) 1 5 

HW to death 1.4 - 0.2Gi 20 exp(-0.008Ai) 1.3 10 

HW to discharge 1.75(75 + 0.5Ai - 11Gi)/100 13(-2.5 + 1.5Ai - 7.5Gi)/100 1.75 13 

ICU to death 0.8 exp(0.009 + Ai) 30 exp(-0.012Ai) 1.3 18 

ICU to HW 1.6(1 + Gi) exp(-0.003Ai(1 + 4Gi)) 20 exp(-0.003Ai(1 – Gi)-0.22Gi)  1.4 17.3 

HW: Hospital ward; ICU: Intensive care unit 

 
The effect of ignoring the dependence on age and sex can be shown by simulating an alternative 
model where all the probabilities and time-to-event distributions do not depend on these 
variables. More specifically, the probabilities of death, discharge and admission to ICU in a 
hospital ward are pHW,D = 0.15, pHW,Disc = 0.795 and pHW,ICU = 0.085 respectively. The probabilities 
of death in ICU and discharge from ICU are pICU,D = 0.24 and pICU,HW = 0.76. The shape and scale 
parameters of the Weibull distributions, which no longer depend on age nor sex, are specified in 
Table 4. 
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# This script contains the code for estimating: 
 
# 1. The final outcome may happen for all the individuals  
#    Example: Duration of hospitalization, time in ICU, etc 
#    S(t)  : survival function (Kaplan and Meier, 1958) 
#    S(t|x): survival function conditioned on x (Beran, 1981) 
 
# 2. The outcome is not experienced for a subgroup of individuals,  
#    some of them clearly identified as being event-free, cure 
partially known  
#    Example: Length of stay in hospital ward until admission in 
ICU/discharged alive/death  
#    p:     probability of experiencing the event (Safari et al, 2020) 
#    S0(t): survival function of the individuals experiencing the event 
(Safari et al, 2020) 
 
 
####################################################################### 
# 1. THE FINAL OUTCOME MAY HAPPEN FOR ALL THE INDIVIDUALS 
#--------------------------------------------------------------- 
#    S(t)  : survival function (Kaplan and Meier, 1958) 
#--------------------------------------------------------------- 
 
# Data frame - The observations are ordered based on the times Ti. 
# time:   observed time to event 
# status: indicator of whether the final outcome has been observed 
data.real <- as.data.frame(cbind(time, status)) 
 
library(survival) 
km_fit <- survfit(Surv(time, status) ~ 1, data = data.real) 
km_fit$time   # Observed times 
km_fit$surv   # Survival function S(t) evaluated at the observed times 
 
#--------------------------------------------------------------- 
#    S(t|x): survival function conditioned on x (Beran, 1981) 
#--------------------------------------------------------------- 
# Data frame - The observations are ordered based on the times Ti. 
data.real <- as.data.frame(cbind(sex, age, time, status)) 
# sex:    sex of the individual  
# age:    age of the individual 
# time:   observed time to event 
# status: indicator of whether the final outcome has been observed 
 
 
# Covariate SEX: estimation of S(t|x) when x = 0 (men) and x = 1 
(women). 
 
library(survival) 
km_fit.men <- survfit(Surv(time, status) ~ 1, data = data.real, subset 
= sex == 0) 
km_fit.men$time   # Observed times 
km_fit.men$surv   # Survival function S(t) evaluated at the observed 
                  # times 
 
km_fit.women <- survfit(Surv(time, status) ~ 1, data = data.real, 
subset = sex == 1) 
km_fit.women$time   # Observed times 
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km_fit.women$surv   # Survival function S(t) evaluated at the  
                    # times 
 
 
# Covariate AGE: estimation of S(t|x) when x = 40 and x = 70. 
  
library(npcure) 
# Values of x = age where the survival function S(t|x) is estimated. 
grid.age <- c(40, 70) 
b_fit <- beran(x = age, t = time, d = status, dataset = data.real,  
               x0 = grid.age,  
               conflevel = 0.95,  
               cvbootpars = controlpars(hbound = c(0.2, 2), hl = 100)) 
                                         
# Survival function for age = 40 years: 
S.40 <- b_fit$S$x40 
# 95% confidence band 
S.40.lower <- b_fit$conf$x40$lower 
S.40.upper <- b_fit$conf$x40$upper 
 
# Survival function for age = 70 years: 
S.70 <- b_fit$S$x70 
# 95% confidence band 
S.70.lower <- b_fit$conf$x70$lower 
S.70.upper <- b_fit$conf$x70$upper 
 
 
# Covariates AGE and SEX: estimation of S(t|x) when x = 40 and male 
 
grid.age <- 40 
data_men <- subset(data.real, sex == 1) 
b_fit_men <- beran(x = age, t = time, d = status, dataset = data_men,   
                x0 = grid.age,  
                conflevel = 0.95,  
                cvbootpars = controlpars(hbound = c(0.2, 2), hl = 100)) 
# Survival function for age = 40 years and sex = male: 
S.men.40 <- b_fit_men$S$x40 
# 95% confidence band 
S.men.40.lower <- b_fit_men$conf$x40$lower 
S.men.40.upper <- b_fit_men$conf$x40$upper 
 
 
####################################################################### 
# 2. THE OUTCOME IS NOT EXPERIENCED FOR A GROUP OF INDIVIDUALS 
# The survival function is S(t) = (1 - p) + p S0(t) 
# p:     probability of experiencing the event 
# S0(t): survival function of the individuals experiencing the event 
 
# Data frame - The observations are ordered based on the times Ti: 
# time:   observed time to event 
# status: indicator of whether the final outcome has been observed 
# cure:   indicator of whether the individual is known not to 
experience the event (cured) 
data.real <- as.data.frame(cbind(time, status, cure)) 
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#====================================================================== 
# Function that computes the nonparametric (NP) survival estimator  
# when cure is partially known (CPK) 
#======================================================================
S_NPCPK <- function (data=data) { 
   
  N <- nrow(data) 
   
  # The observations are ordered based on the times Ti 
  data.ot <- data[order(data[, 1]), ]  
  t  <- data.ot[,1] 
  d  <- data.ot[,2]   
  nu <- data.ot[,3]  
  cum.nu <- cumsum(nu)  # Number of known cures up to time Ti 
   
  S <- rep(1, N) 
   
  for (i in 2:N) { 
    if(d[i]==0) {S[i] <- S[i-1]} 
    if(d[i]==1) {S[i] <- S[i-1] * (1 - 1/(N - i + 1 + cum.nu[i-1]))}} 
   
  p <- 1 - min(S) 
   
  return(list(S, p, t)) 
} 
 
#====================================================================== 
# Survival estimation 
# S[[1]]: survival function S(t) evaluated at the observed times 
# S[[2]]: probability (1 - p) of not experiencing the event 
# S[[3]]: observed times Ti 
 
S <- S_NPCPK(data.real) 
 
# p : probability of experiencing the final outcome 
p <- 1 - S[[2]] 
 
# S0(t): Survival function of the individuals experiencing the event 
S0 <- (S[[1]] - (1 - p))/p 
#====================================================================== 
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