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Abstract: Policy makers in Africa need robust estimates of the current and future spread of 

SARS-CoV-2.  Data suitable for this purpose are scant. We used national surveillance PCR 

test, serological survey and mobility data to develop and fit a county-specific transmission 

model for Kenya. We estimate that the SARS-CoV-2 pandemic peaked before the end of July 

2020 in the major urban counties, with 34 - 41% of residents infected, and will peak 

elsewhere in the country within 2-3 months.  Despite this penetration, reported severe cases 

and deaths are low. Our analysis suggests the COVID-19 disease burden in Kenya may be far 

less than initially feared.  A similar scenario across sub-Saharan Africa would have 

implications for balancing the consequences of restrictions with those of COVID-19.  
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Main Text:  

The potential risk from SARS-CoV-2 to Africa was identified early in the global pandemic 

(1). As the epicenter of transmission moved from East Asia to West Asia and Europe and 

then to North America, there was speculation as to the likely impact of the pandemic on the 

African continent with its young populations, infectious disease burden, undernutrition and 

fragile health infrastructure. However, as health systems and economies of high-income 

countries strained, the reported burden of COVID-19 cases and associated deaths in Africa 

remained low (2). Even today, other than for South Africa, this remains true throughout sub-

Saharan Africa.  The question is whether this is the result of lower risk due to demographic 

structure (young age (3)) or cross-reacting immunity (e.g. pre-existing SARS-CoV-2 cross-

reactive T cells (4)) a low reproduction number from imposed interventions (such as school 

closures and lockdowns (5)) or environmental conditions (e.g. temperature and humidity (6)), 

or under-reporting.  The reason this remains a conundrum is, at least in part, a paucity of 

good quality data to reveal the probable extent of SARS-CoV-2 spread in African 

populations.  

Following the first confirmed COVID-19 case in Kenya on 13th March 2020, the Kenyan 

Government moved rapidly, closing international borders, schools, restaurants, bars and 

nightclubs, banning meetings and social gathering and imposing a dusk to dawn curfew and 

movement restrictions in the two major city counties, Nairobi and Mombasa, considered 

epidemic hotspots at the time (7).  The major concerns from unmitigated spread were a 

limited surge capacity of the Kenyan health system (8) and groups of the Kenyan population 

identified as potentially highly vulnerable to infection and/or severe disease (9). Throughout 

the months of April, May and into June 2020 few people in Kenya were reported SARS-

CoV-2 test positive by polymerase chain reaction (PCR), or severely diseased or dying with 

COVID-19 as the established cause (10). There followed a relaxation of some measures in 

June and July including opening of restaurants and places of worship and the removal of 

travel restrictions into and out of Mombasa and Nairobi counties. As of 10th August 2020, 

there have been 23,873 laboratory-confirmed positive swab tests out of over 320,000 tests, 

and 391 deaths with a positive test result in Kenya.  This should be compared with the 200-

250,000 cases and 30-40,000 deaths attributable to SARS-CoV-2 for similar sized countries 

in Europe (France, Italy, UK) at equivalent months into their epidemics.  
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The reason for this apparently low level of COVID-19 disease in Kenya is unknown, and 

non-reporting is a potential explanation. However, two pieces of information suggest an 

explanation that SARS-CoV-2 has spread extensively with a smaller proportion than 

expected having severe disease. First, a regionally-stratified seroprevalence study of 3098 

Kenyan blood donors sampled between May and June reported a national estimate of 5.2% 

(adjusted to reflect the population distribution by age, sex and region) (11). Seroprevalence 

was higher in Nairobi (8.5%) and Mombasa (9.3%). These levels of seropositivity are 

comparable to those reported in May in the UK (12),  April/May in Spain (13), and 

March/April in some US cities (14), where in contrast to Kenya, high numbers of PCR-

positive cases, hospitalizations and deaths have also been reported. Second, early in August 

2020, we noticed that test-positive PCR cases were declining in Mombasa, the second largest 

city in Kenya. This went counter to evidence of increased mixing, and hence reproduction 

potential, arising from Google Mobility data for Mombasa showing a steady reversion in 

mobility towards pre-COVID-19 intervention levels from early April (Fig. S1).  

We developed a simple SEIR compartmental mechanistic and data-driven transmission 

model for Kenya, which integrates three sources of longitudinal data: national time series 

PCR tests, the Kenyan serological survey and Google mobility behavioural data (15).  Our 

aim is to derive a coherent picture of SARS-COV-2 epidemiology in Kenya and reveal the 

historic and future patterns of spread across the country and by county.  This approach allows 

us to generate a crude estimate of infection-to-fatality ratio (IFRcrude) between estimated 

infections and observed deaths with a positive test result; reported deaths are not used as 

primary data for inference, but rather as a validation data set for model predictive accuracy 

(see supporting information for description of model validation).  

As at 10th August 2020, a substantial proportion of PCR positive tests have been samples 

from the capital Nairobi (10,575 positive tests), and Kenya’s second largest city, Mombasa, 

has reported the next highest number of PCR positive tests (1,962). We find that the rate of 

new infections peaked on May 31st 2020 (CI May 25th - June 15th) in Mombasa and July 

10th 2020 (CI July 2nd - July 19th) in Nairobi, and is now declining (Fig. 1H,G). The model 

suggests that the PCR test and serology data can be explained by the initial presence of <10 

infected individuals in Mombasa and <50 in Nairobi on 21st February, three weeks before the 

first reported case in Kenya. Thereafter, growth of transmission was rapid in both counties.  

In early March, the reproductive ratio was 2.23 and 2.01 in Mombasa and Nairobi, 
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respectively, and the doubling-time estimates were 3.85 and 4.55 days, respectively.  After 

March, the transmission curves flattened substantially. By April 16th, the reproductive ratio 

was 1.18 and 1.04, respectively and the doubling times were 27.7 and 93.5 days, respectively. 

This change is consistent with the introduction of containment measures by the Kenyan 

government, and evidence of substantial reduction in mobility (see Google Mobility data Fig. 

S1).  From late April through May and June and into July the evidence suggests movement 

restrictions became steadily less effective (Fig. 2; Fig.S1). The waning effectiveness of 

movement restrictions results in an inferred increase in R and an increased rate of epidemic 

growth; however, in Mombasa and Nairobi we predict that reduction in susceptibility of the 

population had already caused the effective reproductive ratio (Reff; the mean number of 

secondary cases accounting for reduced susceptibility) to fall significantly below the basic R 

value (Fig. 2).  

By accounting for the delay of an average of 19 days between infection and death (supporting 

information for details on infection to death distribution) we find the transmission curve, 

estimated from PCR tests and serology, generates a good prediction of the observed daily 

deaths in Nairobi and Mombasa (Fig. 1 E&F). We emphasize that we did not use daily death 

data in transmission model inference, therefore the good fit to the observed trend in deaths 

with a PCR-confirmed test result represents an out-of-sample validation of the modelling 

(16). We predict the peak of positive PCR test samples occurred at the end of July or early 

August in Nairobi and earlier, mid-June, in Mombasa. The lag between transmission peak 

and positive swab testing peak being explained by both the delay between infection and 

becoming detectable by PCR, and the period after an infected individual has ceased being 

actively infectious but remains detectable by PCR (17) (Fig. 1 A&B). As of the beginning of 

August 2020 we estimate that about 28.5% (CI 17.3%-38.9%) of the Nairobi population, and 

27.1% (CI 19.2-37%) of the Mombasa population would be serologically positive with 

SARS-CoV-2, (Fig. 1 C&D). This estimated level of seropositivity is substantially higher 

than has been estimated in countries that have been hit hard by the pandemic (12-14) 

however they are in broad agreement with a recent study in Niger state, Nigeria (18). We 

caution over-interpreting the forecasts of seroprevalence; the projections could be markedly 

lower if we assumed significant decay in specific antibody over the timescale of observation 

of a few months. Importantly, our projections of the proportion exposed are not conditional 

on the assumption of waning seropositivity.  
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Accounting for the sensitivity of the serological assay, and the delay between infection and 

seroconversion, we estimate that the actual exposure of the population to SARS-CoV-2 by 

August 1st was 40.9% (CI 24.3%-54.7%) in Nairobi and 33.8% (CI 23.7%-46.5%) in 

Mombasa (Fig. 1 C&D). Such levels of population exposure are predicted to be associated 

with herd-immunity in these urban populations given the estimated reproductive numbers and 

effective population size at risk of exposure (Peff) due to heterogeneity in the susceptibility, 

transmissibility and social interactivity in the population (supporting information for more 

details on effective population size in transmission modelling); the effective population size 

for Nairobi was inferred as 77.0% of actual population size (CI 45.4%-98.8%), for Mombasa 

56.4% (CI 39.6%-76.8%). These low herd immunity estimates rest upon inferred variation in 

risk across the population and reduced reproductive potential due to present interventions. 

There remains a possibility of future increase in transmission if population mobility continues 

to rise, if population mixing patterns alter leading to changed risk heterogeneity or if 

immunity is short lived, leading to a rebound in reported cases. It is possible that non-

antibody mechanisms of immunity (for instance T cells (3)) also contribute to apparent herd 

immunity at low serological prevalence. 

The fitted IFRcrude values for both Nairobi (IFRcrude = 0.014% (CI: 0.010%-0.023%) ) and 

Mombasa (IFRcrude = 0.02% (CI:0.014%-0.028%)) are substantially lower than the age-

adjusted IFR expected for Kenya under full ascertainment (IFRverity = 0.26%; (19) and 

supporting information). This is a crude observational value for the infection to fatality ratio, 

since we do not currently have an estimate of the reporting bias of deaths of individuals 

infected with SARS-CoV-2. Therefore, our estimate of IFRcrude potentially reflects lower 

detection in Kenya compared to China, as well as any lower mortality risk due to fewer 

comorbidities.  

We extended our model-based inference to each of the 47 counties in Kenya (see dataset S1 

for parameter estimates, peak time estimates and IFRcrude estimates for each county). For 

counties with enough data we replicated the inference approach used for Nairobi and 

Mombasa counties. Model inference for counties with no serological samples and only a 

small number of PCR positive samples used strong priors inferred from the posterior 

distributions of model parameters of similar counties which could be fitted (Fig. 3A; 

supporting information for details on how counties were matched to similar counties). We 

find that, in addition to the two main Kenyan city counties, the rate of new infections in semi-

urban counties neighbouring Nairobi (Kiambu, Kajiado, and Machakos) and Mombasa 
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(Kwale), and the Ugandan border county Busia, also peaked before August 2020; Kwale 

county (neighbouring Mombasa on the Tanzanian border) is predicted to have been the first 

to peak (posterior mean of peak time May 21st 2020). Note, these early peaks in Kwale and 

Busia counties might be an artifact of cross-border importations and a testing strategy skewed 

towards a highly mobile population (i.e. truck drivers). However, the infection rate is 

predicted to still be rising in other more rural counties, most notably in counties constituting 

the former Rift valley, Eastern and North Eastern provinces. We forecast that the final county 

to reach peak infection rate will be the arid and sparsely populated Wajir county (posterior 

mean 24th September 2020; Fig. 3A).  

Because of the lag between infection and the observability of the infected person (whether by 

swab PCR test, serology test, or death), we estimate that both daily PCR positive test 

detections and daily observed deaths attributed to COVID-19 across all of Kenya were 

peaking in early August 2020. Accessing complete data on hospitalisation rates in Kenya has 

been challenging.  However, sentinel clinical surveillance from county hospitals suggests a 

modest increase in adult admissions trending towards pre-COVID numbers in June and July 

2020 but, on average, lower than observed counts from at a similar period in 2018 and 2019 

(20). Our prediction is that rates of new PCR positive tests and deaths attributed to COVID-

19 will enter a long-tailed decline from August 2020 onwards; that is, the rate of epidemic 

decline will be less steep than the rapid growth phase as the decrease in the main cities is 

partially off-set by growth in the rest of Kenya (Fig. 3 B&C). It is likely hospitalisation 

incidence will follow a similar trend to the infection and death rates. By fitting an IFRcrude 

value for each county in Kenya, we expect that by the end of December 2020 less than 1000 

deaths in Kenya will be cumulatively attributed to COVID-19 (Fig. 3C). It should be noted 

that our projections are based on an assumption that the PCR testing rate in Kenya is either 

increasing or flat in each county, if the testing rate declines then we expect the rate of PCR 

positive tests to decline even more steeply than predicted in this study.  

Our modelling analysis provides a coherent account of the SARS-CoV-2 pandemic in Kenya. 

Whilst the full picture of the epidemiology in Kenya will not be established until cause-

specific mortality data become available (e.g. from resumption of Demographic Surveillance 

System and verbal autopsy activities), out model, fitted to three sources of nationwide 

longitudinal data, suggests that the number of COVID-19 cases and the mortality risk 

attributable to the SARS-CoV2 epidemic are substantially lower in Kenya than in Europe and 

the USA. Given that the model suggests 34-41% of the urban population have already been 
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exposed, and that the epidemic has peaked during a period of relatively little restrictions and 

physical distancing, it seems likely that a significant factor in the epidemic resolving is 

through population immunity. If this trend continues, then the direct and indirect health and 

socio-economic consequences of control measures need to be balanced carefully as we obtain 

more accurate estimates of the consequences of disease. 

  

     
    

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.02.20186817doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.02.20186817
http://creativecommons.org/licenses/by-nc/4.0/


  9 

 

Fig. 1. SARS-CoV-2 PCR positive swab tests, seroprevalence and deaths in Nairobi and Mombasa, Kenya, with model forecasting. 
(A) & (B) Daily reported positive PCR positive swab tests (blue dots) for Nairobi (A) and Mombasa (B), model prediction of mean daily 
detection of new PCR-positive swab tests by date of sample collection (black curve), and the model prediction interval for observed daily 
PCR-positive swab tests including inferred day-to-day variation in detection (pink shading). (C) & (D) Monthly seropositivity of Kenya 
National Blood Transfusion Service (KNBTS) blood donors in Nairobi (C) and Mombasa (D) (green dots), model predictions for 
population percentage of seropositivity (green curve), exposure to SARS-CoV-2 (red curve), and uninfected (blue curve). (E) & (F) Daily 
deaths with a positive SARS-CoV-2 test in Nairobi (E) and Mombasa (F) by date of death (black dots), and model prediction for daily 
deaths (black curve). Inset plots in (E) and (F) indicate cumulative reported deaths and model prediction. (G) & (H) Model estimates for 
rate of new infections per day in Nairobi (G) and Mombasa (H). Background shading indicates 95% central credible intervals. Dates for all 
graphs mark the 1st of each month. 
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Fig. 2. Estimated basic and effective reproductive numbers in Kenya since Feb 21st 2020. The posterior mean reproductive number 
for Nairobi (red curves), Mombasa (green curves), and the averaged over reproductive number estimates for all other Kenyan counties 
(blue curve). Shown are both the basic reproductive numbers (expected secondary infections in a susceptible population adjusted for 
mobility changes since the epidemic start; solid curves), their near-term projections (dashed curves), and effective reproductive numbers 
(expected secondary infections accounting for depletion of susceptible prevalence in the population; dotted curves). The effective 
reproductive number varied significantly from county to county and is not shown. Restrictions aimed at reducing mobility in risky 
transmission settings (black dotted lines) are labeled in groups. The chronologically ordered restrictions in each group are: 1) First PCR-
confirmed case in Kenya, suspension of all public gatherings, closure of all schools and universities, and retroactive quarantine measures 
for recent returnees from foreign travel, 2) suspension of all inbound flights for foreign nationals, imposition of a national curfew, and 
regional lockdowns of Kilifi, Kwale, Mombasa and Nairobi counties, and 3) additional no-movement restriction of worst affected areas 
within Mombasa and Nairobi, and, closure of the border with Somalia and Tanzania. 
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Fig. 3. Predicting peak timing of transmission rate by Kenyan county, and forecasting of Kenya-wide PCR positive swab tests and 
reported deaths. (A) Posterior mean for date of transmission rate peak by Kenyan county. Solid shaded counties had sufficient data to 
infer model parameters with generic weak priors. Candy-striped shaded counties had model parameters inferred with strong priors derived 
from posterior distributions of parameters for other counties. Inset plots focus on Nairobi and Mombasa cities.  (B) Kenya total positive 
swab tests collected by day of sample (blue dots) with model prediction of daily positive swab test trend (red curve). (C) Kenya total 
reported deaths with a positive swab test (black dots), with model prediction of reported death rates (black curve). Inset plot indicates 
cumulative reported deaths with model prediction of cumulative deaths. Dates on (B) & (C) mark 1st of the month. 
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Supplementary Information 

Materials and Methods 
 
Data description 
 
We use three daily time series as sources of data to infer model parameters for each Kenyan 
county:   

● PCR positive swab samples by collection date,  (𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃+)𝑛𝑛,𝑐𝑐denoting the number of 
observed on day n in county c. The county-specific time series of PCR positive swabs 
was derived from the Kenya linelist by identifying cases with reported PCR positive 
swabs in that county by their date of sample collection (or lab confirmation date if 
collection date was not available). We excluded positive swabs that were traced either 
at entry into Kenya or due to being a contact of an identified case, so as to focus on 
Kenyan population surveillance. 

● Numbers of sero-positive (𝑂𝑂𝑂𝑂𝑂𝑂𝑆𝑆+)𝑛𝑛,𝑐𝑐and sero-negative (𝑂𝑂𝑂𝑂𝑂𝑂𝑆𝑆−)𝑛𝑛,𝑐𝑐 blood samples 
collected from regional centres of the Kenyan National Blood Transfusion Service 
(KNBS) on day n originating from county c. 

● Daily estimates of relative human mobility 𝑚𝑚𝑛𝑛,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎compared to a baseline of the 
same date in the previous year (2019) derived from Google mobility trends (15). 

● Deaths with a positive PCR-confirmed test by date of death for each county, (𝑋𝑋+)𝑛𝑛.  
 
The (𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃+)𝑛𝑛,𝑐𝑐time-series ran between 13th March and 10th August, however we removed 
data from 7th until 10th August because of delay between the sample date and the positive 
swab test being confirmed and added to the Kenyan linelist. The (𝑂𝑂𝑂𝑂𝑂𝑂𝑆𝑆+)𝑛𝑛,𝑐𝑐and (𝑂𝑂𝑂𝑂𝑂𝑂𝑆𝑆−)𝑛𝑛,𝑐𝑐 
data was collected in May and June. Residual blood samples for serology were obtained from 
regular blood donors attending 4 regional KNBTS centres (Mombasa, Nairobi, Eldoret and 
Kisumu). The study methodology is fully described in Uyoga et al (11). 
 
We assumed that changes in trends in SARS-CoV-2 transmission in Kenya were due to 
changes in the underlying population mobility. In particular, by changing frequency of indoor 
congregations. Therefore, we calculated 𝑚𝑚𝑛𝑛,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 as the average change in baseline mobility 
over the “retail and recreation”, “grocery and pharmacy”, “transit stations”, and, 
“workplaces” settings (Google defined categories), and also over the week prior to day n, in 
order to average over weekend effects. Due to incomplete data, and the likely bias introduced 
by using a mobility estimate derived from smartphone users in predicting the mobility of 
semi-rural populations outside of the major urban conurbations in Kenya, we consider only 
three areas: Nairobi, Mombasa and the pan-Kenyan aggregate (Fig. S1). 
 
Transmission model 
 
The dynamics of transmission were assumed to follow a simple SEIR transmission model 
with an effective population size parameter (𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒) (21). The 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 parameter accounted for the 
effect of population heterogeneity in lowering the proportion of the total population that must 
become immune for incidence to start decreasing, due to depletion of susceptibles rather than 
increased social distancing, compared to the prediction of a fully homogeneous model. In 
homogeneous SEIR models both the early exponential growth rate in incidence and the 
proportion of the total population that must become immune for incidence rate to start 
decreasing, e.g. “herd-immunity”, can be determined from the reproductive number 𝑅𝑅0 and 
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the mean durations of latency and infectiousness (22). For heterogeneous models of 
transmission, where potentially different at-risk groups are at different risk of contracting the 
infectious pathogen and have different infectious potential, determining 𝑅𝑅0 from early growth 
in incidence aggregated over the different at-risk groups doesn’t give sufficient information 
to estimate the overall proportion of the population required to become immune before 
achieving herd immunity. This aspect of heterogeneous models of transmission has been 
widely investigated, for example, in the context of comparing vaccination coverage 
thresholds for elimination between uniform and targeted vaccination policies (23). In the 
context of the SARS-CoV-2 pandemic modelling literature, the role of population 
heterogeneity in lowering the herd-immunity threshold compared to the prediction of a 
homogeneous population transmission model has again been identified (24, 25). In this study, 
we have taken a phenomenological approach; the effect of heterogeneity in the population 
was encoded in the effective population parameter 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒, and this parameter was inferred 
jointly with 𝑅𝑅0.    
 
The rate of infectious contacts per infectious individual, 𝛾𝛾𝑅𝑅𝑡𝑡, was given as the time-varying 
instantaneous reproductive number (𝑅𝑅𝑡𝑡), that is the number of secondary cases per infected 
individual assuming both a fully susceptible population and the time-varying mobility rate 
being fixed at time t (26), rescaled by the recovery rate from infection (𝛾𝛾). The instantaneous 
reproductive number for a county was assumed to change daily proportional to the change in 
the mobility rate: 

𝑅𝑅𝑡𝑡 = 𝑅𝑅0𝑚𝑚𝑛𝑛,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  when t was in day n. (1) 

The “area” of the county was Nairobi or Mombasa for those counties, otherwise the Pan-
Kenyan mobility estimate was used. The baseline reproductive number 𝑅𝑅0 was inferred for 
each county. 
 
The model dynamics are given as differential equations for susceptible (𝑆𝑆(𝑡𝑡)), latently 
infected (𝐸𝐸(𝑡𝑡)), actively infectious (𝐼𝐼(𝑡𝑡)), recovered/immune (𝑅𝑅(𝑡𝑡)), and, cumulative 
infections (𝐶𝐶(𝑡𝑡)), 

𝜕𝜕𝑡𝑡𝑆𝑆(𝑡𝑡) = −𝛾𝛾𝛾𝛾𝑡𝑡 𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡)/(𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑁𝑁), 
𝜕𝜕𝑡𝑡𝐸𝐸(𝑡𝑡) = 𝛾𝛾𝑅𝑅𝑡𝑡𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡)/(𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑁𝑁) − 𝜎𝜎𝜎𝜎(𝑡𝑡), 

𝜕𝜕𝑡𝑡𝐼𝐼(𝑡𝑡)  =  𝜎𝜎𝜎𝜎(𝑡𝑡) − 𝛾𝛾𝛾𝛾(𝑡𝑡), 
𝜕𝜕𝑡𝑡𝑅𝑅(𝑡𝑡) = 𝛾𝛾𝛾𝛾(𝑡𝑡), 

𝜕𝜕𝑡𝑡𝐶𝐶(𝑡𝑡) = 𝛾𝛾𝛾𝛾𝑡𝑡 𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡)/𝑁𝑁. 

(2) 

All variables and parameters are described in table S1. The transmission model was 
initialised on 21st February for each county, 21 days before the first confirmed positive test 
swab and the first day of available Google mobility data with initial state (𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑁𝑁 − 𝐸𝐸(0) −
𝐼𝐼(0),𝐸𝐸(0), 𝐼𝐼(0),0,0), where 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒,𝐸𝐸(0) and 𝐼𝐼(0) were treated as target parameters for 
inference. 
 
Equation (2) implies the effective (instantaneous) reproductive, that is the instantaneous 
reproductive ratio where the reduction in susceptibility is also accounted for: 𝑅𝑅𝑡𝑡

𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑅𝑅𝑡𝑡𝑆𝑆(𝑡𝑡)/(𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑁𝑁). 
 
In total, the transmission model for each county had four unknowns   𝜃𝜃𝑇𝑇𝑇𝑇 =
(𝑅𝑅0,𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒,𝐸𝐸(0), 𝐼𝐼(0)): the baseline reproductive number (𝑅𝑅0), an effective population size 
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scale (𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒), the number of latently infected individuals on 21st Feb (𝐸𝐸(0)), and the number 
of actively infectious individuals on 21st Feb (𝐼𝐼(0)). 
 
Observation model 
 
The underlying transmission of SARS-CoV-2 is not observed, rather we have access to PCR 
positive swab tests and serological tests (positive and negative) aggregated by date and 
county. Therefore, we developed an observation model that connects unobserved daily 
transmission rates, which depend on the unknown transmission parameters, to a likelihood of 
the observed test data. The observation model itself had two unknown parameters per county: 
the mean detection rate per PCR-detectable individual per day by swab testing, and the 
clustering factor of these detections. By defining a likelihood-based observation model we 
gained access to modern techniques in Bayesian inference to infer both the unknown 
parameters of the underlying transmission process and the unknown parameters of the 
observation process. 
 
The number of people who would test positive, either as PCR positive or as sero-converted, 
on each day n depended on: 1) the rate of new incidence on each day s < n, and, 2) the 
probability that someone who was infected on day s is detectable 𝜏𝜏 =  𝑛𝑛 − 𝑠𝑠 days later. The 
daily numbers of new incidence (𝜄𝜄𝑛𝑛) on each day n predicted by the transmission model was,  

𝜄𝜄𝑛𝑛 = 𝐶𝐶(𝑛𝑛 + 1) − 𝐶𝐶(𝑛𝑛) for each day n. (3) 

 
The probability that an infected individual would be determined as having been infected 𝜏𝜏 
days after infection by either a PCR test or a serology test was denoted, respectively, 𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃(𝜏𝜏) 
and 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜏𝜏). The maximum sensitivity of the PCR test in a typical Kenyan setting was part 
of our inference methodology (see below), therefore we treated 𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃(𝜏𝜏) as being 0 for the 
first 5 days post-infection (the mean time between infection and symptoms for symptomatic 
cases (27)) and then was fitted to data on diagnostic accuracy given in Zhou et al (17), the 
fitted functional form for PCR-detectability more than 5 days after infection was:  

𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃(𝜏𝜏)  = 𝑄𝑄𝛤𝛤(𝜏𝜏 − 5|𝑘𝑘� = 18.4,𝜃𝜃� = 1.1) for 𝜏𝜏 > 5 days. (4) 

Where 𝑄𝑄𝛤𝛤 was the tail distribution function of a Gamma distribution with fitted shape 
parameter 𝑘𝑘� = 18.4 and fitted scale parameter 𝜃𝜃� = 1.1. This aligns with Zhou et al that the 
median period to become PCR undetectable after symptoms was 20 days (CI 17-24 days) 
(17). The lag between symptoms and maximum detectability by serological assays has been 
reported as 21 days in a recent metastudy of reported diagnostic sensitivities (28). We 
assumed that, given an additional 5 day lag after infection, the sensitivity of the serological 
assay increased linearly from 0 at infection to a maximum of 82.5% (11) over 26 days,       

𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜏𝜏)  = 0.825𝜏𝜏/26 for 0 < 𝜏𝜏 < 26 days, 
𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜏𝜏)  = 0.825 for 𝜏𝜏 ≥ 26 days. (5) 

 
The number of people in the county who would test positive on each day, with a PCR test 
(𝑃𝑃+)𝑛𝑛, and/or a serology test (𝑆𝑆+)𝑛𝑛, is, therefore, 

(𝑃𝑃+)𝑛𝑛 = ∑𝑛𝑛−1
𝑠𝑠=1 𝜄𝜄𝑠𝑠𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃(𝑛𝑛 − 𝑠𝑠), 

  (𝑆𝑆+)𝑛𝑛 = ∑𝑛𝑛−1
𝑠𝑠=1 𝜄𝜄𝑠𝑠𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛 − 𝑠𝑠)  +  𝑝𝑝𝐹𝐹𝐹𝐹𝑆𝑆(𝑡𝑡),  

where 𝑡𝑡 was the midpoint of day n. 
(6) 
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𝑝𝑝𝐹𝐹𝐹𝐹 was the false positive rate for the serology assay (see table S1). Underlying equation (6) 
is an assumption that the PCR test is 100% specific to SARS-CoV-2.  
 
The total number of swab samples collected, including negative tests, on each day was not 
available. The total number of tests performed in coastal counties which were referred to the 
KWTRP laboratory for PCR was available, and showed considerable variation per day (see 
Fig S3 for total swab tests per day in Mombasa referred to KWTRP). Moreover, there was 
variation in the setting at which the swab test was collected, e.g. at hospital, from a walk-up 
testing facility etc, as the focus of Kenyan public health teams has shifted over the course of 
the epidemic. Therefore, there was a high degree of variability in the detection probability per 
PCR-detectable infected individual per day. To account for the high variability in detection, 
we modelled the distribution of PCR positive swab tests collected on each day using a 
negative binomial distribution, 

𝜇𝜇𝑛𝑛 = 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑃𝑃+)𝑛𝑛  
(𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃+)𝑛𝑛 ∼ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝜇̂𝜇 = 𝜇𝜇𝑛𝑛,𝛼𝛼� = 𝛼𝛼) for each day n. (7) 

Where 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 was the mean detection rate per PCR-detectable, per day. Hence, 𝜇𝜇𝑛𝑛 is the 
expected number of positive swab tests that would be sampled on day n, given (𝑃𝑃+)𝑛𝑛 PCR-
detectable infected individuals, and 𝛼𝛼 was the clustering coefficient1 for the sampling 
process: 𝛼𝛼 = 0 recovers a Poisson distribution for the number of positive swab tests collected 
each day, 𝛼𝛼 > 0 allowed the model to infer much greater variance in daily positive than 
expected from a Poisson distribution (29). It should be noted that the parameter 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
effectively absorbs swab sample biasing, either for or against selecting individuals who have 
been exposed to SARS-CoV-2, amongst the swab tested subjects along with the sensitivity of 
the PCR test as performed in realistic situations.  
 
The number of donor blood samples tested by day of sample collection was available, 
however, the reported uncertainty in the maximum sensitivity of serology assay was fairly 
high: the posterior mean sensitivity was 82.5% (credible interval 69.6-91.2%; (11)). The 
posterior uncertainty in the serological sensitivity influenced the confidence the inference 
method placed on the serological sample data; if the test sensitivity was known to high 
precision we would treat each days serological samples as a binomial draw from an 
underlying proportion of seroconverted individuals given by equation (4). Given that the 
sensitivity of the serological assay was itself an uncertain factor we fitted the posterior 
uncertainty in the testing sensitivity to a beta distribution: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∼
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝛼𝛼� = 33.6, 𝛽̂𝛽 = 7.13). This implied that the appropriate observation model for the 
number of positive serological samples on day n ((𝑂𝑂𝑂𝑂𝑂𝑂𝑆𝑆+)𝑛𝑛), out of the total number of 
serological samples being collected on day n, 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑛𝑛 = (𝑂𝑂𝑂𝑂𝑂𝑂𝑆𝑆+)𝑛𝑛 + (𝑂𝑂𝑂𝑂𝑂𝑂𝑆𝑆−)𝑛𝑛,  was a Beta-
binomial distribution, 

(𝑂𝑂𝑂𝑂𝑂𝑂𝑆𝑆+)𝑛𝑛 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑁𝑁� = 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑛𝑛, 𝑝̂𝑝 =  (𝑆𝑆+)𝑛𝑛
𝑁𝑁

,𝑀𝑀� = 𝑀𝑀). (8) 

Given an underlying realization of the transmission process the mean number positive 
serological samples on day n is 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑛𝑛  (𝑆𝑆+)𝑛𝑛

𝑁𝑁
. The “total-count” parameter (30), 𝑀𝑀 = 𝛼𝛼�  +

𝛽̂𝛽 = 40.73, allowed for greater dispersion in the observed seropositive count data than would 
be allowed by a Binomial model. The unknown parameters of the observation model are 
𝜃𝜃𝑂𝑂𝑂𝑂 = (𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝛼𝛼). 
                                                 
1Here the clustering coefficient is the inverse of the dispersion parameter k, a common alternative 
parameterisation of the negative binomial distribution. 
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Parameter inference for each Kenyan County 
 
The observation model gives the following log-likelihood function for the unknown 
parameters 𝜃𝜃 = (𝜃𝜃𝑇𝑇𝑇𝑇, 𝜃𝜃𝑂𝑂𝑂𝑂) given the sampling data for a county, 𝑫𝑫 =
{(𝑂𝑂𝑂𝑂𝑂𝑂𝑆𝑆+)𝑛𝑛, (𝑂𝑂𝑂𝑂𝑂𝑂𝑆𝑆−)𝑛𝑛, (𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃+)𝑛𝑛} 𝑛𝑛=1,2,...: 

𝑙𝑙(𝜃𝜃)  = �𝑙𝑙𝑙𝑙 𝑓𝑓𝑁𝑁𝑁𝑁((𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃+)𝑛𝑛|𝜇̂𝜇 = 𝜇𝜇𝑛𝑛,𝛼𝛼� = 𝛼𝛼)
𝑛𝑛

 

                +�𝑙𝑙𝑙𝑙 𝑓𝑓𝐵𝐵𝐵𝐵( (𝑂𝑂𝑂𝑂𝑂𝑂𝑆𝑆+)𝑛𝑛|𝑁𝑁� = 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑛𝑛, 𝑝̂𝑝 =  
(𝑆𝑆+)𝑛𝑛
𝑁𝑁

,𝑀𝑀� = 𝑀𝑀�)
𝑛𝑛

. 

(9) 

Where 𝑓𝑓𝑁𝑁𝑁𝑁 and 𝑓𝑓𝐵𝐵𝐵𝐵 are, respectively, the probability mass functions for the negative binomial 
and beta-binomial distributions, as described in the observation model subsection. The first 
day where samples were included in the log-likelihood calculation was 12th April, due to 
testing being even more irregular before that date (Fig. S2), and the last day was 6th August, 
due to right-censoring of samples collected on 7th-10th August appearing in the linelist dated 
10th August. 
 
We divided the Kenyan counties into two groups: those counties with and without serology 
samples. The availability of serology data was highly important for this study because 
without serology data, the detection rate was not identifiable jointly with 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 and the initial 
conditions using weak priors. Therefore, we inferred unknown parameters in the counties 
with serology data using weak priors (priors described below), whereas for counties without 
serology data we used strong priors based on the posterior distribution of the counties that 
had serology data (method described below). There were two exceptions to the county 
grouping: Kajiado county, which has no attributed serology samples but a substantial number 
of PCR-positives, and was added to group of counties fitted using weak priors, and West 
Pokot county, which had some serology data but small numbers of PCR-positives, and was 
added to the group using strong priors.  
 
The prior distributions for 𝑅𝑅0,𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒, and 𝛼𝛼 were the same for each county using weak priors: 
𝑅𝑅0 ∼ 𝛤𝛤(𝑘𝑘� = 2,𝜃𝜃� = 2.5/2), 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝛼𝛼� = 2, 𝛽̂𝛽 = 1), 𝛼𝛼 ∼ 𝛤𝛤(𝑘𝑘� = 3,𝜃𝜃� = 0.5/3). These 
priors reflect weak confidence that: 1) the fundamental 𝑅𝑅0 value in Kenya would be similar 
to that seen in the early Chinese epidemic, 2) the most apriori likely value of 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 was 1, thus 
recovering the standard homogeneous SEIR model, and 3) that the daily detected PCR-
positive swab data would be moderately overdispersed compared to a Poisson distribution. 
The prior distributions for 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and the initial numbers of infected 𝐸𝐸(0)  +  𝐼𝐼(0) in counties 
with weak priors differed by county: 

● Nairobi. 𝐸𝐸(0)  +  𝐼𝐼(0) ∼ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜇̂𝜇 = 100), 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∼ 𝛤𝛤(𝑘𝑘� = 10,𝜃𝜃� = 7 × 10−4/10). 
● Mombasa. 𝐸𝐸(0)  +  𝐼𝐼(0) ∼ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜇̂𝜇 = 100), 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∼ 𝛤𝛤(𝑘𝑘� = 10,𝜃𝜃� = 2 × 10−4/10). 
● Kajiado, Kiambu, Kilifi, Kisumu, Machakos, Migori, Uasin Gishu, Vihiga 

counties. 𝐸𝐸(0)  +  𝐼𝐼(0) ∼ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜇̂𝜇 = 10), 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜇̂𝜇 = 1 × 10−4). 
● Bungoma, Busia, Garissa, Homa Bay, Kericho, Kisii, Kitui, Kwale, Lamu, 

Makueni, Marsabit, Migori, Narok, Nyamira, Nyeri, Siaya, Taita Taveta, Tana 
River, Trans Nzoia, Turkana, Wajir counties. 𝐸𝐸(0)  +  𝐼𝐼(0) ∼ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜇̂𝜇 = 1), 
𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜇̂𝜇 = 1 × 10−4). 
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The choice of weak priors for the counties with serology data was informed by estimates of 
urban density, and reflect our belief that the epidemic in Kenya was seeded by international 
travel to both Nairobi and Mombasa international airports and that there was apriori likely to 
be a higher number of infected individuals in Nairobi and Mombasa on February 21st. Our 
prior belief about mean detection rate was informed by openly available testing rate data for 
Kenya (31) (Fig. S3), which was likely to be mainly concentrated around Nairobi, available 
data on testing rate in Mombasa (Fig. S2) and a weak belief that detection elsewhere would 
be about half as effective as in Mombasa. 
 
The prior distributions for all parameters for counties without serology data were much 
stronger, reflecting that in the absence of significant amounts of data, we expected these 
counties to have similar parameters to other Kenyan counties. To create the strong priors we 
pooled the posterior parameter draws of exemplar counties, and then projected this 
multivariate empirical distribution onto a collection of independent marginal distributions by 
applying maximum likelihood to each set of parameters (each parameter was assumed to 
have a Gamma marginal distribution except 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒, which was assumed to have a Beta 
marginal distribution. Therefore, inference in the counties without serology penalised against 
drawing parameters that were outside the univariate credible intervals of their exemplar 
county. The exemplars used were: 

● Isiolo and Nakuru counties. Exemplar counties were Kajiado and Machakos. 
● Baringo, Bomet, Elgeyo Marakwet, Embu, Kakamega, Kirinyaga, Laikipia, 

Mandera, Meru, Murang’a, Nandi, Nyandarua, Samburu and Tharaka Nithi, 
West Pokot counties. Exemplar counties were Homa bay, Tana River, Turkana, and 
Wajir counties. 

The choice of exemplar counties was based on Kajiado and Machakos containing a mixture 
of urban and rural dwelling broadly similar to Isiolo and Nakuru counties. Whereas, the other 
Kenyan counties lacking serology data were predominantly rural. Therefore, we used a 
mixture of four rural exemplar counties distributed over the country. 
 
We used Hamiltonian MCMC (32) to perform Bayesian inference by drawing 10,000 
samples from the posterior distribution, 

𝜃𝜃(𝑘𝑘) ∼ 𝑃𝑃(𝜃𝜃|𝐷𝐷) ∝𝑒𝑒𝑒𝑒𝑒𝑒 (𝑙𝑙(𝜃𝜃)) 𝜋𝜋(𝜃𝜃),  For 𝑘𝑘 =  1, . . . ,104. (10) 

for each county using the NUTS-HMC sampler implemented by the Julia language package 
dynamicHMC.jl. Solving the likelihood function for a proposed value of 𝜃𝜃 involved solving 
the ODE system (2), we used the highly performant DifferentialEquations.jl package for 
ODE solutions (33). The HMC method required a log-likelihood gradient, 𝛻𝛻𝜃𝜃𝑙𝑙, which, for our 
use-case of a small ODE system with a low number of parameters, was most efficiently 
supplied by forward-mode automatic differentiation (34) implemented by the package 
ForwardDiff.jl. 
 
The MCMC chain converged for each county (all MCMC chains and MCMC diagnostics can 
be accessed through the linked open code repository). The posterior mean (and 95% Cis) for 
each parameter, as well as date of maximum infection rate and estimated county-specific IFR, 
can be found in supplementary Data S1. West Pokot county (1 positive PCR-confirmed test 
and 2/17 positive serology samples) was an outlier in the analysis in that the inference 
converged on a posterior mean estimate of 𝑅𝑅0 which was less than one. 
 
Nowcasting and Forecasting for Kenyan counties 
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The parameter draws from the posterior distribution defined the uncertainty in our model 
nowcasts and forecasts for each county, since the underlying transmission model was 
deterministic. Therefore, posterior distributions for epidemic quantities were created by 
simulating the epidemic for each 𝜃𝜃(𝑘𝑘),𝑘𝑘 =  1,2, . . . ,104 posterior draws, for example the 
draws from the distribution of day of peak infection rate were, 

{𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑘𝑘) = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛
𝜄𝜄𝑛𝑛|𝜃𝜃(𝑘𝑘)}𝑘𝑘=1,...,104.  (11) 

The central estimate is the posterior mean, 𝐸𝐸[𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘|𝐷𝐷]  =  1
104

∑ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑘𝑘)
𝑘𝑘 , and the 95% 

credible intervals were the 2.5% and 97.5% empirical quantiles of the draws from the day of 
peak. This approach was used through-out the main document. It should be noted that for the 
daily positive PCR tests we showed both the posterior mean and CIs for the mean daily 
detection rate of new PCR-postive swab tests, 𝐸𝐸[𝜇𝜇𝑛𝑛|𝐷𝐷], and the posterior prediction interval, 
𝐸𝐸[(𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃+)𝑛𝑛|𝐷𝐷] (see equation (7)). The two quantities have the same posterior average, but 
(𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃+)𝑛𝑛|𝐷𝐷 has substantially higher variance since it includes both uncertainty in the 
parameter estimates and the fundamental variance in the observed daily detection of positive 
swab tests.   
 
Inferring a crude infection fatality ratio 
 
The commonly used infection fatality ratio (IFR) by age estimates from Verity et al (19), 
weighted by the Kenyan population distribution given by the 2019 census, implied a basic 
IFR prediction in Kenya of 𝐼𝐼𝐼𝐼𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  =  0.264%; that is 264 deaths per 10,000 infections. 
This assumed an uniform attack rate across age-groups in Kenya.  
 
We used the posterior predictions of the underlying daily infections in Kenya counties to 
infer a crude infection fatality ratio (𝐼𝐼𝐼𝐼𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) for each Kenyan county. The lag between 
infection and death, for those infected individuals who die, was defined as the convolution 
between three time duration distributions: 

1. The duration of time between infection and symptoms (days), which we assumed was 
distributed 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙� = 1.644, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�  = 0.363) (27). 

2. The duration of time between initial symptoms and severe symptoms (days), 
sufficient to seek hospitalisation, which we assumed was distributed 𝑈𝑈(1,5) (35). 

3. The duration of time between severe symptoms and death estimated from UK hospital 
data (36). This was an empirical distribution with mass function 𝑝𝑝𝐻𝐻𝐻𝐻. 

We discretized the first two distributions to give probability mass functions 𝑝𝑝𝐼𝐼𝐼𝐼 for the 
number of days between infection and symptoms, and 𝑝𝑝𝑆𝑆𝑆𝑆for the number of days between 
symptom onset and severe symptom onset. The probability mass function for the (discrete) 
number of days between infection and death, for those who died, 𝑝𝑝𝐼𝐼𝐼𝐼, was given as a discrete 
convolution over these probability mass functions: 

𝑝𝑝𝐼𝐼𝐼𝐼(𝜏𝜏)  = 𝑝𝑝𝐼𝐼𝐼𝐼 ∗ 𝑝𝑝𝑆𝑆𝑆𝑆 ∗ 𝑝𝑝𝐻𝐻𝐻𝐻(𝜏𝜏) for the probability that death occurs 𝜏𝜏 days after 
infection. (12) 

The most likely lag between infection and death was 14 days, however, the distribution was 
fairly heavy-tailed with mean lag between infection and death 19 days (Fig. S4). 
 
We assumed that the number of deaths observed each day were Poisson distributed, and 
accounted for the lag between infection and death, 
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(𝑋𝑋+)𝑛𝑛|𝜃𝜃 ∼ 𝑃𝑃𝑃𝑃𝑃𝑃(𝐼𝐼𝐼𝐼𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � 𝑝𝑝𝐼𝐼𝐼𝐼(𝑛𝑛 −𝑚𝑚)𝜄𝜄𝑚𝑚
𝑚𝑚<𝑛𝑛

). (13) 

The conditionality on 𝜃𝜃 is given to emphasise that the number of infections per day depended 
on the unknown parameters for the county. Using 𝐼𝐼𝐼𝐼𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 | 𝜃𝜃 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜇̂𝜇 = 1/𝐼𝐼𝐼𝐼𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) as a 
weak prior for each of the county specific estimates of the crude IFR observed in Kenya, 
conditional on a realization of 𝜃𝜃, we found that the posterior mean estimator took a simple 
form (see Posterior distribution of crude infection fatality ratio in supplementary text below): 

𝐸𝐸[𝐼𝐼𝐼𝐼𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 | 𝜃𝜃] = 1+∑ (𝑋𝑋+)𝑛𝑛𝑛𝑛

(1/𝐼𝐼𝐼𝐼𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)+∑ ∑ 𝑝𝑝𝐼𝐼𝐼𝐼(𝑛𝑛−𝑚𝑚)𝜄𝜄𝑚𝑚𝑚𝑚<𝑛𝑛𝑛𝑛
. (14) 

Similar to equation (11), we approximated the full posterior distribution of 
𝐼𝐼𝐼𝐼𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 | (𝑋𝑋+)1, . . . , (𝑋𝑋+)𝑁𝑁,𝐷𝐷 using a set of draws: {𝐼𝐼𝐼𝐼𝑅𝑅(𝑘𝑘) =
 𝐸𝐸[𝐼𝐼𝐼𝐼𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 | 𝜃𝜃(𝑘𝑘)]}𝑘𝑘 = 1,...,104.  The posterior mean estimator and credible intervals for the 
county-specific 𝐼𝐼𝐼𝐼𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 values were calculated from this set of draws. 
 
Model refinement to account for increased test rate at the capital 
 
The publicly available ourworldindata.org coronavirus dataset (31) showed that the daily 
number of tests in Kenya increased from 29th March at an approximate rate of 1.6% per day 
relative to the overall mean tests per day (mean 2482 tests per day in Kenya between 29th 
March - 3rd August; Fig. S3). This increase in testing was not reflected in increased testing at 
KWTRP testing laboratory (Fig. S2), therefore, we hypothesised that the increased rate of 
testing in Kenya was being driven by increased testing in Nairobi and the surrounding 
counties of Kajiado, Kiambu and Machakos. To test this hypothesis we considered an 
alternate model for detection where 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is calendar day dependent: 

𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡)  =  𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡0.016(𝑡𝑡 − 29𝑡𝑡ℎ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ).  (15) 

The baseline mean detection rate 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 remained the target of inference. The same period for 
inference (12th April - 6th August) was used. 
 
Incorporating the increased testing rate into the inference model improved the model 
information criteria relative to the basic hypothesis that mean detection rate had been 
constant since 12th April. This was observed using two different model information scores: 
the popular in-sample Bayesian model fit score, Deviance information criterion (DIC; (16)) 
defined as 𝐷𝐷𝐷𝐷𝐷𝐷 = −2𝐸𝐸[𝑙𝑙(𝜃𝜃)|𝐷𝐷]  +  2𝑣𝑣𝑣𝑣𝑣𝑣[𝑙𝑙(𝜃𝜃)|𝐷𝐷], and the out-of-sample log predictive 
density (LPD; (16)) for deaths. The LPD for a model was defined as, 

𝐿𝐿𝐿𝐿𝐿𝐿 =  −�𝑙𝑙𝑛𝑛
1

104
�𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝((𝑋𝑋+)𝑛𝑛 |𝜇̂𝜇 =  𝐼𝐼𝐼𝐼𝑅𝑅(𝑘𝑘) � 𝑝𝑝𝐼𝐼𝐼𝐼(𝑛𝑛 −𝑚𝑚)𝜄𝜄(𝑘𝑘)

𝑚𝑚
𝑚𝑚<𝑛𝑛

).  
𝑘𝑘𝑛𝑛

 (16) 

The LPD measure is the sum log probability of observing the death data for the county, 
𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥|𝜇𝜇) was the probability mass function for a Poisson distribution with mean 𝜇𝜇,  the 
notation 𝜄𝜄(𝑘𝑘)

𝑚𝑚 emphasises that the number of infections on day m depends on the kth draw of 
the parameters. Although the IFR was optimised to fit the death data, we also wish to 
emphasise that the deaths were not used to infer other model parameters; this justified our 
description of LPD as an out-of-sample metric.  
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Both the DIC and LPD model information criteria for Nairobi were significantly improved by 
including the increasing detection rate in the model [equation (16)]: 𝛥𝛥𝐷𝐷𝐷𝐷𝐷𝐷 =  10.8 and 
𝛥𝛥𝐿𝐿𝐿𝐿𝐿𝐿 = 12.4. Therefore, for Nairobi, and its neighbouring counties with observed large 
numbers of positive tests: Kajiado, Kiambu, and Machakos, we used the increasing detection 
rate model in the main manuscript results. 
 
Model validation: Posterior predictive P-values 
 
We validated the overall fit of the best performing model (increasing detection rates over the 
inference period for Kiambu, Kajiado, Machakos and Nairobi counties; flat detection rates 
for other counties) using posterior predictive checking of the LPD value (30). Posterior 
predictive checking is a Bayesian model checking analogy to classical statistical chi-squared 
tests or G-tests. For each county, after inferring a posterior distribution for the unknown 
model parameters and the county specific IFR estimate, we sampled 1000 replicated death 
data time series, (𝑋𝑋+)𝑛𝑛

𝑟𝑟𝑟𝑟𝑟𝑟, each of which had their own LPD value. The observed distribution 
of LPD values represented the expected distribution of log-predictive densities if the data was 
really generated from the model {(LPDrep)𝑘𝑘 𝑘𝑘 = 1, … ,1000}. The posterior predictive P-
value for the model is defined as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  1

1000
∑ 𝐿𝐿𝐿𝐿𝐿𝐿 < (LPDrep)𝑘𝑘𝑘𝑘 ; that is the 

observed proportion of replicated LPD values from the model that were greater than the 
observed LPD value of the true data.  
 
The average value for the posterior P-value over the counties was 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0.66 
(minimum-maximum spread: 0.12-0.85, Data S1), therefore, the model was typically more 
accurate at predicting the daily number of deaths actually observed than replicated data. This 
might be caused by deaths occurring with lower variance than predicted by a Poisson 
distribution. 
 

Supplementary Text 
Notation for distributions used in this study 
 
In this study, we have used a number of parameter symbols that are also the most commonly used 
symbols for various common parametric distributions. Moreover, these parametric distributions are 
used in the underlying analysis frequently with their distribution parameters defined as functions of 
underlying transmission model states. To reduce misunderstanding reserve symbols with “hats” as 
referring to the parameters of a parametric distribution and use “=” to refer to the value of the 
parameter. Find below the choice of parametrization for the parametric distributions used in the 
study: 

• Exponential distribution. 𝐸𝐸𝐸𝐸𝐸𝐸(𝜇̂𝜇 = 𝜇𝜇), with mean 𝜇̂𝜇. 
• Gamma distribution. Γ(𝑘𝑘� = 𝑘𝑘,𝜃𝜃� = 𝜃𝜃), with shape parameter 𝑘𝑘� and scale parameter 𝜃𝜃�. 
• Negative binomial distribution. 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝜇̂𝜇 = 𝜇𝜇,𝛼𝛼� = 𝛼𝛼), with mean 𝜇̂𝜇 and clustering factor 

(inverse dispersion parameter) 𝛼𝛼�. 
• Beta distribution. 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝛼𝛼� = 𝛼𝛼, 𝛽̂𝛽 = 𝛽𝛽), with shape parameters 𝛼𝛼�, 𝛽̂𝛽 (mean 𝛼𝛼�/(𝛼𝛼� + 𝛽̂𝛽)). 
• Beta-binomial distribution. 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑁𝑁� = 𝑁𝑁, 𝑝̂𝑝 = 𝜇𝜇,𝑀𝑀� = 𝑀𝑀), with number of draws 𝑁𝑁�, 

marginal probability per draw 𝑝̂𝑝, and “total-count” 𝑀𝑀�  (see (30) for details of this slightly 
unusual parameterization). 

• Poisson distribution. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜇̂𝜇 = 𝜇𝜇), with mean 𝜇̂𝜇. 
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Posterior distribution of crude infection fatality ratio 
 
Here we give details of the posterior distribution of 𝐼𝐼𝐼𝐼𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. It is well known that the exponential 
distribution is a conjugate prior to the mean of a Poisson distribution; that is that given a model where 
data 𝑦𝑦𝑘𝑘 ∼ 𝑃𝑃𝑃𝑃𝑃𝑃(𝜇̂𝜇 = 𝜆𝜆)for 𝑘𝑘 = 1, . . . ,𝑁𝑁, and a prior 𝜆𝜆 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜇𝜇� = 1/𝜆𝜆0), then the posterior distribution 
of 𝜆𝜆 is gamma distributed with an analytical solution: 𝜆𝜆 | 𝑦𝑦 ∼ 𝛤𝛤(𝑘𝑘� = 1 + ∑ 𝑦𝑦𝑘𝑘, 𝜃𝜃� = 1/(𝜆𝜆0 + 𝑁𝑁)𝑘𝑘 ). 
We demonstrate that the posterior crude infection fatality ratio, conditional on some fixed value of the 
parameters 𝜃𝜃, 𝐼𝐼𝐼𝐼𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐| (𝑋𝑋+)1, . . . , (𝑋𝑋+)𝑁𝑁,𝜃𝜃 , and with the prior distribution 𝐼𝐼𝐼𝐼𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝜃𝜃 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜇̂𝜇 =
1/𝜇𝜇0) is also gamma distributed. This holds despite the mean number of deaths changing daily, and 
the posterior distribution only depends on the total number of observed deaths and the cumulative 
number of time delayed infections. First, we define the time delayed infections on each day using the 
lag distribution 𝑝𝑝𝐼𝐼𝐼𝐼 [equation (12)], 𝜄𝜄𝑛𝑛� = ∑ 𝑝𝑝𝐼𝐼𝐼𝐼(𝑛𝑛 − 𝑚𝑚)𝜄𝜄𝑚𝑚𝑚𝑚<𝑛𝑛 . We define the total time delayed 
infections, 𝜄𝜄 ̃ = ∑ 𝜄𝜄𝑛̃𝑛𝑛𝑛 , and the total deaths, 𝑋𝑋+ = ∑ (𝑋𝑋+)𝑛𝑛𝑛𝑛 .  
Then, after cancelling terms, the posterior distribution of 𝐼𝐼𝐼𝐼𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝜃𝜃 given the daily deaths is, 

𝑃𝑃(𝐼𝐼𝐼𝐼𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|(𝑋𝑋+)1, . . . , (𝑋𝑋+)𝑁𝑁,𝜃𝜃)  =  [𝜇𝜇0 + 𝜄̃𝜄 ]𝑒𝑒𝑒𝑒𝑒𝑒(−𝐼𝐼𝐼𝐼𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝜇𝜇0 + 𝜄𝜄]�)(𝐼𝐼𝐼𝐼𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝑋𝑋
+

[𝜇𝜇0 + 𝜄̃𝜄 ]∫ 𝑒𝑒𝑒𝑒𝑒𝑒(−𝜇𝜇[𝜇𝜇0 + 𝜄̃𝜄 ])𝜇𝜇𝑋𝑋
+
𝑑𝑑𝑑𝑑

.  

By identifying the denominator as the (𝑋𝑋+)𝑡𝑡ℎ moment of an exponential distribution we arrive at,   
 

𝑃𝑃(𝐼𝐼𝐼𝐼𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|(𝑋𝑋+)1, . . . , (𝑋𝑋+)𝑁𝑁,𝜃𝜃)  =  [𝜇𝜇0  + 𝜄𝜄 ̃]𝑋𝑋++1 (𝐼𝐼𝐼𝐼𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝑋𝑋+

𝑋𝑋+!
𝑒𝑒𝑒𝑒𝑒𝑒 (−𝐼𝐼𝐼𝐼𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝜇𝜇0  + 𝜄𝜄]�).  

The right hand side of this expression is the density function of a 𝛤𝛤(𝑘𝑘� = 𝑋𝑋+ + 1, 𝜃𝜃� = 1/[𝜇𝜇0 + 𝜄𝜄]̃) 
distribution, that only depends on the total deaths and time-delayed infections. Therefore, the 
posterior mean estimator for the crude infection fatality ratio conditional on the death data and a fixed 
value of 𝜃𝜃is:  

𝐸𝐸[𝐼𝐼𝐼𝐼𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|(𝑋𝑋+)1, . . . , (𝑋𝑋+)𝑁𝑁,𝜃𝜃]  = 𝑋𝑋++1
𝜇𝜇0+𝜄̃𝜄

.  
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Fig. S1. 

 
Fig S1: Google mobility trends. The mobility trends used in this study. The curves show a 

7-day moving average of the mean relative mobility in the, Google defined setting categories, 

“retail and recreation”, “grocery and pharmacy”, “transit stations”, and, “workplaces” for 

Nairobi (red curve), Mombasa (green curve), and the overall Kenyan trend (blue curve). 
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Fig. S2. 

 
Fig S2: Daily number of swab test kits analysed at KWTRP testing centre for samples 

collected in Mombasa county. Total number of tests laboratory confirm (positive or 

negative) (blue dots) from 21st Feb until 27th June (data on confirmed negative swab tests was 

not available for after this date, Data S5). 12th April is shown as a red dashed line; samples 

before this date were not used in inference because of low testing rates across Kenya. The 

mean number of tests collected per day in Mombasa after 12th April was 223 (green dashed 

line). 
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Fig. S3. 

 
Fig S3: Trend in daily testing overall Kenya since 29th March. The number of tests 

collected each day reported as a Kenya-wide statistic relative to a mean testing rate of 2482 

tests per day across Kenya (blue dots; data available from an open source repository (31), 

Data S6). Testing rate increases approximately linearly (red line) with a trend of 1.6% 

increase in testing relative to the mean (40 additional tests per day). 
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Fig. S4. 

 
Fig S4: Distribution of time between infection and death for those infected who die. The 

empirical distribution of time between infection and death, conditional on a death outcome, 

derived as a convolution over published distributions of durations between infection and 

symptoms, symptoms and severe symptoms, and severe symptoms and death. 
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Table S1. 

Parameters and variables Value 

Transmission model parameters 

Number of susceptible people at time t, 𝑆𝑆(𝑡𝑡) Dynamic 
Number of latently infected people at time 𝑡𝑡,  𝐸𝐸(𝑡𝑡) Dynamic 
Number of infectious people at time 𝑡𝑡, 𝐼𝐼(𝑡𝑡) Dynamic 
Number of recovered and immune people at time 𝑡𝑡, 𝑅𝑅(𝑡𝑡) Dynamic 
Cumulative number of infections at time 𝑡𝑡, 𝐶𝐶(𝑡𝑡) Dynamic 

Numbers in each infection state on 1st March 
𝑆𝑆(0),𝐸𝐸(0), 𝐼𝐼(0),𝑅𝑅(0),𝐶𝐶(0)  

𝑬𝑬(𝟎𝟎), 𝑰𝑰(𝟎𝟎) are inferred from data.  
𝑅𝑅(0) =  𝐶𝐶(0) = 0  

𝑆𝑆(0)  =  𝑁𝑁 − 𝐸𝐸(0)  − 𝐼𝐼(0) 
Where the county population size N is as 
reported in the 2019 Kenyan census. 

Infectious period 1/𝛾𝛾 
2.4 days. This was chosen to recreate a serial 
interval of 5.5 days (37). 

Latent period 1/𝜎𝜎 
3.1 days. The mean incubation period (27) was 
reduced by two days of pre-symptomatic 
transmission to give a latency period. 

Baseline reproductive number, 𝑅𝑅0. Inferred from data 

Effective population size scale, 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 Inferred from data 
Mobility of population in area on day n relative to 2019 
baseline, 𝑚𝑚𝑛𝑛,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 

Data 

Instantaneous reproductive number, 𝑅𝑅𝑡𝑡. 𝑅𝑅𝑡𝑡 =  𝑅𝑅0𝑚𝑚𝑛𝑛,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 for t in day n.  

Effective instantaneous reproductive number, 𝑅𝑅𝑡𝑡. 𝑅𝑅𝑡𝑡
𝑒𝑒𝑒𝑒𝑒𝑒 =  𝑅𝑅0𝑚𝑚𝑛𝑛,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑆𝑆(𝑡𝑡)/(𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑁𝑁) for t in day n.  

Observation model parameters and data 

Number of people who would test PCR positive on day n, 
(𝑃𝑃+)𝑛𝑛. Dynamic 

Number of people who were observed to test PCR positive on 
day n, (𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃+)𝑛𝑛. Data 

Number of people who would test as sero-converted on day n, 
(𝑆𝑆+)𝑛𝑛. Dynamic 

Number of people who actually test as sero-converted on day n, 
(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂+)𝑛𝑛 . Data 

Probability that an infected individual would test PCR positive 
on day 𝜏𝜏 after infection, 𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃(𝜏𝜏) 

𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃(𝜏𝜏) = 0 for 0 ≤ 𝜏𝜏 ≤ 5 days 
𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃(𝜏𝜏)  = 𝑄𝑄𝛤𝛤(𝜏𝜏 − 5|𝑘𝑘� = 18.4,𝜃𝜃� =
1.1) subsequently, where 𝑄𝑄𝛤𝛤 was the tail function 
of a gamma distribution fitted to data given in 
(17). 

Probability that an infected individual would be detectably 
seropositive on day 𝜏𝜏 after infection, 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜏𝜏) 

𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜏𝜏) is linearly increasing over 26 days to 
saturate at 82.5% sensitivity, based on report 
delay in seroconversion (28) and maximum 
sensitivity of serological assay (11). 
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Mean number of PCR tests per capita per day, 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. Inferred from data 

Clustering coefficient of daily PCR tests, 𝛼𝛼. Inferred from data 

Fatality rate parameters 

Infection fatality ratio, IFR Inferred from data 

Probability mass function of delay lag between infection and 
death for those who die, 𝑝𝑝𝐼𝐼𝐼𝐼(𝜏𝜏). 

Derived as a convolution over the lag from 
infection to symptom onset (27), the lag from 
symptoms to hospitalisation/severe symptoms 
(35), and the lag between severe symptoms and 
death (36). 

 
Table S1: Dynamic and observational model variables and parameters. “Dynamic”, 

means that the variable was an output of the transmission and observation model for the 

county. 
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All datafiles described below can be found in the opendatacsvs/ folder on the github 
repository. 

Data S1. (separate file) 
Inferred parameters and posterior predictive P-values for each Kenyan county. The 
posterior mean and 95% credible intervals for each model parameter (both transmission and 
observation models), with posterior mean and 95% credible intervals for the peak day of 
infection rate and county-specific infection fatality ratio. Final column is the proportion of 
synthetic replicated death time series with greater log-predictive density score than the 
observed death time series for that county (the posterior predictive P-value for the model). 

Data S2. (separate file) 
The number of positive PCR-confirmed swab tests for each county by date of sample 
collection (21st Feb to 6th August).  

Data S3. (separate file) 
The number of positive and negative serological results for each county by date of 
sample collection (21st Feb to 6th August).  

Data S4. (separate file) 
The number of deaths with a PCR-confirmed swab test for each county by recorded 
date of death (21st Feb to 6th August). 

Data S5. (separate file) 
Total number of swab samples collected in Mombasa county, and analyzed at Kemri-
Wellcome Research Program testing centre (21st Feb – 27th June). 

Data S6. (separate file) 
Summary data of Kenyan epidemic, including reported total number of test performed. 
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