Pharmacokinetics and predicted neutralization coverage of VRC01 in HIV-uninfected participants of the Antibody Mediated Prevention (AMP) trials

Yunda Huang1,2,3*, Logashvari Naidoo4, Lily Zhang1, Lindsay N. Carpp1, Erika Rudnicki1, April Randhawa1, Pedro Gonzales5, Adrian McDermott6, Julie Ledgerwood6, Margarita M. Gomez Lorenzo7, David Burns7, Allan DeCamp1,2, Michal Juraska1,2, John Mascola6, Srilatha Edupuganti8, Nyaradzo Mgodi9, Myron Cohen10, Larry Corey1,11, Philip Andrew12, Shelly Karuna1, Peter B. Gilbert1,2,13, Kathryn Mngadi14, Erica Lazarus15

1 Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.
2 Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.
3 Department of Global Health, University of Washington, Seattle, Washington, United States of America.
4 HIV Prevention Research Unit, South African Medical Research Council, Durban, South Africa.
5 Asociacion Civil Impacta Salud y Educacion, Lima, Perú.
6 Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America.
7 Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States of America.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
8 Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, United States of America.

9 Clinical Trials Research Centre, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe.

10 Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, United States of America.

11 Departments of Medicine and Laboratory Medicine, University of Washington, Seattle, Washington, United States of America.

12 Family Health International, Durham, NC.

13 Department of Biostatistics, University of Washington, Seattle, WA, United States of America.

14 Centre for the AIDS Programme of Research in South Africa, Durban, South Africa.

15 Perinatal HIV Research Unit (PHRU), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa.

*Correspondence: yunda@scharp.org
Summary

The phase 2b AMP trials are testing whether the broadly neutralizing antibody VRC01 prevents HIV-1 infection in two cohorts: women in sub-Saharan Africa, and men and transgender persons who have sex with men (MSM/TG) in the Americas and Switzerland. We used nonlinear mixed effects modeling of longitudinal serum VRC01 concentrations to characterize pharmacokinetics and predict HIV-1 neutralization coverage. We found that body weight significantly influenced clearance, and that the mean peripheral volume of distribution, steady state volume of distribution, elimination half-life, and accumulation ratio were significantly higher in MSM/TG than in women. Neutralization coverage was predicted to be higher in the first (versus second) half of a given 8-week infusion interval, and appeared to be higher in MSM/TG than in women overall. Study cohort differences in pharmacokinetics and neutralization coverage provide insights for interpreting the AMP results and for investigating how VRC01 concentration and neutralization correlate with HIV incidence.

Key Words: Antibody Mediated Prevention trials, population pharmacokinetics, VRC01, broadly neutralizing antibodies, HIV-1

Introduction

With an estimated 37.9 million people living with HIV and 770,000 deaths due to AIDS-related causes in 2018 [1], the global HIV pandemic continues to deal a devastating blow to public health. Advances such as antiretroviral therapy and pre-exposure prophylaxis (PrEP) have significantly reduced AIDS-related morbidity and mortality and HIV acquisition, but challenges in access, uptake and adherence continue [2]. In addition, the rollout of PrEP has had a variable effect on HIV acquisition, particularly in the absence of a supporting comprehensive combination prevention program [3]. An international commission of global experts and
stakeholders recently concluded that “existing HIV tools and strategies are insufficient” to end
the HIV pandemic [4], highlighting the need for new and complementary preventive
interventions.

Monoclonal broadly neutralizing antibodies (bnAbs) against HIV-1 are a promising new avenue
for HIV-1 prevention [5]. VRC01 is a human IgG1 monoclonal bnAb that targets the conserved
CD4 binding site on the HIV-1 envelope (Env) surface glycoprotein [6], demonstrates breadth of
neutralization of clinical HIV-1 isolates [7, 8], and prevents simian HIV infection in nonhuman
primates [9-15]. In addition, it has been shown to be safe and well-tolerated in phase 1 trials in
healthy HIV-uninfected adults at low-risk of HIV-1 acquisition in the United States when
administered subcutaneously or intravenously (IV) in 4-weekly to 8-weekly doses [16, 17].

Population pharmacokinetic (PK) modeling of these trials [18] demonstrated that following
intravenous administration, VRC01 PK was best described by an open 2-compartment
disposition model with first-order elimination from the central compartment, which accounts for
reversible monoclonal antibody (mAb) transfer between the central and peripheral compartments
[19]. VRC01 half-life estimates were consistent between the two phase 1 clinical trials
conducted in the US [16, 17] and VRC01 PK features were relatively stable across the multiple
doses [17]. The pharmacokinetics of mAbs is such that biodistribution is mainly in the vascular
and interstitial spaces [20], and is dependent on extravasation into tissue spaces, distribution in
the interstitial fluid, mAb binding to tissue components, and clearance from the tissues [19].

Moreover, due to their relatively large size (molecular weight approximately 150 kDa), mAbs
cannot be eliminated from the kidneys and are instead eliminated mainly through intracellular
proteolytic catabolism by lysosomes to amino acids and smaller peptides that are then reused for
new protein synthesis [19, 20].
VRC01 is the first bnAb being tested for efficacy for the prevention of HIV-1 infection in humans in the proof-of-concept Antibody Mediated Prevention (AMP) trials [21], with primary results expected in Q4 2020. The safety and efficacy of ten 8-weekly IV infusions of VRC01 are being assessed in AMP in two study populations at risk of HIV-1 acquisition through predominantly different transmission routes: women in sub-Saharan Africa who have sex with men (HVTN 703/HPTN 081; ClinicalTrials.gov #NCT02568215) and men and transgender persons in Brazil, Peru, Switzerland, and the United States who have sex with men (MSM/TG) (HVTN 704/HPTN 085; ClinicalTrials.gov #NCT02716675) [21]. The major HIV-1 subtypes also differ between the two trials, with clade C predominating in sub-Saharan Africa and clade B predominating in the Americas and Switzerland [22].

One key secondary objective of AMP is to assess, through a case-control study, marker correlates (or predictors) of instantaneous HIV-1 risk (see [21] and [23] for further details), e.g. VRC01 serum concentration and serum neutralization titer to panels of HIV-1 isolates. If validated, such a concentration or neutralization biomarker will aid HIV vaccine development by setting a benchmark biomarker value for the required potency of a vaccine-induced neutralizing antibody response to putatively achieve a high level of protection against HIV infection. This could help define study endpoints in phase 1 and 2 trials that vet candidate HIV vaccines for advancement into efficacy trials.

In preparation for the AMP case-control correlates study, we conducted a PK pilot study among a subset of VRC01 recipients in the AMP trials who remained HIV-uninfected until the end of the study and were not taking PrEP during the study. The objectives were to develop a population PK (popPK) model to characterize the PK features of VRC01 in more diverse HIV risk settings and populations than the phase 1 trials, over 10 administrations rather than the 3-4
administrations previously considered, and to identify factors that may influence these PK features. Consequently, this popPK pilot study provides a technique for simulating serum concentrations for all VRC01 recipients and for inferring neutralization coverage of participants’ sera against the circulating strains in the AMP trials. A similar technique will be used to estimate VRC01 concentrations for individual participants in the case-control cohort at any given day during follow-up, which constitutes a critical data component in the AMP case-control correlates study. Importantly, findings from this PK pilot study are expected to aid the interpretation of the final AMP trial results on prevention efficacy, and to inform the sampling design of the case-control correlates study.

Results

Study population descriptions The characteristics of the 47 AMP pilot PK study participants are summarized in Table 1. Overall, 24 of the 47 participants were assigned female sex at birth, 28 were black, and the median age was 26 (range 19 to 50). In HVTN 703/HPTN 081, all 23 participants were assigned female sex at birth, 22 were black, and the median age was 25 years (range 19 to 37). In HVTN 704/HPTN 085, 23 of the 24 participants were assigned male sex at birth, 6 were black, and the median age was 31 years (range 19 to 50).

Table 1: Characteristics of AMP participants at enrollment included in the PK pilot study.

<table>
<thead>
<tr>
<th>Dose</th>
<th>HVTN 703/HPTN 081 (women)</th>
<th>HVTN 704/HPTN 085 (MSM/TG)</th>
<th>HVTN 703/HPTN 081 and HVTN 704/HPTN 085 pooled</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mg/kg VRC01</td>
<td>12 (52%)</td>
<td>12 (50%)</td>
<td>24 (51%)</td>
</tr>
<tr>
<td>30 mg/kg VRC01</td>
<td>11 (48%)</td>
<td>12 (50%)</td>
<td>23 (49%)</td>
</tr>
<tr>
<td>Female</td>
<td>23 (100%)</td>
<td>1 (4%)</td>
<td>24 (51%)</td>
</tr>
<tr>
<td>Sex assigned at birth</td>
<td>Male</td>
<td>23 (96%)</td>
<td>23 (49%)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisgender woman</td>
<td>23 (100%)</td>
<td>0 (0%)</td>
<td>23 (49%)</td>
</tr>
<tr>
<td>Cisgender man</td>
<td>0 (0%)</td>
<td>23 (96%)</td>
<td>23 (49%)</td>
</tr>
<tr>
<td>Transgender man</td>
<td>0 (0%)</td>
<td>1 (4%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>22 (96%)</td>
<td>6 (25%)</td>
<td>28 (60%)</td>
</tr>
<tr>
<td>White</td>
<td>0 (0%)</td>
<td>15 (63%)</td>
<td>15 (32%)</td>
</tr>
<tr>
<td>Other</td>
<td>1 (4%)</td>
<td>3 (13%)</td>
<td>4 (9%)</td>
</tr>
<tr>
<td>Age (y)</td>
<td>25 (19, 37)</td>
<td>31 (19, 50)</td>
<td>26 (19, 50)</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>25.6 (20.3, 37.1)</td>
<td>25.8 (19.7, 37.6)</td>
<td>25.7 (19.7, 37.6)</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>64.8 (47.0, 92.6)</td>
<td>75.2 (59.9, 130.2)</td>
<td>69.9 (47, 130.2)</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>36.6 (35.7, 37.3)</td>
<td>36.6 (36.0, 37.1)</td>
<td>36.6 (35.7, 37.3)</td>
</tr>
<tr>
<td>Pulse rate (beats/min)</td>
<td>83 (58, 108)</td>
<td>76.5 (51, 101)</td>
<td>80 (51, 108)</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>76 (64, 86)</td>
<td>74 (59, 89)</td>
<td>75 (59, 89)</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>119 (103, 128)</td>
<td>122 (109, 136)</td>
<td>120 (103, 136)</td>
</tr>
<tr>
<td>Respiratory rate (breaths/min)</td>
<td>18 (12, 24)</td>
<td>16 (12, 24)</td>
<td>18 (12, 24)</td>
</tr>
<tr>
<td>Alanine aminotransferase (units/L)</td>
<td>14 (9, 63)</td>
<td>20 (8, 87)</td>
<td>15 (8, 87)</td>
</tr>
<tr>
<td>Creatinine clearance (L/day)</td>
<td>135.5 (96.5, 211.4)</td>
<td>126.2 (80.8, 212.3)</td>
<td>135.46 (80.8, 212.3)</td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td>40 (35, 46.5)</td>
<td>43.55 (39.9, 48)</td>
<td>42.2 (35, 48)</td>
</tr>
<tr>
<td>Hemoglobin (g/dl)</td>
<td>13.5 (11.4, 15.7)</td>
<td>14.6 (12.8, 15.6)</td>
<td>14.1 (11.4, 15.7)</td>
</tr>
<tr>
<td>Erythrocyte mean corpuscular volume (fL)</td>
<td>87 (73.7, 91)</td>
<td>90.35 (80, 100.3)</td>
<td>89 (73.7, 100.3)</td>
</tr>
<tr>
<td>Platelets (10³/mm³)</td>
<td>268 (183, 463)</td>
<td>229.5 (148, 335)</td>
<td>249 (148, 463)</td>
</tr>
</tbody>
</table>
Forty-five (95.7%) of the 47 pilot study participants received the planned 10 infusions of VRC01. In HVTN 703/HPTN 081 (women), the average interval between two consecutive infusions was 59.7 days (range 48.7 to 103) with one participant in the 30 mg/kg dose group who missed all infusions starting from the 4th; in HVTN 704/HPTN 085 (MSM/TG), the average infusion interval was 57.7 days (range 48.1 to 106) with one participant in the 30 mg/kg dose group who missed the 9th infusion (Figure S1). Given that baseline serum concentration measurements were all negative at week 0 (serving as assay quality control), and only one participant had a detectable level at week 96 (Figure S2), the popPK modeling excluded data at weeks 0, 96 and 104, and included 1003 VRC01 serum concentrations between week 4 through 88 from the 47 participants (Figure 1).

<table>
<thead>
<tr>
<th>Leukocytes (10^3/mm³)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.6 (3.2, 10.8)</td>
<td>5.9 (4.2, 9.8)</td>
<td>5.62 (3.2, 10.8)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neutrophils (cells/mm³)</th>
<th>3223 (1360, 5740)</th>
<th>3191.5 (1712, 5988)</th>
<th>3223 (1360, 5988)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphocytes (cells/mm³)</td>
<td>2158 (1395, 4070)</td>
<td>1932 (1043, 3058)</td>
<td>2033 (1043, 4070)</td>
</tr>
<tr>
<td>Monocytes (cells/mm³)</td>
<td>360 (160, 790)</td>
<td>455 (211, 740)</td>
<td>400 (160, 790)</td>
</tr>
<tr>
<td>Eosinophils (cells/mm³)</td>
<td>100 (22, 386)</td>
<td>101 (38, 380)</td>
<td>100 (22, 386)</td>
</tr>
<tr>
<td>Basophils (cells/mm³)</td>
<td>31 (8, 72)</td>
<td>30.5 (0, 140)</td>
<td>31 (0, 140)</td>
</tr>
</tbody>
</table>
Figure 1: Individual-level VRC01 serum concentration (log10-scale) over time. A) Data from HVTN 703/HPTN 081 (women) (n=23), B) Data from HVTN 704/HPTN 085 (MSM/TG) (n=24). “+” indicates the observed concentration at a 4-week post infusion visit, an open circle indicates the observed concentration at an infusion visit, and a triangle indicates the observed concentration at the 5-day post infusion #2 visit.

Base popPK models. Dosing at 10 mg/kg or 30 mg/kg did not influence any of the PK parameters as dose is evaluated as a covariate in the popPK models, thereby verifying the linear PK assumption regarding PK parameters having the same value across dose levels and allowing a single PK model to be used to describe data for both dose groups. In the base two-compartment model, the combination proportional + additive error model was chosen for its significantly improved objective function value (OFV=3156) over the proportional (OFV=3313) and additive (OFV=4373) models. IIV was observed primarily for CL and Vp with %CV of 20-21% and 24-26%, respectively, with and without IOV being considered (Table S1). However, after IOV was considered, residual errors were considerably reduced, and the precision of the fixed effects and
the constant error term were considerably improved (Table S1). Therefore, PK features including CL, Vp, half-life, steady state AUC and accumulation ratio were estimated from the base model with IOV considered. Of note, despite the considerable level of IOV, the individual-level CL, Vp and half-life estimates did not obviously increase or decrease as the infusion numbers progressed (Figure 2).

Figure 2: Distributions of individual-level PK parameter estimates of VRC01 over the 10 infusions. A) Clearance (CL), and B) volume of the peripheral compartment (Vp), C) distribution half-life, and D) elimination half-life estimates are shown. Estimates are based on the inter-occasion variability-included base model described in Table S1. Green and purple
points and curves are used for HVTN 703/HPTN 081(women) and HVTN 704/HPTN 085(MSM/TG), respectively. Panels A and B are shown on a log10 scale since both CL and Vp show a log-normal distribution, while panels C and D are shown on a linear scale.

Final popPK models Clinical and demographic variables were assessed for their potential role in explaining the observed inter-individual variability according to the model selection process described. Further details on the construction of the final popPK model are given in Text S1. As shown in Table S2, when IOV was included, the model fit significantly improved (OFV = -1434.42 vs. OFV = 3064.36), suggesting that IOV will likely need to be considered in the estimation of concentrations for the AMP case-control correlates study. Overall, the popPK model diagnostic results suggested that the modeling assumptions were reasonable, and the final model with IOV included provides a reliable description of the data (Figures S5 and S6).

Based on the final popPK model, the population mean estimate for CL was 0.383 (95% CI: 0.357, 0.409) L/day for individuals with a body weight of 68.8 kg (median body weight over both studies), with an estimated 0.611 (95% CI: 0.350, 0.872) log increase of CL per kg of body weight. The population mean estimate for Vp was 3.17 L (95% CI: 2.87, 3.47) for individuals in HVTN 703/HPTN 081 (MSM/TG), estimated to be 0.428 (95% CI: 0.270, 0.586) fold higher for individuals in HVTN 704/HPTN 085 (women). After accounting for body weight and study cohort, the inter-individual variability of CL and Vp decreased from 20.0 to 15.8 %CV, and from 23.6 to 13.5 %CV, respectively.

In addition, the terminal half-life of VRC01 estimated to be 12.33 and 16.43 days, distribution half-life 1.24 and 1.33 days, and steady state volume of distribution 5.26 and 6.62 L in HVTN
703/HPTN 081 (women) and HVTN 704/HPTN 085 (MSM/TG), respectively, based on the final popPK model. In the 10mg/kg dose group, the final model resulted in an estimated accumulation ratio of 1.04 and 1.09 for the average 60 days of dosing interval in the study, and steady state AUC of 1796.35 and 1796.35 mg*day/mL in HVTN 703/HPTN 081 (women) and HVTN 704/HPTN 085 (MSM/TG), respectively, for individuals with a body weight of 68.8 kg. In the 30 mg/kg dose group, the final model resulted in an estimated accumulation ratio of 1.04 and 1.09, and steady state AUC of 5389.03 and 5389.03 mg*day/mL in HVTN 703/HPTN 081 (MSM/TG) and HVTN 704/HPTN 085 (women), respectively.

Predicted neutralization coverage To visualize the expected concentrations in the two AMP trials, Figure 3 and Figure S7 display simulated concentrations over 8 weeks after a single dose for the two dose groups. These concentrations were simulated based on the final popPK model accounting for body weight of actual AMP trial participants. Figure 3 also displays the predicted coverage of VRC01 after a single dose based on known IC50 values in each trial population. The predicted coverage of VRC01 appears to be higher in HVTN 704/HPTN 085 (MSM/TG) compared to HVTN 703/HPTN 081 (women), for both dose groups after a given dose (Figures 3 and S7) and over the course of 10 doses (Figure S8). As expected, coverage is predicted to be considerably higher in the first 4 weeks post-infusion compared to in the second 4 weeks [for 10 mg/kg groups: 43% vs 14% in HVTN 704/HPTN 085 (MSM/TG), 34% vs 7% in HVTN 703/HPTN 081 (women); for 30 mg/kg groups: 68% vs 35% in HVTN 704/HPTN 085 (MSM/TG), 56% vs 22% in HVTN 703/HPTN 081 (women)].
Figure 3: Predicted VRC01 neutralization coverage and serum concentration by time since first infusion. A (30 mg/kg), C (10 mg/kg) in HVTN 703/HPTN 081 (women): Percent of 315 clade C isolates on CATNAP that would be sensitive to VRC01 neutralization if the geometric mean serum concentration at the given time-point was at least 100-fold greater than the viral in vitro inhibitory concentration 50% (IC50). B (30 mg/kg), D (10 mg/kg) in HVTN 704/HPTN 085 (MSM/TG): Percent of 118 clade B isolates on CATNAP that would be sensitive to VRC01
neutralization if the geometric mean serum concentration at the given time-point was at least
100-fold greater than the viral in vitro inhibitory concentration 50% (IC50). Within each plot, the
left-most bolded percentage corresponds to the average coverage in the first 4 weeks post-first
infusion and the right-most bolded percentage corresponds to the average coverage in the second
4 weeks post-first infusion.

Covariate-adjusted study effects on PK features estimated from the base popPK model and TMLE
Seven individual-level PK features: CL, Vp, dose-normalized steady state AUC, steady state
volume of distribution, distribution half-life, elimination half-life and accumulation ratio, were
estimated from the base popPK model. The distributions of these estimates by study are shown in
Figures S9 and S10. Comparisons of these PK features between the two studies adjusted for age,
body weight, race, creatinine clearance and dose group using the TMLE approach are shown in
Figures 4 and 5. We found that the estimated mean of Vp, steady state volume of distribution,
elimination half-life, and accumulation ratio were significantly higher in HVTN 704/HPTN 085
(MSM/TG) than in HVTN 703/HPTN 081 (women): estimated means of Vp 4.86 L and 3.21 L
(p < 0.001, adjusted p < 0.001), steady state volume of distribution 7.49 L and 5.58 L (p <
0.001, adjusted p < 0.001), elimination half-life 17.29 and 12.64 days (p=0.005, adjusted p =
0.027) and accumulation ratio 1.11 and 1.04 (p=0.008, adjusted p=0.031) respectively (Table 2,
Figure 4, Figure 5).
Table 2: Covariate-adjusted comparisons of PK features between HVTN 703/HPTN 081 (women) and HVTN 704/HPTN 085 (MSM/TG). All comparisons were adjusted for dose, age, body weight, race, and creatinine clearance.

<table>
<thead>
<tr>
<th>PK feature</th>
<th>Study</th>
<th>Mean¹</th>
<th>95% CI</th>
<th>2-sided raw p-value²</th>
<th>2-sided adjusted p-value³</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL (L/day)</td>
<td>HVTN 703/HPTN 081</td>
<td>0.380</td>
<td>(0.379, 0.381)</td>
<td>0.248</td>
<td>0.497</td>
</tr>
<tr>
<td></td>
<td>HVTN 704/HPTN 085</td>
<td>0.451</td>
<td>(0.450, 0.452)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vp (L)</td>
<td>HVTN 703/HPTN 081</td>
<td>3.206</td>
<td>(3.157, 3.254)</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>HVTN 704/HPTN 085</td>
<td>4.861</td>
<td>(4.812, 4.909)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steady state AUC⁴ (day/mL)</td>
<td>HVTN 703/HPTN 081</td>
<td>2.571</td>
<td>(2.527, 2.614)</td>
<td>0.496</td>
<td>0.497</td>
</tr>
<tr>
<td></td>
<td>HVTN 704/HPTN 085</td>
<td>2.306</td>
<td>(2.263, 2.350)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steady state volume of distribution (L)</td>
<td>HVTN 703/HPTN 081</td>
<td>5.584</td>
<td>(5.789, 5.886)</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>HVTN 704/HPTN 085</td>
<td>7.492</td>
<td>(7.444, 7.541)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution half-life (day)</td>
<td>HVTN 703/HPTN 081</td>
<td>1.462</td>
<td>(1.462, 1.463)</td>
<td>0.033</td>
<td>0.098</td>
</tr>
<tr>
<td></td>
<td>HVTN 704/HPTN 085</td>
<td>1.612</td>
<td>(1.611, 1.612)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elimination half-life (day)</td>
<td>HVTN 703/HPTN 081</td>
<td>12.640</td>
<td>(11.616, 13.664)</td>
<td>0.005</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>HVTN 704/HPTN 085</td>
<td>17.287</td>
<td>(16.263, 18.311)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accumulation ratio⁵</td>
<td>HVTN 703/HPTN 081</td>
<td>1.040</td>
<td>(1.039, 1.040)</td>
<td>0.008</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>HVTN 704/HPTN 085</td>
<td>1.105</td>
<td>(1.1046, 1.1054)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Covariate-adjusted mean by targeted minimum loss-based estimation (TMLE) (See Methods for more details).
² Confidence intervals and p-values based on empirical variances estimated via the bootstrap procedure.
³ P-values adjusted by the Holm method to control for family-wise error rate.
⁴ Area under the time-concentration curves divided by dose amount.
⁵ Accumulation ratio calculated for an infusion interval of 56 days.
Figure 4: Distributions of covariate-adjusted individual-level PK parameters of VRC01. A) Clearance (CL) and B) volume of the peripheral compartment (Vp). All estimates were adjusted for dose, age, body weight, race, and creatinine clearance via targeted minimum loss-based estimation (TMLE) as presented in Table 2. **, two-sided adjusted p-value < 0.001.
Figure 5: Distributions of covariate-adjusted individual-level PK parameters of VRC01. A) Steady state AUC, B) steady state volume of distribution, C) distribution half-life, D) elimination half-life, and E) accumulation ratio. All estimates were adjusted for dose, age, body weight,
race, and creatinine clearance via TMLE as presented in Table 2. *, two-sided adjusted p-value < 0.05; **, two-sided adjusted p-value < 0.001.

Discussion

This popPK modeling work of VRC01 is the first of its kind to systematically characterize and compare PK of an HIV broadly neutralizing mAb in healthy adults who are at risk of HIV acquisition in two distinct study populations: predominantly black, sub-Saharan African women (AMP HVTN 703/HPTN 081), and predominantly non-black men and transgender persons in the Americas and Switzerland who have sex with men (MSM/TG) (AMP HVTN 704/HPTN 085). Based on VRC01 serum concentration data collected longitudinally over 10 infusions at two different doses from a subset of AMP participants, we constructed a popPK model accounting for baseline participant characteristics, variabilities of PK features across individuals, as well as variabilities across repeated product infusions. We found that participants’ body weight significantly influenced VRC01 clearance in both AMP study populations with a faster clearance for heavier individuals, consistent with findings from previous PK studies of VRC01 in the US and of multiple other mAbs [24]. Mechanisms of underlying PK differences by body weight that should be considered in interpreting these findings include decreased lymph flow rates in obese patients, which may influence the rate and extent of mAb distribution in tissues; increased protein endocytosis and catabolism in underweight patients, which affects clearance; and the correlation of body size with plasma and interstitial fluid volumes, which affect distribution [24].

We identified four PK features of VRC01 (peripheral volume of distribution, steady state volume of distribution, elimination half-life, and accumulation ratio) that were significantly different between the two study cohorts even after adjusting for potential confounding factors including dose, age, race, body weight, and creatinine clearance. This finding suggests that these
differences in PK features are likely due to other factors that differ between the two study cohorts, e.g. sex assigned at birth, exposure to pathogens, or genetics. The many cohort differences make it difficult to identify the exact causes of the observed differences in PK features.

There is a paucity of data assessing study population effects on pharmacokinetics of mAbs. Similar PK were observed in American Caucasians and Asian people from Japan and China for evolocumab, a mAb for prevention of hypercholesterolemia-related heart attack and stroke [25]. Likewise, there was no significant difference in genotype frequencies of Fcγ-receptor IIA (receptor-mediated endocytosis via Fcγ receptors may contribute to elimination of some mAbs [19]) between Caucasians and African-Americans [26]. However, to our knowledge, there is no literature comparing PK responses between black Africans and other racial/ethnic groups. As nearly 70% of all people living with HIV globally [27] and over 60% of all new HIV infections are in sub-Saharan Africa [27], there is a particularly pressing need for safe and efficacious HIV prevention and treatment interventions in this region. It is thus a major strength of our study that we characterized PK responses to bnAb infusions in a sub-Saharan African population.

Another difference between the study populations that may have influenced PK features is sex assigned at birth. Although early phase trials evaluating other mAbs for prevention of viral infections, including cytomegalovirus in renal transplant recipients [28] and post-exposure prophylaxis of rabies [29], have not reported any differences in PK responses by sex assigned at birth, this may not be translatable to HIV-1 where sexual acquisition occurs in tissues with significant sex-based physiological differences: vaginal versus rectal. Our study showed that the female assigned at birth participants in HVTN 703/HPTN 081 had a smaller Vp than the predominantly male assigned at birth participants in HVTN 704/HPTN 085. Smaller Vp could be
indicative of higher peripheral concentration that may influence efficacy. Further evaluation of VRC01 or similar mAbs for HIV prevention may warrant physiologically based pharmacokinetic (PBPK) modelling to understand PK features at the target tissue-level [30].

We also observed low VRC01 accumulation (≤10%) over the 10 study infusions in both study populations and across both dose groups, although there appeared to be noticeable variabilities of CL and Vp over infusion intervals. Because there was no specific trend in CL and Vp over infusion intervals, these variabilities are more likely due to fluctuation of individual participant characteristics over time, rather than systematic change of the PK features due to repeated dosing. Given the apparent increase in the precision of the inter-individual variability of CL and Vp after incorporating variabilities over infusion intervals, it will be important to account for both types of variability for a more accurate estimation of concentration at time of infection in the future AMP case-control correlates study.

We also presented unique data of the predicted VRC01 neutralization coverage of circulating strains of HIV-1. These plots provide a way to predict the proportion of HIV-1 strains to which trial participants in the geographic areas of each trial may be exposed that would be expected to be neutralized based on the modeled VRC01 serum concentration in each target population. While VRC01 exhibits relatively broad neutralization activity, its neutralization coverage varies across clade, with clade C viruses generally neutralized less well than clade B viruses [31, 32]. This observation was borne out in our predicted coverage plots, where the predicted VRC01 neutralization coverage against the clade C panel was always less than the predicted VRC01 neutralization coverage against the clade B panel, within each dose group, and within the same post-infusion time window (weeks 1-4 vs. weeks 4-8). As serum neutralizing titer against a given exposing virus (calculated by dividing the serum concentration of the bnAb on the day of
exposure by the known in vitro titer of that bnAb against the exposing virus) has been shown to be strongly correlated with protection against SHIV acquisition in nonhuman primate challenge studies [33], these results suggest that, while VRC01 serum concentration levels over time are similar across the two trials, neutralization coverage against circulating HIV-1 strains in the specific region may be slightly higher in HVTN 704/HPTN 085 (MSM/TG) compared to HVTN 703/HPTN 081 (women), suggesting slightly higher predicted efficacy of VRC01 in the former study.

We also quantified the greater predicted neutralization coverage in the first 4 weeks post-first infusion compared to in the second 4 weeks. An implication is that the time elapsed from the first infusion until the point of exposure is a major factor that could influence whether the infused VRC01 can provide protection against the circulating strains, and that participants who are exposed in the first 4 weeks post-first infusion are more likely to be protected than participants who are exposed in the second 4 weeks. These results also suggest that the overall VRC01 exposure (i.e. AUC of the time-concentration curve) may not be lower in HVTN 703/HPTN 081 (women) vs. HVTN 704/HPTN 085 (MSM/TG), although other PK features may be.

Our findings are important not only for gaining a preliminary understanding of the PK characteristics of VRC01 in the AMP study populations, which is expected to aid the interpretation of the primary efficacy results (expected in Q4 2020), but also for informing the sampling design of serum concentration and other markers of VRC01 for the AMP correlates study. Specifically, if AMP demonstrates that VRC01 is partially efficacious for the prevention of HIV-1, then the estimated serum VRC01 concentration at the time of HIV-1 acquisition, combined with statistical methods for estimating the day of HIV-1 infection [34], can be used to estimate the association of serum concentration with risk of HIV-1 acquisition, and similarly to
estimate the association of neutralizing antibody titer to a panel of HIV-1 strains with risk of HIV-1 acquisition. Such correlates of risk could set a benchmark for the required potency of a vaccine-induced neutralizing antibody response to achieve a high level of protection against HIV infection [21], informing optimal dose-regimen selection for the next-generation of mAbs or mAb combinations with cost-saving implications.

Our study is limited by the lack of data on anti-drug antibodies, which are known contributors to increased elimination of mAbs [35]. We were also unable to assess the effect of albumin concentration, which is inversely associated with mAb clearance [19]. However, since participants were required to be healthy with no malignancies, autoimmune conditions or history of renal or hepatic dysfunction, it is less likely that albumin levels would be a significant contributor to mAb clearance in the AMP trials. Other limitations of our study are that our prediction neutralization coverage analyses are based on the premise that clade-specific HIV-1 sequences retrieved from the CATNAP database represent to some degree the sequences of the HIV-1 viruses to which participants in each trial are exposed. However, it is difficult to ascertain how accurately the HIV-1 sequences in CATNAP represent contemporaneously circulating viruses. For example, a study of recently transmitted clade C viruses documented antigenic drift at VRC01 target sites, and found that the clade C viruses became significantly less sensitive to VRC01-mediated neutralization over the last 20 years [31]. Therefore, it is possible that HVTN 703/HPTN 081 (women) participants are exposed to clade C viruses that have naturally acquired a greater level of resistance to VRC01 than is apparent by using HIV-1 sequences from the CATNAP database. In such a scenario, VRC01 coverage in the HVTN 703/HPTN 081 trial would be expected to be even lower than predicted, potentially leading to decreased prevention efficacy. In addition, for simplicity, we used clade C CATNAP viruses to represent the
circulating strains to which HVTN 703/HPTN 081 participants were exposed during the trial, and clade B CATNAP viruses to represent the circulating strains to which HVTN 704/HPTN 085 participants were exposed during the trial. While these clades comprise the majority of circulating strains in the two respective trials, it is worth noting that clades A and D predominate in East Africa, and clades C and F also circulate in South America [36], and these differences would also affect actual VRC01 neutralization coverage.

In conclusion, our results have important implications for the AMP correlates study. First, our results suggest that the sampling of controls for the case-control study should be stratified by study, given the differences observed in Vp and derived PK features. Second, in addition to VRC01 serum concentration and sensitivity to VRC01-mediated neutralization of Env-pseudotyped viruses derived from HIV-1 infected trial participants, the PK features studied here could be evaluated as potential correlates of risk, depending on their a priori biological plausibility and the presence of sufficient inter-individual variability. Third, as we confirmed the impact of body weight on PK parameters, specifically clearance from the central compartment, the correlates analyses can adjust for body weight.

Acknowledgements

We thank the HVTN 703/HPTN 081 and HVTN 704/HPTN 085 trial teams and participants.

Financial Disclosure Statement

This work was supported by the National Institute of Allergy and Infectious Diseases (NIAID) U.S. Public Health Service Grants UM1 AI068614 [LOC: HIV Vaccine Trials Network] and
UM1AI068619 [LOC: HIV Prevention Trials Network], UM1 AI068635 [HVTN SDMC FHCRC] and UM1AI068617 [HPTN SDMC], UM1 AI068618 [HVTN Laboratory Center FHCRC] and UM1AI068613 [HPTN Laboratory Center]. The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Declaration of Interests

The authors of this manuscript have read the journal's policy and have the following competing interests: LC and PBG are recipients of funding from The National Institute of Allergy and Infectious Diseases of the National Institutes of Health, and this publication is a result of activities funded by the NIAID.

Data Availability Statement

Upon acceptance, the data underlying the findings of this manuscript will be made publicly available at the public-facing HVTN website (https://atlas.scharp.org/).

Methods

Study Procedures

The AMP trials are being conducted in two distinct study populations: HVTN 703/HPTN 081 (ClinicalTrials.gov #NCT02568215) in sub-Saharan Africa (Botswana, Kenya, Malawi, Mozambique, South Africa, Tanzania, and Zimbabwe) in cisgender women who have sex with men (n=1924), and HVTN 704/HPTN 085 (#NCT02716675) in Brazil, Peru, Switzerland, and the United States in MSM/TG (n=2699). Participants were randomized (1:1:1) to receive ten 8-weekly infusions of 10 mg/kg VRC01, 30 mg/kg VRC01, or placebo (further details of the trial
design and statistical considerations are given in [21]). Specimens are collected for HIV
diagnosis and biomarker measurements at 25 time-points throughout the trial, including at 5 days
after the second infusion (day 61), every 4 weeks from week 0 until week 80, and at weeks 88,
96 and 104.

We analyzed serum concentration data collected at the above time-points from a total of 47
randomly selected VRC01 recipients, 23 from HVTN 703/HPTN 081 (women) and 24 from
HVTN 704/HPTN 085 (MSM/TG), with 11 or 12 from each dose group per study (Table 1).
Participants were eligible for sampling into the pilot study, irrespective of the number of
infusions received and the timing of infusions, if they had remained HIV-1 uninfected until at
least week 88, had not permanently discontinued infusions during trial follow-up, and were
inferred to have not used PrEP. The HVTN 704/HPTN 085 (MSM/TG) participants were
determined to be non-PrEP users based on self-report and dried blood spot data; HVTN
703/HPTN 081 (women) were determined to be non-PrEP users based on self-report data given
the low frequency of PrEP use in the region (see Text S1 for details). For each sampled
participant, serum samples from all available stored sample time points were assayed for VRC01
levels through week 104.

Serum concentration measurements

Enzyme-linked immunosorbent assay (ELISA) methods were developed to quantify bnAb
concentration in human serum [16, 37]. Quantification of VRC01 concentrations in participant
serum was performed in 96-well plates on a Beckman Biomek-based automation platform
according to the VRC/NVITAL Standard Operating Procedure “5500-Automated ELISA on
SCARA Core System.” The VRC01 anti-idiotype, Fab-specific 5C9 monoclonal antibody
(manufactured by the Vaccine Research Center, National Institutes of Health) was coated onto
Immulon-4HXB microtiter plates overnight at 4°C at a concentration of 3.5 μg/mL (concentration is determined for each lot). Plates were then washed and nonspecific binding sites were blocked (10% fetal bovine serum in phosphate-buffered saline) for 2 hours at room temperature. Duplicate serial 3-fold dilutions covering the range of 100 - 24300 of the test sample were incubated for 2 hours at 37°C, followed by incubation with horseradish peroxidase-labeled goat anti-human antibodies (1 hour, 37°C) and 3,3′,5,5′-tetramethylbenzidine substrate (15 min, room temperature). Color development was stopped by addition of sulfuric acid (stop solution 5% H₂SO₄), after which the absorbance of each well at 450 nm was measured within 30 minutes using a Molecular Devices Paradigm plate reader. Final sample concentrations were based upon dilution-corrected concentrations estimated from linear regression of a standard curve covering the range of 5 to 125 ng/mL. Concentration values below the limit of quantification (LoQ=1.0 μg/mL) were replaced by 0.5 μg/mL in all calculations. Sensitivity analyses were performed to evaluate the effect of this censoring value on the modeling results. If there were consecutive measurements below the LoQ, only the first one was included in the modeling.

Population PK (popPK) modeling

PopPK modeling is a powerful approach where drug concentration data from multiple individuals are evaluated simultaneously using a nonlinear mixed-effects model, which incorporates both fixed effects (that are constant) and random effects (that vary across individuals or over time).

Structure Model VRC01 concentrations over time were analyzed using nonlinear mixed effects modeling with the NONMEM software system (Version 7.4, ICON Development Solutions). The stochastic approximation of expectation-maximization (SAEM) algorithm was used for the
estimation of model parameters. An open 2-compartment disposition model with first-order
elimination from the central compartment was parameterized in terms of clearance from the
central compartment in L/day (CL), volume of the central compartment in L (Vc), inter-
compartmental distribution clearance in L/day (Q), and volume of the peripheral compartment in
L (Vp).

Variability popPK model The statistical model considered three primary sources of variability
around the structure population mean model: inter-individual variability (IIV), inter-occasion
variability (IOV), and residual variability (RV) remaining after controlling for other sources of
variability in the data. IOV was investigated by considering each infusion as an occasion to
account for PK parameter changes between infusions due to, for example, changing number of
doses or changing participant characteristics over time that may impact the underlying PK
process. For both IIV and IOV, an exponential between-individual and between-occasion
random effects model was considered such that the distribution of PK parameters is log-normally
distributed, but the random effect is normally distributed. Further details are given in Text S1.

Regarding RV, the additive, proportional, and combination proportional + additive residual error
models were all considered and compared. Further details are given in Text S1. The percentage
coefficient of variation (%CV) of the error terms and the resulting fit of the different error
models based on likelihood ratio tests of the objective function value (OFV) (minus twice the log
likelihood of the data, with smaller value indicating better fit) were used in determining the final
error model. Statistical significance of a hypothesis testing result is noted based on a 2-sided p-
value < 0.05.

Covariate model Identification of baseline covariates predictive of PK variability was performed
to better understand the sources of observed inter-individual variability. The baseline covariates
that were screened for this analysis were pre-defined, including study (HVTN 703/HPTN 081 or
HVTN 704/HPTN 085) and dose group (10 mg/kg or 30 mg/kg) as well as demographic
variables: age (years), sex assigned at birth (male or female), body weight (kg), race (black or
other), body mass index (kg/m²); clinical variables: pulse rate (beats/min), respiratory rate
(breaths/min), diastolic blood pressure (mmHg), systolic blood pressure (mmHg), temperature
(°C); and safety lab variables: Cockcroft-Gault creatinine clearance (L/day), erythrocyte mean
corpuscular volume (fL), alanine aminotransferase (units/L), hematocrit (%), hemoglobin (g/dL),
platelets (10³/mm³), leukocyte count (10³/mm³), lymphocyte count (cells/mm³), monocyte count
(cells/mm³), neutrophil count (cells/mm³), basophil count (cells/mm³), and eosinophil count
(cells/mm³). These covariates were screened and selected based on their performance in
explaining the observed inter-individual variabilities of the PK parameters using a similar model
selection procedure as described in Huang et al. [18] where the IOV random effect term was not
included (see Text S1). The IOV term was later evaluated in the final popPK model.

Simulations of serum concentration and prediction of neutralization coverage

Serum concentrations were simulated both over the course of 8 weeks after a single dose and
over the course of ten 8-weekly doses for AMP VRC01 recipients based on their body weight
and treatment assignment information using the final popPK model without IOV. We graphed
predicted neutralization coverage against clade C viruses for HVTN 703/HPTN 081 and clade B
viruses for HVTN 704/HPTN 085 using data from the Compile, Analyze and Tally NAb Panels
(CATNAP) database [38]; we predicted that an individual’s serum at a specified time point
would achieve “neutralization coverage” of a virus if the geometric mean serum concentration of
VRC01 was at least 100-fold greater than the viral in vitro inhibitory concentration 50% (IC50)
values, as measured in vitro, e.g. via the TZM-bl target cell assay [39]. We based the 100-fold
estimate on the nonhuman primate simian human immunodeficiency virus (SHIV)-challenge
model, where protection is achieved by CD4 binding-site bnAbs if serum antibody
concentrations are approximately 50 to 100-fold higher than the measured IC50 of the challenge
virus [14]. We considered viruses to be resistant to neutralization (i.e., neutralization coverage
not achieved) if the IC50 was greater than 10 µg/mL.

Comparison of PK features between groups with covariate-adjustment

Seven individual-level PK features – CL, Vp, steady state volume of distribution, steady state
area under the time-concentration curve (AUC), distribution half-life, elimination half-life, and
accumulation ratio estimates aggregated over all infusion occasions – were derived from the base
popPK model. For comparing non-randomized groups of interest, such as the two AMP trials, to
reduce confounding bias the targeted minimum loss-based estimation (TMLE) method [40, 41]
was used to estimate the mean of each feature for each group, adjusted for potential predictors of
PK variability: age, body weight, race, creatinine clearance and dose group (implemented in the
tmle R package [42]). TMLE is an alternative to standard linear or nonlinear regression that can
have improved robustness and efficiency. All TMLE estimation results of means were averaged
over 20 runs with a fixed random seed on top of the leave-one-out cross-validation estimation
procedure to ensure stability of the estimates. The set of learning algorithms used by TMLE for
estimating the mean outcome conditional on baseline covariates are listed in Text S1. In addition,
to account for variability and co-variability of the individual-level estimates for each PK feature
due to the fact that they were derived from a common popPK model, a bootstrap procedure based
on 250 datasets was used to calculate the empirical variances of the estimates for each group and
to derive the 95% confidence interval, as well as to test for a non-zero mean difference between
the two groups. The Holm method [43] was used to adjust for multiple comparisons.
References

