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Abstract  46 

High frequency screening of populations has been proposed as a strategy in facilitating 47 

control of the COVID-19 pandemic. We use computational modeling, coupled with clinical data 48 

from rapid antigen tests, to predict the impact of frequent viral antigen rapid testing on COVID-49 

19 spread and outcomes. Using patient nasal or nasopharyngeal swab specimens, we demonstrate 50 

that the sensitivity/specificity of two rapid antigen tests compared to quantitative real-time 51 

polymerase chain reaction (qRT-PCR) are 82.0%/100% and 84.7%/85.7%, respectively; 52 

moreover, sensitivity correlates directly with viral load. Based on COVID-19 data from three 53 

regions in the United States and São José do Rio Preto, Brazil, we show that high frequency, 54 

strategic population-wide rapid testing, even at varied accuracy levels, diminishes COVID-19 55 

infections, hospitalizations, and deaths at a fraction of the cost of nucleic acid detection via qRT-56 

PCR. We propose large-scale antigen-based surveillance as a viable strategy to control SARS-57 

CoV-2 spread and to enable societal re-opening.  58 

 59 
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INTRODUCTION 69 

The COVID-19 pandemic has taken an unprecedented toll on lives, wellbeing, healthcare 70 

systems, and global economies. As of 13 April 2021, there have been more than 136.2 million 71 

confirmed cases globally with over 2.9 million confirmed deaths 1. However, these statistics and 72 

the current mapping of disease spread present an incomplete picture of the outbreak largely due 73 

to the lack of adequate testing, particularly as undetected infected cases are the main source of 74 

disease spread 2–7. It is estimated that the number of infected cases is more than 6 times greater 75 

than the cases reported8. As of April 2021, the United States, India, and Brazil remain the top 76 

three countries with the highest number of COVID-19 cases and deaths worldwide. As countries 77 

begin to re-open their economies, a method for accessible and frequent surveillance of COVID-78 

19, with the necessary rapid quarantine measures, is crucial to prevent the multiple resurgences 79 

of the disease.  80 

The current standard of care rightfully places a strong focus on the diagnostic limit of 81 

detection, yet frequently at the expense of cost and turnaround time. This approach has 82 

contributed to limited population testing largely due to a dearth of diagnostic resources. 83 

Quantitative real-time polymerase chain reaction (qRT-PCR) is the gold-standard method for 84 

clinical diagnosis, with high sensitivity and specificity, but these tests require trained personnel, 85 

expensive reagents and instrumentation, and significant time to execute9,10. Facilities offering 86 

qRT-PCR sometimes require a week or longer to complete and return the results to the 87 

patient11,12. During this waiting period the undiagnosed individual may spread the infection 88 

and/or receive delayed medical treatment. Moreover, due to the cost and relative inaccessibility 89 

of qRT-PCR in both resource-limited and abundant settings, large-scale screening using qRT-90 

PCR at frequent intervals remains impractical to identify infected but asymptomatic or mildly 91 
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symptomatic infections. Numerous studies have reported asymptomatic SARS-CoV-2 infections 92 

as well as a variation in viral load within and between individuals at different time points, 93 

suggesting the need for more frequent testing for informative surveillance13–18.  94 

Technologies such as rapid viral antigen detection, clustered regularly interspaced short 95 

palindromic repeats (CRISPR), and loop-mediated isothermal amplification (LAMP) of SARS-96 

CoV-2 provide potential large-scale screening applications, yet their implementation is stymied 97 

by requirements for qRT-PCR-like accuracy before they can reach the market 19. Several 98 

members of the scientific and medical community have emphasized the value of widespread and 99 

frequent antigen testing20–22. In countries such as India, where the qRT-PCR resources would not 100 

be sufficient to cover monitoring of the population, the use of rapid antigen tests is well 101 

underway23,24. In early May 2020, the United States Food and Drug Administration (FDA) 102 

authorized the first antigen test for the laboratory detection of COVID-19, citing a need for 103 

testing beyond molecular and serological methods. Antigen testing detects the viral proteins 104 

rather than nucleic acids or human antibodies, allowing for detection of an active infection with 105 

relative ease of sample collection and assay. These rapid assays – like other commercially-106 

available rapid antigen tests - can be mass-produced at low prices and be administered by the 107 

average person without a laboratory or instrumentation. These tests also take as little as 15 108 

minutes to determine the result, enabling real-time diagnosis and/or surveillance. Although 109 

antigen tests usually perform with high specificities (true negative rate), their sensitivity (true 110 

positive rate) is often lower when compared to molecular assays. While qRT-PCR can reach a 111 

limit of detection as low as 102 genome copies per mL, rapid antigen testing detects viral protein 112 

that is assumed to correlate with approximately 105 genome copies per mL 25. 113 
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We hypothesize that frequent antigen-based rapid testing even with lower sensitivities 114 

compared to qRT-PCR - along with appropriate quarantine measures - can be more effective at 115 

decreasing COVID-19 spread than less frequent molecular testing of symptomatic individuals. 116 

Keeping in mind the realities of daily testing in resource-limited regions, we also hypothesize 117 

that testing frequency can be adjusted according to the prevalence of the disease; that is, an 118 

uptick in reported cases should be accompanied by more frequent testing. During the viral 119 

incubation period, high infectivity correlates with a high viral load that can be detected by either 120 

qRT-PCR or rapid antigen testing 18,21,26–28. Rapid tests thus optimize diagnosis for the most 121 

infectious individuals. Studies also point to the relatively small window of time during an 122 

individual’s incubation period in which the qRT-PCR assay is more sensitive than rapid tests 21.  123 

In this study we report the clinical validation of two direct antigen rapid tests for 124 

detection of SARS-CoV-2 spike glycoprotein (S) or nucleocapsid protein (N) using 125 

retrospectively collected nasopharyngeal or nasal swab specimens. Using the clinical 126 

performance data, we develop a modeling system to evaluate the impact of frequent rapid testing 127 

on COVID-19 spread and outcomes using a variation of a SIR model, which has been previously 128 

used to model COVID-19 transmission 29–35. We build on this model to incorporate quarantine 129 

states and testing protocols to examine the effects of different testing regimes. This model 130 

distinguishes between undetected and detected infections and separates severe cases, specifically 131 

those requiring hospitalization from those less so, which is important for disease response 132 

systems such as intensive care unit triaging. We simulate COVID-19 spread with rapid testing 133 

and model disease outcomes in three regions in the United States and São José do Rio Preto, 134 

Brazil - the site of the clinical validation study - using publicly available data. To date, COVID-135 

19 modeling describes the course of disease spread in response to social distancing and 136 
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quarantine measures, and a previous simulation study has shown that frequent testing with 137 

accuracies less than qRT-PCR, coupled with quarantine process and social distancing, are 138 

predicted to significantly decrease infections 21,29,35–39. Godio et al. and Hou et al. use the classic 139 

SEIR model to predict COVID-19 spread and dynamics. Reno et al. use this approach to predict 140 

COVID-19-associated hospitalizations under social distancing policies. While SEIR models are 141 

foundational for epidemiological studies, they fail to distinguish between diagnosed and 142 

undiagnosed individuals. To address this limitation, Giordino et al. propose and implement a 143 

SIDHARTHE model, on which our model is based, to understand disease spread in Italy, but 144 

their analysis does not incorporate different testing regimes.  Larremore et al. discuss how rapid 145 

testing strategies, even when applied with low-sensitivity tests, are useful, as we do, when 146 

applied to their S-I-R-Q-SQ model.  Neither Giordino et al. nor Larremore et al.  use realized 147 

outbreaks to extract parameters - instead they are chosen based on informed guesses and/or 148 

idealized closed systems. They also do not compare the results of their simulations with the data 149 

reported, and hence the analyses are limited by their purely theoretical nature. 150 

By simulating the implementation of rapid testing strategies using parameters extracted 151 

from data from realized outbreaks, we are able to expand on existing insights, including: 152 

predicting the effectiveness of such schema on outbreaks with differing dynamics and at varying 153 

intervention times, extracting parameters to train the comprehensive SIDHARTHE-Q model, and 154 

demonstrating a method that is easily applied to fit parameters for any COVID-19 outbreak given 155 

a data set including daily reports of confirmed cases, current hospitalizations, and deaths.  Using 156 

this method, we propose and test the effectiveness of a variety of testing strategies and analyze 157 

key factors affecting their success or failure. Both simulations and data-driven predictions are of 158 

utmost importance to make decisions concerning an unprecedented event such as a rapidly-159 
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evolving pandemic, and this is the first modeling system using publicly-available data to 160 

simulate how potential public health strategies based on testing performance, frequency, and 161 

geography impact the course of COVID-19 spread and outcomes. 162 

Our findings suggest that a rapid test, even with sensitivities lower than molecular tests, 163 

when strategically administered 2-3 times per week, will reduce COVID-19 spread, 164 

hospitalizations, and deaths at a fraction of the cost of nucleic acid testing via qRT-PCR. Modern 165 

surveillance systems should be well equipped with rapid testing tools to ensure that disease 166 

tracking and control protocols are effective and well-tailored to national, regional, and 167 

community needs.   168 

 169 

RESULTS 170 

Accuracy of Direct Antigen Rapid Tests Correlate with Viral Load Levels  171 

Rapid antigen tests have recently been considered a viable source for first-line screening, 172 

although concerns regarding the accuracy of these tests persist. We clinically validated two 173 

different direct antigen rapid tests for the detection of either nucleocapsid protein (N) or spike 174 

glycoprotein (S) from SARS-CoV-2 in retrospectively collected nasal or nasopharyngeal swab 175 

specimens. Of the total number of nasal swab specimens evaluated by qRT-PCR for 176 

amplification of SARS-CoV-2 N, S, and ORF1ab genes, 100 tested positive and 58 tested 177 

negative (Table 1). The overall sensitivity and specificity of the rapid antigen test for detection of 178 

SARS-CoV-2 N, evaluated across the nasal swab specimens, was 82.0% and 100%, respectively. 179 

Of the total number of nasopharyngeal swab specimens evaluated by qRT-PCR for amplification 180 

of SARS-CoV-2 N, RNA-dependent RNA polymerase (RdRp), and envelope (E) genes, 72 181 

tested positive and 49 tested negative (Table 2). The overall sensitivity and specificity of the 182 
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rapid antigen test for detection of SARS-CoV-2 S, evaluated across the nasopharyngeal swab 183 

specimens was 84.7% and 85.7%, respectively.  184 

The Ct value indirectly quantifies the viral RNA copy number related to the viral load of 185 

the sample for the specific assay 40–42. Ct values represent the number of qRT-PCR cycles at 186 

which generated fluorescence crosses a threshold during the linear amplification phase; Ct values 187 

are therefore inversely related to the viral load. Our data demonstrate that the sensitivity of the 188 

rapid antigen tests are positively correlated to the viral load level (Table 3). For the SARS-CoV-189 

2 N and S rapid tests, the sensitivities were greater than 90% when tested with samples 190 

containing Ct values <25, but plateaued to approximately 80-85% when tested with samples 191 

containing Ct values between 30-40 (Table 3, Supplementary Fig.1). Taken together, the clinical 192 

data shows that the rapid antigen test performs with increasing accuracy for individuals with a 193 

higher viral load, and potentially the most infectious 18,26–28.  194 

 195 

An Enhanced Epidemiological SIDHRE-Q Model  196 

We propose an enhanced epidemiological modeling system, SIDHRE-Q, a variant of the 197 

classical SIR model in order to expand our clinical validation study and to understand the effects 198 

of using frequent rapid tests such as the rapid antigen test on COVID-19 outbreak dynamics.  199 

The changes we make to the basic model to encompass the unique characteristics of the COVID-200 

19 pandemic are similar to those presented by Giordano et al.29 (Fig. 1, Supplementary Fig. 2). 201 

The differential equations governing the evolution of the SIDHRE-Q model and descriptions of 202 

the parameter values are provided in the methods section (Equation 1, Table 4).   203 

An individual that begins in Susceptible (S) may either transition to a Quarantine 204 

Uninfected (Q-U) state via a false positive result or to an Infected Undetected (I) state via 205 
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interaction with an infected individual.  Should an individual in S move into Q-U, they are 206 

quarantined for 10 days before returning to S, a time period chosen based on current knowledge 207 

of the infectious period of the disease and is consistent with CDC guidelines43. One could also 208 

conceive of an effective strategy in which individuals exit quarantine after producing a certain 209 

number of negative rapid tests in the days following their initial positive result or confirm their 210 

negative result using qRT-PCR.  Prolonged incubation beyond 10 days is assumed to be unlikely 211 

– post-quarantine risk of transmission is estimated at 1% - and hence is not included in this 212 

probabilistic model. 43 213 

State I contains individuals who are infected but not diagnosed.  Given that those 214 

diagnosed are predominantly quarantined, the undiagnosed individuals in I – many of which are 215 

pre- or asymptomatic – interact more with the S population than do those in Infected Detected 216 

(D) and transmission due to this population is critically important to modeling outbreaks.  217 

Therefore, the infectious rate for I is assumed to be significantly larger than for D.  Furthermore, 218 

a region’s ability to control an outbreak is directly related to how quickly and effectively the 219 

population in I tests into D, reducing transmission rates through quarantine.  From both I and D 220 

individuals may transition into Recovered (R), accounting for the many cases of infection that 221 

are never detected.  This study, in particular, highlights the critical role frequency of testing, 222 

along with strict quarantine, has in mitigating the spread of the disease and provides specific 223 

testing strategies based on rapid tests we predict to be highly effective. 224 

In this model, we assume that individuals receive a positive diagnosis before developing 225 

severe symptoms and that those with symptoms severe enough to be potentially fatal will go to 226 

the hospital.  If an individual develops symptoms, we assume they are tested daily until receiving 227 

a positive result; hence, before severe symptoms develop, they will be diagnosed with high 228 
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probability.  Those who do not develop symptoms are tested according to the frequency of tests 229 

administered to the general population. Therefore, there is no modeled connection between I and 230 

Hospitalized (H) or between I and Extinct (E), i.e. dead. Removing these assumptions would 231 

have negligible impact on the results as these flows are very small. We estimated the flows using 232 

data on approximate total deaths due to COVID based on excess deaths in the states examined 233 

and found them to be zero for greater than 10% of the days considered for each location.  234 

Although lacking this information for São José do Rio Preto, we made the same assumption. 235 

Should an individual test positive and transition to D, they may either develop serious 236 

symptoms requiring care or recover. Those who develop serious symptoms and transition to state 237 

H will then transition to either R or E.  The recovered population is also tested with the same 238 

frequency as the rest of the population, as infected individuals may recover without being 239 

detected and the modeled testing strategy has no way of differentiating with certainty between 240 

false positives and true positive, asymptomatic cases.  Therefore, the Quarantined Recovered (Q-241 

R) state is introduced with the same connections to R as the connections between S and Q-U. 242 

Though the reinfection rate of SARS-CoV-2 has been a point of recent debate, it is assumed that 243 

the number of re-infected individuals is small 44–48. Therefore, individuals cannot transition from 244 

R to S, hence the separately categorized quarantined populations.  As further knowledge 245 

regarding reinfection rate develops as the pandemic continues, a flow could be added from R to 246 

S with rate inversely proportional to the time for which immunity lasts. 247 

We considered several variations and extensions of the SIDHRE-Q model. In simulations, 248 

we tested additional states, such as those in the SIDARTHE model, which include distinctions 249 

between symptomatic and asymptomatic cases for both detected and undetected populations29. 250 

Correlations between viral load and infectivity and sensitivity were also considered. Altogether, 251 
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our modeling system has been well tuned to predict the impact of high frequency rapid testing on 252 

current COVID-19 spread and outcomes.  253 

 254 

Frequent Rapid Testing with Actionable Quarantining Dramatically Reduces Disease 255 

Spread 256 

In order to demonstrate how strategies could affect the disease spread in different 257 

geographies and demographics, we used surveillance data obtained from regions of varying 258 

characteristics: the state of Massachusetts (MA), New York City (NYC), Los Angeles (LA), and 259 

São José do Rio Preto (SJRP), Brazil, the site of the rapid antigen test clinical validation study. 260 

These regions are also selected in our study due to the readily available surveillance data 261 

provided by the local governments. We fit the model to the data from each region starting 1 April 262 

2020. At this time point the disease reportedly is most advanced in NYC and least advanced in 263 

SJRP, Brazil with estimated cumulative infection rates of 7.11% and 0.12%, respectively. 264 

After calibrating the SIDHRE-Q model, the disease spread is observed with varying 265 

validated rapid antigen test performances and frequencies (Fig. 2). Sensitivity (the ratio of true 266 

positives to the total number of positives) and specificity (the ratio of true negatives to the total 267 

number of negatives) compared to gold-standard qRT-PCR were used as measures of test 268 

accuracy. 
 

269 

The rapid test frequency is varied while maintaining an accuracy of 80% sensitivity and 270 

90% specificity, comparable to our clinical data collected in SJRP, Brazil. These testing 271 

scenarios are then compared to symptomatic testing, in which individuals receive a rapid test 272 

only when presenting symptoms, via either a rapid test or qRT-PCR. Since the primary testing 273 

regimen deployed in MA, LA, NYC and SJRP, Brazil is qRT-PCR-based and focused on 274 
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symptomatic individuals, the symptomatic testing protocol via qRT-PCR is directly estimated 275 

from the data to be the rate � (Table 4).  276 

The difference between the qRT-PCR and rapid test simulations (red and orange lines, 277 

respectively) is therefore only sensitivity of testing (Fig. 2). Test outcome probability in this 278 

model is a function only of whether an individual is infected and independent of other factors; 279 

one can consider this a lower bound on effectiveness of a strategy, as sensitivity and infectivity 280 

are often positively correlated with antigen testing. In this model with sensitivity s and frequency 281 

of testing f, the probability an individual is diagnosed in a testing window is given by the 282 

following: 283 

Pr�Diagnosed within days ��, � � ��� �  �1 � ��
�

�
��

� �. 284 

(2) 285 

To better understand the effect of rapid testing frequency and performance on healthcare 286 

capacity and mortality rates, we simulate the testing strategy with 30%-90% sensitivity each with 287 

80% or 90% specificity against the symptomatic testing strategy (Supplementary Fig. 3).  288 

As per our hypothesis, frequency and symptom-based testing dramatically reduced 289 

infections, simultaneous hospitalizations, and total deaths when compared to the purely 290 

symptom-based testing regimens, and infections, hospitalization, and death were reduced as 291 

frequency increased. Although testing every day was clearly most effective, even testing every 292 

fourteen days with an imperfect test gave an improvement over symptomatic testing with qRT-293 

PCR.  While the strategy works best when implemented at the very beginning of an outbreak, as 294 

demonstrated by the results in SJRP, Brazil, it also works to curb an outbreak that is already 295 

large, as demonstrated by the results in NYC. The difference between frequencies is more 296 

noticeable when the testing strategy is applied to the outbreak in NYC, leading us to hypothesize 297 
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that smaller outbreaks require a lower testing frequency than larger ones; note the difference 298 

between the dependence on frequency to curb a small initial outbreak in SJRP, Brazil versus a 299 

large one in NYC (Fig. 3).  300 

For test performance of 80% sensitivity and 90% specificity, the percent of the 301 

population that has been infected in total from the beginning of the outbreak to mid-July drops 302 

from 18% (MA), 11% (LA), 26% (NYC), and 11% (SJRP, Brazil) to 3%, 2%, 12%, and 0.26%, 303 

respectively, using a weekly rapid testing and quarantine strategy (with regards to predictions of 304 

overall infection rates, other studies based on seroprevalence and epidemiological predictions 305 

have reached similar conclusions 49,50). If testing is increased to once every three days, these 306 

numbers drop further to 1.6% (ΜΑ), 1.4% (LΑ), 9.5% (ΝΥC), and 0.19% (SJRP, Brazil) 307 

(Supplementary Table 1).  308 

To further examine the relationship between frequency and sensitivity, we model the 309 

maximum number of individuals in a given state over the 105-day time period for four 310 

geographic regions (Fig. 3, Supplementary Fig. 4). In all four geographic regions, as frequency 311 

of testing increases, the total infections, maximum simultaneous hospitalizations, and total deaths 312 

converge to small percentages regardless of the sensitivity at high frequencies.  For example, the 313 

predictions show that for the outbreak in LA, a testing strategy started on 1 April of every 10 314 

days using a test of sensitivity 90% would have resulted in 2.5% of the population having been 315 

infected, while using a test of sensitivity 30% would require a strategy of every 5 days to achieve 316 

the same number. Thus, we conclude that frequency is more important than sensitivity to control 317 

the outbreak using a test-based strategy, and a large range of sensitivities prove effective when 318 

testing sufficiently often (Supplementary Fig. 4-5)29,51. The following subsection contains a 319 

discussion of a location-based method for varying the exact frequency of testing based on 320 
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evolving outbreaks. Frequency of testing can be significantly reduced to effectively contain the 321 

disease once the initial outbreak has been controlled; it is clear that this takes only a matter of 322 

weeks (Fig. 2). 323 

On the other hand, according to the specificity of the rapid test and the quarantine 324 

duration, larger testing frequency result in a larger percent of the population quarantined (Fig. 2). 325 

Assuming a 90% rapid test specificity and 10-day quarantine duration, for the 1-, 3- and 7-day 326 

frequencies almost 48%, 24% and 12% of the population, respectively, would be quarantined. 327 

This figure may be reduced with additional rules for exiting quarantine early, such as after 328 

complementary testing. An example of such a strategy is that individuals who test positive are 329 

required to either quarantine for two weeks or produce two consecutive negative rapid tests in 330 

the two days following their positive result. Assuming 80% sensitivity and 90% specificity, those 331 

individuals will reenter the public while still infected with probability 0.04. If uninfected, that 332 

individual will exit quarantine after two days with probability 0.81. However, a compromise 333 

between the reduction of infections and the proportion of the population in quarantine would be 334 

part of the planning for the appropriate testing protocol in each community or region. 335 

While high frequency may be necessary to contain a large outbreak initially, relatively 336 

infrequent testing, such as every one or two weeks, is sufficient to keep controlled outbreaks 337 

small, while reducing the number of quarantined individuals to less than 10% of the population 338 

using a two-week mandatory quarantine. 339 

Additionally, quarantine adherence is of essential importance to the success of this 340 

strategy, and we assume near-perfect quarantine compliance with a small transmission rate due 341 

to diagnosed individuals (Table 4).  Therefore, measures are needed to ensure quarantine is 342 

widely adhered to (Supplementary Fig. 8).  Recent research has identified a number of ways to 343 
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increase quarantine compliance, including compensating for wages lost, providing quarantine 344 

facilities and effective handling of the health crisis. 52–55  345 

Additionally, while high frequency may be necessary to contain a large outbreak initially, 346 

relatively infrequent testing, such as every one or two weeks, is sufficient to keep controlled 347 

outbreaks small, while reducing the number of quarantined individuals to less than 10% of the 348 

population using a two-week mandatory quarantine. 349 

 350 
A County-Based Testing Strategy Offers a Cost-effective Approach to Large-scale COVID-351 

19 Surveillance   352 

To examine the effects of resource-strategic testing schemes, we modeled the COVID-19 353 

prevalence by varying testing frequency across counties of California. For this analysis, only 354 

California was analyzed because of the accessibility of the county level data and the variability 355 

of spread dynamics of the outbreaks between counties.  In this scheme, the percent of active 356 

infected detected individuals in a county determines the frequency of testing. We define 357 

thresholds for the number of active detected infections that, when hit, initiate testing protocols of 358 

different frequencies depending on the threshold hit. We first tested evenly spaced thresholds for 359 

the number of detected active infections up to 1% of the population, but later adopted thresholds 360 

that were determined according to Equation 3. In Equation 3, D = population of state D at the 361 

time of testing. T = number of active infections which, if reached, initiates everyday testing. The 362 

days between tests are rounded to the closest integer value. 363 

 364 

                  (3) 365 
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The days between tests are chosen such that the detected active infections should remain near to 366 

or below T.  If the initial detected active infections are greater than T, then the testing frequency 367 

of 1 will cause infections to rapidly drop.  Both the threshold at which everyday testing begins 368 

and the coefficient of log2T/D can be modified to produce a strategy that is more or less frequent 369 

in testing or resource effective; a range of days between tests from 14 days to 1 day are used 370 

(Fig. 4a). 371 

The purpose of this strategy is to tailor testing based on the specific characteristics of 372 

unique outbreaks in different regions.  A scan over different choices of T is shown in Fig. 4b; the 373 

threshold we choose in Fig. 4a is 0.05% because it is successful in curbing the outbreak in 374 

California within the time period we consider.  Our analysis could be redone to select another 375 

effective fine-grained strategy in other states or regions.  The cost analysis is based on cost per 376 

test - $7 per rapid test and $100 per PCR test - times number of tests used. Clearly that 377 

calculation neglects the costs of storing, distributing, and administering tests, as well as 378 

monitoring incoming results. The costs associated with these logistics would vary with differing 379 

policies dictating the use of rapid tests; significantly, whether they would be administered at 380 

home with self-reported results or in a testing facility or workplace for validation purposes. For 381 

example, a company may choose to use the rapid tests to scan employees before allowing them 382 

to enter the workplace, in a way similar to existing temperature checks. The cost of this 383 

particular application would be minimal beyond that of the actual tests. Such costs would 384 

inevitably be greater for PCR tests, which require a specialized testing facility, significant 385 

equipment, and highly trained personnel. 386 

Using a rapid test with a sensitivity of 80% and a specificity of 90%, the county-based 387 

testing with threshold 0.05% reduces the active infections from 0.94% to 0.0005%, while the 388 
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uniform strategy with tests administered every 7 days results in double the number of active 389 

infections (Fig. 4a).  As the threshold is reduced, the total cost increases while the cumulative 390 

infections, maximum percentage hospitalized, and cumulative deaths all decrease (Fig. 4b). 391 

Appropriate choice of threshold is dependent on the severity of outbreaks in a specific region and 392 

available resources, both logistically and fiscally.  With regional data, such as that from 393 

California used to produce Fig. 4b, this study can be reproduced to calculate an efficient testing 394 

strategy that will effectively curb outbreaks of differing severities in any geographic entity.  This 395 

analysis does not include any delays in ramping testing up and down.  If one were to reproduce 396 

this analysis for a given testing strategy, a fixed-time delay could be introduced, depending on 397 

the relevant logistical constraints. 398 

Strategy B in Fig. 4 consists of qRT-PCR testing uniformly applied to the highlighted 399 

population with a frequency of once weekly. The average cost per person per day is just under 400 

$15. Despite this frequency and the accuracy of qRT-PCR, the strategy does not succeed in 401 

curbing the spread as fast as strategy A, which uses a testing sensitivity and specificity of 80% 402 

and 90%, respectively, and testing frequency that vary between counties depending on the 403 

proportion of their population that is currently infected. The total cost for strategy A is estimated 404 

at a fraction of the other at $1.53 per person per day. 405 

 406 

DISCUSSION 407 

In this study we examine the potential effects of a novel testing strategy to limit the 408 

spread of SARS-CoV-2 utilizing rapid antigen test screening approaches. Our clinical data and 409 

SIDHRE-Q modeling system demonstrate that 1) frequent rapid testing even at a range of 410 

accuracies is effective at reducing COVID-19 spread, 2) rapid antigen tests are a viable source 411 
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for this strategy and diagnose the most infectious individuals, and 3) strategic geographic-based 412 

testing can optimize disease control with the amount of available resources. The public has 413 

witnessed and experienced symptomatic individuals being denied testing due to shortages, and 414 

few testing structures for asymptomatic or mildly symptomatic individuals – a significant source 415 

of disease spread. Though several factors contributed to the stymied early response measures, 416 

such as lockdown and quarantine protocols and adherence, severe testing bottlenecks have been a 417 

significant culprit 56–58. Early control measures have been shown to decrease lives lost by several 418 

orders of magnitude59. These challenges, though exacerbated during the early months of the 419 

pandemic, remain at the forefront of the public health crises.  420 

Diagnosis of SARS-CoV-2 infection by qRT-PCR is the current standard of care, yet 421 

remains expensive and requires a laboratory and experienced personnel for sample preparations 422 

and experimentation. The turnaround time for results can be up to 10 days, preventing people 423 

from either leaving quarantine if they are negative, or delaying critical care and infecting others 424 

if they are positive 12. This current testing scheme moreover yields incomplete surveillance data 425 

on which response efforts such as societal reopening and hospital management depend. Though 426 

qRT-PCR is considered the gold-standard diagnostic method because of its high sensitivity and 427 

specificity, the logistical hurdles render it unrealistic for large-scale screening.  428 

As qRT-PCR remains impractical for this strategy, and rapid tests are facing regulatory 429 

challenges because they do not perform with qRT-PCR-like accuracy, rapid test screening is 430 

either nonexistent in several countries or symptom-based. Even under best-case assumptions, 431 

findings have shown that symptom and risk-based screening strategies miss more than half of the 432 

infected individuals 60. Some have argued that the need for widespread testing is overstated due 433 

to the variability in test sensitivity and specificity 61. Here, we present alternative large-scale 434 
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diagnostic tools to qRT-PCR, and show that test performance, though valuable, is secondary to 435 

widespread test frequency, which is enabled by accessibility and turnaround time. Furthermore, 436 

test affordability is essential for the successful implementation in communities most affected by 437 

infection and will to speed up the safe opening and functioning of the viral sectors of the 438 

economy.  439 

Giordano et al. has modeled the evolution of SARS-CoV-2 spread, introducing a 440 

diagnosed state to elucidate the importance of population-wide testing 29. Larremore et al. has 441 

examined how various test sensitivities and frequencies affect the reproductive number 21.  We 442 

build upon these findings to show how in affected United States and Brazil regions, population-443 

wide frequent and rapid testing schemes, with sensitivities ranging from 30%-90%, can be more 444 

effective in curbing the pandemic than a PCR-based scheme. Integrating real-world surveillance 445 

and clinical data into our modeling system has allowed us to incorporate regional differences - 446 

such as variances in healthcare access, state health policy and adherence, state GDP, and 447 

environmental factors - under the same model. Significantly, our findings hold true across 448 

Massachusetts, New York City, Los Angeles, and São José do Rio Preto, Brazil. We also present 449 

the economic considerations of these testing regimes, showing that widespread rapid testing is 450 

more cost efficient than less frequent qRT-PCR testing. In line with these economic 451 

considerations, our model demonstrates the effectiveness of a geographic-based frequent testing 452 

regime, in which high disease prevalence areas receive more frequent testing than low disease 453 

prevalence areas. 454 

Since COVID-19 is known to affect certain demographics differently, modeling would 455 

benefit from incorporating demographic information correlated with disease progression and 456 

spread to define sub-models and sets of parameters accordingly. Age, pre-existing conditions, 457 
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job types, and density of population are examples of possible categories, each of which influence 458 

the risk of contracting and/or dying from COVID-19. Further studies would benefit from 459 

incorporating these ideas to better understand the effectiveness of rapid testing on identifying 460 

potential super spreading events. Future public health prevention programs should use the 461 

proposed modeling system to develop and test scenarios for precision testing and prevention.  462 

Our findings also point to low-cost tools for implementation of this testing strategy, such 463 

as a rapid antigen-based test for the detection of SARS-CoV-2 proteins. We show that the rapid 464 

antigen tests perform with a range of accuracies under which disease spread can be dramatically 465 

mitigated under our model. Notably, the sensitivity is correlated to the individual’s viral load, 466 

effectively diagnosing those who are potentially the most infectious with the highest accuracy. 467 

Our findings are significant because rapid antigen tests are cheaper than qRT-PCR, can be mass 468 

produced to millions per day, present results within 15 minutes, and can be administered by a 469 

nonexpert without a lab or special equipment.  470 

 There are several policy implications for these findings. First, our model supports that 471 

systems of high frequency rapid testing should be implemented as a first-line screening method. 472 

This can be first enabled by a more holistic regulatory evaluation of rapid diagnostics, such that 473 

policy emphasizes accessibility and turnaround time even under a range of accuracies. One can 474 

imagine a less accurate, though rapid method of first-line screening in schools, public 475 

transportation, and airports, or even at home, and a qRT-PCR-based method for second-line 476 

screening (testing those who present severe symptoms or have been in contact with infected 477 

individuals, testing in a clinical setting, etc). At home tests require a built-in digital reporting 478 

capability62; rapid antigen test results can be sent to local health centers with reciprocal 479 

instructions regarding updated test frequency guidelines to enable adaptive testing strategies.  480 
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Second, our cost analysis and rapid antigen test data present a viable and potentially more cost-481 

effective method for screening. Third, our county-based testing scheme presents a possible 482 

method for wide-scale screening while optimizing resources. Future studies should investigate 483 

how this selective testing strategy can be applied to different location scales to further inform 484 

health policy. Moreover, though our models analyze regions in the United States and Brazil, 485 

similar testing strategies can be considered globally in both resource limited and abundant 486 

settings due to the greater accessibility of rapid tests compared to qRT-PCR. This model can be 487 

further tailored to the pandemic course as we gain further evidence regarding SARS-CoV-2 re-488 

infection rates.    489 

 We emphasize that integral to the effectiveness of diagnostic schemes is 1) the proper 490 

adherence to quarantine and public health measures and 2) the combined use of a variety of 491 

diagnostic methods including nucleic acid, antigen, and antibody tests. According to these 492 

models, rapid antigen tests are an ideal tool for first-line screening. Clinical molecular tests such 493 

as qRT-PCR are vital to the diagnostic landscape, particularly to re-test suspected cases that were 494 

negative on the rapid test. Because rapid tests present a higher rate of false negatives, methods 495 

such as qRT-PCR remain integral to second-line screening. Antibody tests provide important 496 

information for immunity and vaccination purposes as well as epidemiological surveillance. This 497 

model also assumes that individuals will quarantine themselves before being tested and for 10 498 

days following a positive diagnostic result and will not be infected while waiting for the qRT-499 

PCR results. It is important to acknowledge the working definition of quarantine.  The states 500 

containing quarantined individuals (QU, QR and D) are defined as consisting of a population that 501 

is meant to be quarantined, not a population that is necessarily in perfect compliance with the 502 

mandate that they remain fully isolated from the population.  Quarantine is assumed to be 503 
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imperfectly executed and the model accounts for a small, tunable interaction between 504 

quarantined states and the general population, hence it is conservative. 505 

There are important limitations to be considered in this model. Differences in disease 506 

reporting between the geographical regions and the incomplete nature of COVID-19 surveillance 507 

data, often due to the lack of testing or delays in reporting, are not considered in the model. It is 508 

imperative that the testing results, hospitalization and death statistics, and changes in protocol are 509 

reported in real-time to scientists and policy makers so that models can be accurately tuned as the 510 

pandemic develops. Moreover, delays required to ramp testing strategies up or down are not 511 

considered. Infectivity variations between individuals is also not applied to this model, and 512 

future clinical studies should gather data on asymptomatic presenting COVID-19 cases. Non-513 

compliant quarantine behaviors and possible infections during testing waiting times are also not 514 

included in the calculations. The model also does not take into account infrastructural 515 

limitations, such as hospital capacity and testing space, which depend on factors beyond the 516 

scope of this analysis. Though the rapid antigen test offers several advantages such as 517 

affordability, fast turnaround time, and ease of mass production, we are assuming that there are 518 

systems in place to implement frequent and safe low-cost screening across different communities 519 

and settings. 520 

Our model underscores the need for a point-of-care or at-home test for frequent 521 

screening, particularly as lockdown restrictions ease. Regulatory agencies can work towards 522 

evaluating rapid tests to alternative standards other than comparison to high sensitivity molecular 523 

diagnostics, as our model shows that frequency and scale of testing may overcome lower 524 

sensitivities. Rather, we can refocus policy to implement first-line screening that optimizes 525 

accuracy with efficiency and equitability.  526 
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 527 

 528 

METHODS 529 

Development of Direct Antigen Rapid Tests for the Detection of SARS-CoV-2 530 

We developed a direct antigen rapid test for the detection of the nucleocapsid protein or 531 

spike glycoprotein from SARS-CoV-2 in nasal or nasopharyngeal swab specimens as previously 532 

described 63. Briefly, the rapid antigen tests are immunochromatographic format with a visual 533 

readout using anti-N or anti-S mouse monoclonal antibodies (E25Bio, Inc., Cambridge, MA, 534 

USA) that are either coupled to 40 nm gold nanoparticles (Abcam, Cambridge, UK) or adsorbed 535 

to nitrocellulose membranes (Sartorius, Goettingen, Germany). Each rapid antigen test has a 536 

control area adjacent to the paper absorbent pad; the control is an anti-mouse Fc domain 537 

antibody (Leinco Technologies, Fenton, MO, USA) that will capture any of the antibody-538 

conjugated gold nanoparticles to generate a control visual signal. A visual signal at the test area 539 

reflects SARS-CoV-2 N or S that is “sandwiched” between an anti-N or anti-S antibody 540 

adsorbed to the nitrocellulose membrane and a second anti-N or anti-S antibody covalently 541 

coupled to visible gold nanoparticles.  542 

 543 

Validation of Direct Antigen Rapid Test for the Detection of SARS-CoV-2 544 

In a retrospective study of nasal swab specimens form human patients, we compared the 545 

accuracy of the rapid antigen test for detection of SARS-CoV-2 N to the viral loads of 546 

individuals. All individuals were symptomatic between 1-10 days of fever. Nasal swab 547 

specimens (n=158) were tested following approved human subjects use protocols. The nasal 548 

swab specimens were banked frozen from suspected patients submitted to PATH for routine 549 
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COVID diagnosis. Prior to using the rapid test, the nasal swab specimens were validated by 550 

qRT-PCR using the FDA EUA ThermoFisher/AppliedBiosystems TaqPATH COVID-19 Combo 551 

Kit (ThermoFisher, Waltham, MA USA). The primary study under which the samples and data 552 

were collected received ethical clearance from the PATH Research Ethics Committee, protocol 553 

number 00004244; all participants provided written informed consent for the use of the samples. 554 

The nasal swab specimens were de-identified, containing no demographic data, prior to analysis, 555 

and the experiments were performed in accordance with relevant guidelines and regulations.       556 

The nasal swabs were originally collected in 1 mL PBS, where 50 μl was mixed with 50 557 

μl  of Solution Buffer (0.9% NaCl and 0.1% Triton X-100). The 100 μl mixture was then 558 

pipetted onto the rapid antigen test for SARS-CoV-2 N detection and allowed to react for 15 559 

minutes. After processing of the rapid antigen test, the visual positive or negative signal was 560 

documented.      561 

Additionally, in a retrospective study of nasopharyngeal swab specimens from human 562 

patients, we compared the accuracy of the rapid antigen test to the viral load of individuals. 563 

Nasopharyngeal swab specimens (n = 121) were tested in Brazil following approved human 564 

subjects use protocols. The age of study participants ranged from 1 to 95 years with an overall 565 

median of 37 years (interquartile range, 27–51 years), and 62% were female. All individuals 566 

were symptomatic between 1-10 days of fever. The demographic summary of the patients are 567 

included in Supplementary Table 2. The nasopharyngeal swab specimens were banked 568 

refrigerated or frozen samples from suspected patients submitted to the lab for routine COVID 569 

diagnosis. Prior to using the rapid test, the nasopharyngeal swab samples were validated by qRT-570 

PCR using GeneFinderTM COVID-19 Plus RealAmp Kit (OSANGHealtcare, Anyang-si, 571 

Gyeonggi-do, Republic of Korea I). The primary study under which the samples and data were 572 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 13, 2021. ; https://doi.org/10.1101/2020.09.01.20184713doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.01.20184713
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

collected received ethical clearance from the Faculdade de Medicina de São José do Rio Preto 573 

(FAMERP), protocol number 31588920.0.0000.5415; all participants provided written informed 574 

consent for the use of the samples. All excess samples and corresponding data were banked and 575 

de-identified prior to the analyses, and the experiments were performed in accordance with 576 

relevant guidelines and regulations.   577 

Nasopharyngeal swab specimens (1 mL) were concentrated using  Vivaspin 500 578 

centrifugal concentrators (Sartorius, Goettingen, Germany) at 12,000 x g for 10 minutes. The 579 

concentrated nasopharyngeal swab specimen retentate was transferred to a collection tube and 580 

the rapid antigen test for SARS-CoV-2 spike detection was inserted into the tube with the 581 

retentate and allowed to react for 15 minutes. After processing of the rapid antigen test, the 582 

visual positive or negative signal was documented.    583 

Both nasal and nasopharyngeal swabs were used for the detection of SARS-CoV-2 N and 584 

S, respectively. Some studies have shown higher efficacy of nasopharyngeal swabs for PCR 585 

tests; the similar results between our two cohorts are likely due to the different proteins being 586 

detected64,65. 587 

 588 

Data for Modeling  589 

As of August 2020, the United States and Brazil have the highest number of confirmed 590 

COVID-19 cases and deaths worldwide, with both countries reporting their first case on 26 591 

February 202) 1. Although several affected US regions could have been modeled, we look at data 592 

from Massachusetts, New York, and Los Angeles: these regions each contained “hotspots”, or 593 

areas of surging COVID-19 cases, at different points in time during the pandemic and have 594 

publicly available government-provided surveillance data. Our model is fit using data over 105 595 
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days beginning on April 1 for Fig. 2 and Fig. 3, and 105 days beginning on April 10 for Fig. 4596 

(see “Modeling Parameters” in Methods). In order to understand the various testing proposals on597 

a global scale, we performed our clinical study in and expanded the modeling study to Brazil.598 

The specific data we use to fit our model are cumulative confirmed cases, total deaths, and599 

number of daily hospitalizations due to COVID-19. This surveillance data was retrieved from600 

government-provided online databases 66–72.  601 

 602 

Modeling Parameters 603 

Equation 1 below provides the exact differential equations governing the model.  604 

(1) 605 

From Table 4 describing each parameter, note that each of their values are the inverse of the606 

average rates at which a transition is made.  For example, the term  is set equal to the607 

population exiting quarantine per day, with  days.  The assumption made is that the608 

distribution of time already spent in quarantine is approximately uniform among the quarantined609 

population at any given time.  The uniform rate approximation breaks down during periods when610 

flows between states are changing rapidly within a matter of days, such as in early stages of the611 
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pandemic. The result of running the model with fixed infection and quarantine times as well as a 612 

discussion of how that change is incorporated in Supplementary Fig. 9.  The mean value method 613 

of assigning values to parameters is standard in epidemiological modeling 29,73. 614 

In order to determine the numerical values of the parameters defining the flows between 615 

states, we use a least squares regression to find fits for each seven day interval.  All data points 616 

within each interval and from each data set are fit collectively within each interval (the resulting 617 

fits do not represent the mean of separately calculated fits).  This procedure allows the model to 618 

take into account the time dependent nature of the parameters, which rely on factors such as 619 

social distancing regulations and changes in testing capacity.  We also fit window sizes between 620 

1 and 21 days and find that while the fit degrades with larger window size, the overall shape of 621 

the curves do not change.  We choose seven days assuming policy changes take a week to 622 

become effective and that reasonably parameters can be expected to change within this time 623 

period without causing problems with overfitting.  Also, the seven day window size accounts for 624 

the fact that often data is not reported as diligently over the weekend. Time series of the values 625 

of the parameters for the geographic locations discussed in this paper are included in 626 

Supplementary Fig. 6. 627 

Given the restrictions on data available for the populations of various states, varying all 628 

of the parameters results in an over parameterized system. Therefore, a subset of the model 629 

parameters are fit while the others are either extracted from other sources; see Table 4. The 630 

fitting procedure minimizes the sum of the squared residuals of the normalized total cases, 631 

current daily hospitalizations, cumulative deaths, and percentage of total infected individuals 632 

currently hospitalized.  The first three are present in the data sets while the latter is derived from 633 

the estimates of the ratio between infected undetected to infected detected individuals from the 634 
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CDC Laboratory Seroprevalence Survey Data 74.  Each of these data sets are normalized to 635 

maintain equal weight for least squares optimization. 636 

While this ratio changes over time, the percentage of infected individuals developing 637 

severe symptoms should remain roughly constant throughout the course of the epidemic in the 638 

different locations studied. 639 

We consider the data sets for outbreaks in MA, NYC, LA, and SJRP, Brazil 66–71. While 640 

each location has testing and fatality information dating back to January, hospitalization data was 641 

not included until late March (for NYC and SJRP) and April (for MA and LA).  Hence we begin 642 

our fitting procedure and testing strategy on 1 April for each of the data sets; by this point, the 643 

outbreak is advanced in NYC, substantial in MA, non-negligible, but far from its peak, in LA, 644 

and in early stages in SJRP, Brazil.  Starting simulations at various stages of the outbreak allows 645 

one to see the difference in results between when a testing strategy is administered. 646 

In order to determine the effectiveness of the county-based strategy when applied to the 647 

state of California, we also fit all of the counties in California with a population greater than 648 

1.5% of that of the entire state and with greater than zero deaths.  The results do not depend on 649 

these selections, but instead suggest a practical criteria to administer limited resources. The 650 

fitting is done starting 10 April for these counties, as at this point the outbreak is sufficiently 651 

well-documented in each to successfully model. For the county-level data we compute a seven 652 

day running average of each of the data sets to which we then fit in order to smooth out 653 

fluctuations in the data, likely due to reporting, which are more significant here than in the other 654 

data sets considered, as the county populations are smaller and hence discrepancies impact the 655 

smoothness of the data more.  The fits for each of the counties can be found in Supplementary 656 

Fig. 7.  657 
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As one can see from Fig. 1, these data sets are particularly not smooth, which indicates 658 

inefficiencies in reporting. Additionally, it is difficult to gauge their consistency within the dates 659 

provided or to compare between locations, as reporting mechanisms changed over time within 660 

the same locations.  Despite this lack of consistency, our model and fitting mechanism was 661 

successful in reproducing the progress of the outbreak in each data set studied. 662 

 663 

DATA AVAILABILITY 664 

The authors confirm that the data supporting the findings of this study are available within the 665 

article and/or its supplementary materials; any other data will be made available upon request.  666 

 667 

CODE AVAILABILITY 668 

Full code can be found on github: https://github.com/badeaa3/COVID19_Rapid_Testing.  The 669 

code is written using python with the packages scipy, numpy, lmfit, matplotlib and plotly 75–79.  670 
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Table 1. Clinical validation summary for the direct antigen rapid test (DART) for SARS-870 

CoV-2 nucleocapsid protein evaluated using 158 retrospectively collected patient nasal 871 

swab specimens.  872 
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Table 2. Clinical validation summary for the SARS-CoV-2 direct antigen rapid test 881 

(DART) for SARS-SoC-2 spike glycoprotein evaluated using 121 retrospectively collected 882 

patient nasopharyngeal swab specimens.  883 
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Total 72 49 121
Negative 

Predictive 
Value

79.3% 68.7% 86.9%

Prevalence 59.5% 50.2% 68.3%

Overall 
Agreement

85.1% 77.5% 90.9%

All Data Summary
qRT-PCR         

(gene average)
95% Confidence 
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Table 3. Data summary of direct antigen rapid test (DART) for detection of SARS-CoV-2896 

nucleocapsid protein and DART for detection of SARS-CoV-2 spike glycoprotein897 

performance in comparison to qRT-PCR results. Sensitivity, specificity, Positive predicative898 

value, (PPV) negative predictive value (NPV), prevalence, and overall agreement are calculated899 

for increasing PCR cycle threshold (Ct) values. 900 
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Table 4. Details of parameter values used for SIDHRE-Q Model.  912 

 913 

Parameter Details & Statistics 

 

� 
  

� is rate of transmission between I and S.  It is defined as, per day, the 
probability that an interaction between an undetected infected person and an 
uninfected person results in a new infection, multiplied by the average number of 
uninfected people an undetected infected person comes into contact in a day.  

�is estimated from the data.  Units: 1/(days). 

 Mean St. Dev. 

MA 0.088 0.051 

LA 0.090 0.034 

NYC 0.067 0.042 

SJRP 0.121 0.042 

� � is rate of transmission between D and S. It is defined as the probability that an interaction between an 
infected person and an uninfected person results in a new infection, multiplied by the average number of 
uninfected people a detected infected person comes into contact with in a given day.  Units: 1/(days). 

� � 0.01 � �  

The constant relating �, � accounts for a small but nonzero transmission due to the quarantined (detected) 
infected population.  This value was chosen to be small, assuming an individual in a mandated quarantine will 
only interact with others with low probability, such as within a household, where complete isolation is 
difficult to maintain. 

� �is symptomatic detection rate.  It is defined as the probability that a 

symptomatic undetected individual is diagnosed per day.  �is estimated from the 

data. �is multiplied by sensitivity (assume benchmark sensitivity 100% for PCR, 
as used when fitting).  Units: 1/days. 

 Mean St. Dev. 

MA 0.006 0.005 

LA 0.011 0.006 

NYC 0.0056 0.002 

SJRP 0.015 0.007 

� � is asymptomatic detection rate.  It is defined as the probability that an asymptomatic undetected infected 

individual is diagnosed on a given day.  � � 0 while fitting (during PCR symptomatic testing).  

� �(sensitivity/days between tests) when the rapid testing strategy is activated.  Units: 1/days. 

� � is undetected recovery rate.  It is defined as the probability that an undetected infected individual transitions 

to the recovered state on a given day.  � � 1/10, or the inverse of average recovery time 72.  Units: 1/days. 

� � is rate of onset of severe symptoms.  It is the probability that an infected 
individual develops severe symptoms on a given day and transitions into the 
hospitalized state.  The flow from 
 to � is assumed to be independent of the 
ratio �/
, but comes only from the detected infected population, hence why it is 

multiplied by 
� � 
�/
.  � is estimated from the data.  Units: 1/days. 

 Mean St. Dev. 

MA 0.0013 9.5e-4 

LA 0.0016 2.4e-4 

NYC 0.0011 6.6e-4 

SJRP 0.0018 8.0e-4 
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� � is detected recovery rate.  It is the probability that a detected infected individual transitions to the recovered 
state on a given day. 
 

� � 1/10, or the inverse of the average recovery time 72.  Units: 1/days. 

	 	is the hospitalized recovery rate.  It is the probability that a hospitalized individual transitions to the 

recovered state on a given day.  	 �  1/11, or the inverse of the average recovery time for a hospitalized 
individual 72.  Units: 1/days. 


 
 is hospitalized rate of death.  It is the probability that a hospitalized individual 

expires on a given day.  
 is estimated from the data.  Units: 1/days. 

 Mean St. Dev. 

MA 0.034 0.012 

LA 0.016 0.004 

NYC 0.036 0.034 

SJRP 0.032 0.045 

� � is the false positive rate.  It is the probability of entering either of the quarantine states on a given day from 

either the Susceptible or Recovered populations.  � �  0  while fitting (during PCR symptomatic testing).  

� � 
1 �specificity� � 
1/days between tests� when the rapid testing strategy is activated.  Units: 1/days. 

� �is the rate of exit from quarantine.  It is the probability that an individual exits quarantine on a given day.  

� � 1/10, or the inverse of the quarantine period for fixed length quarantine.  Units: 1/days. 
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FIGURES 926 

 927 

Fig. 1. Graphical scheme displaying the relationships between the stages of quarantine and 928 

infection in SIDHRE-Q model. Q-U, quarantine uninfected; S, susceptible (uninfected); I, 929 

infected undetected (pre-testing and infected); D, infected detected (infection diagnosis through 930 

testing); H, hospitalized (infected with life threatening symptom progression); R, recovered 931 

(healed); E, extinct (dead); and Q-R, quarantine recovered (healed but in quarantine by false 932 

positive testing). 933 
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Fig. 2. COVID-19 Outcomes in 3 US Regions and Brazil as a result of Frequent Rapid 943 

Testing Protocol using the SIDHRE-Q Model. The Cumulative Detected Infected, 944 

Hospitalized, Deceased, Active Infections, Recovered, and Quarantined are modeled over 105 945 

days (top to bottom) using reported data from 4 global regions: Massachusetts, Los Angeles, 946 

New York City, and São José do Rio Preto in Brazil (left to right). The COVID-19 population 947 

spread and outcomes are modeled under a Rapid Testing Protocol (sensitivity 80%, specificity 948 

90%) with variable testing frequencies ranging from 1-21 days between tests. This protocol is 949 

compared to a symptom-based Rapid Testing protocol and a symptom-based PCR protocol. 950 
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Fig. 3. Effect of Rapid Testing Protocol under variable testing sensitivities (30%-90%) and 954 

increasing frequency under the SIDHRE-Q Model. The Cumulative Infections, Maximum 955 

Simultaneously Hospitalized, and Deceased populations are modeled for Massachusetts, Los 956 

Angeles, New York City, and São José do Rio Preto in Brazil with a 90% test specificity.  957 
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Fig. 4. Effect of County Based Rapid Testing strategy on COVID-19 outcomes in 964 

California. This protocol varies testing frequency in accordance to the number of recorded 965 

cases; the threshold for number of active infections which, if reached, signals to commence 966 

everyday testing (the highest frequency considered). A Rapid Test with an 80% sensitivity and 967 

90% sensitivity versus is used in this deployment strategy. Shown is the total cost per person per 968 

day versus the cumulative infections, maximum simultaneously hospitalized, and cumulative 969 

deaths with varied thresholds for all of CA is shown. The County Based Rapid Testing strategy 970 

is compared to uniform testing, which distributes the same number of total tests used in the 971 

county strategy, albeit evenly across each county. The effects of uniform testing are modeled for 972 

both a Rapid Testing protocol and a qRT-PCR protocol (A). The effects of County Based Rapid 973 

Test Protocol and Uniform PCR Protocol on active infected detected population over time in CA 974 

are shown (B). The legend denotes the thresholds at which testing frequency is determined, the 975 

testing frequencies, the percent of CA population under the strategy, and the cost per person per 976 

day.  977 
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