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Abstract

Objectives: Mortality risk scores, such as SOFA, qSOFA, and CURB-65, are quick, effective tools for
communicating a patient’s prognosis and guiding therapeutic decisions. Most use simple calculations that
can be performed by hand. While several COVID-19 specific risk scores exist, they lack the ease of use of
these simpler scores. The objectives of this study were (1) to design, validate, and calibrate a simple,
easy-to-use mortality risk score for COVID-19 patients and (2) to recalibrate SOFA, gSOFA, and
CURB-65 in a hospitalized COVID-19 population.

Design: Retrospective cohort study incorporating demographic, clinical, laboratory, and admissions data
from electronic health records.

Setting: Multi-hospital health system in New York City. Five hospitals were included: one quaternary
care facility, one tertiary care facility, and three community hospitals.

Participants: Patients (n=4840) with laboratory-confirmed SARS-CoV2 infection who were admitted
between March 1 and April 28, 2020.

Main outcome measures: Gray’s K-sample test for the cumulative incidence of a competing risk was
used to assess and rank 48 different variables’ associations with mortality. Candidate variables were
added to the composite score using DeLong’s test to evaluate their effect on predictive performance
(AUQC) of in-hospital mortality. Final AUCs for the new score, SOFA, gSOFA, and CURB-65 were
assessed on an independent test set.

Results: Of 48 variables investigated, 36 (75%) displayed significant (p<<0.05 by Gray’s test) associations
with mortality. The variables selected for the final score were (1) oxygen support level, (2) troponin, (3)
blood urea nitrogen, (4) lymphocyte percentage, (5) Glasgow Coma Score, and (6) age. The new score,
COBALT, outperforms SOFA, gSOFA, and CURB-65 at predicting mortality in this COVID-19
population: AUCs for initial, maximum, and mean COBALT scores were 0.81, 0.91, and 0.92, compared
to 0.77, 0.87, and 0.87 for SOFA. We provide COVID-19 specific mortality estimates at all score levels
for COBALT, SOFA, qSOFA, and CURB-65.

Conclusions: The COBALT score provides a simple way to estimate mortality risk in hospitalized
COVID-19 patients with superior performance to SOFA and other scores currently in widespread use.
Evaluation of SOFA, qSOFA, and CURB-65 in this population highlights the importance of recalibrating
mortality risk scores when they are used under novel conditions, such as the COVID-19 pandemic. This
study’s approach to score design could also be applied in other contexts to create simple, practical and
high-performing mortality risk scores.
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Summary box:

What is already known on this topic:

e Mortality risk scores are widely used in clinical settings to facilitate communication with
patients and families, guide goals of care discussions, and optimize resource allocation.

e Although popular mortality risk scores like SOFA, qSOFA, and CURB-65 are routinely used in
COVID-19 populations, they were originally calibrated in different contexts and their true
performance among hospitalized COVID-19 patients is unknown.

e Several dedicated COVID-19 mortality risk scores have been created during the 2019-2020
pandemic, but all use complicated formulae or machine learning algorithms and are difficult or
impossible to calculate by hand, limiting their applicability at the bedside.

What this study adds:

e We describe a data-driven, simple, and hand-calculable COVID-specific mortality risk score
(COBALT) that has superior performance to SOFA, qSOFA, and CURB-65 in a hospitalized
COVID-19 patient population.

e We provide COVID-specific mortality estimates for SOFA, qSOFA, and CURB-65 using data
from 4840 patients in a large and diverse New York City multihospital health system.



https://doi.org/10.1101/2020.08.31.20185363
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.08.31.20185363; this version posted September 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

Introduction

Mortality risk scores are widely used in clinical settings to facilitate communication with patients and
families, guide goals of care discussions, and improve triage under resource constraints. When used
appropriately, they provide an objective, realistic assessment of a patient’s prognosis [1]. Such objectivity
is especially important under conditions of uncertainty, such as the 2019 coronavirus (COVID-19)
pandemic, which has claimed the lives of over 142,000 people in the United States and over 618,000
worldwide [2]. When family members cannot be with their loved ones directly, or when essential
resources such as ICU beds and ventilators are limited, physicians’ ability to transparently communicate
mortality risk becomes increasingly critical [3].

There are two approaches to the use of mortality risk scores in a novel context, such as COVID-19. One is
to repurpose scores that are already in widespread use in similar patient populations, such as SOFA [4],
gSOFA [5], and CURB-65 [6]. The other is to develop a score de novo, either through expert assessment
of risk factors for COVID-19 mortality or through data-driven methods. Many widely used scores, like
SOFA, qSOFA, and CURB-65, have been extensively validated [7-10] and are easy to calculate.
However, further calibration in COVID-19 populations is necessary to ensure that the estimates of
mortality risk at each score level are accurate. The second approach, designing a new score, has been
much more widely pursued in COVID-19. Unfortunately, many of these new scores have been found to
be biased, poorly evaluated, or otherwise unsuitable [11]. In addition, even well-designed and high
performing scores can suffer from limited practical utility. For example, to our knowledge, all existing
scores designed specifically for COVID-19 involve complicated formulae or machine learning algorithms
and are deployed using online calculators [12-16,30]. This limits their applicability, especially in time-
and resource-constrained settings.

Given these considerations, we sought to improve COVID-19 mortality risk prediction in two ways. First,
we generated COVID-19 specific mortality estimates for three existing mortality risk scores — SOFA,
gSOFA, and CURB-65 — using the electronic health records (EHRs) of 4840 COVID-19 patients who
were admitted to the Mount Sinai Health System in New York City during March and April 2020.
Second, we developed a method for creating simple, additive mortality risk scores from EHR data. We
then applied this method to create a new six-variable score (“COBALT”) that predicts mortality among
hospitalized COVID-19 patients with greater accuracy than SOFA, qSOFA, and CURB-65 while
maintaining their ease of use. Both the COBALT score and the recalibrated mortality estimates for the
other three scores should substantially improve clinicians’ ability to understand and communicate
mortality risk in COVID-19.

Methods
Study population and dataset
This study was approved by the Mount Sinai Institutional Review Board (IRB-20-03613). A graphical

summary of the dataset preparation is shown in Figure 1. The study population consisted of 4840 patients
between the ages of 18 and 99 who were admitted to one of five hospitals within the Mount Sinai Health
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System between March 1 and April 28, 2020 and who had a positive PCR test for SARS-CoV2 during or
prior to their admissions. Patients’ admission histories, demographics, laboratory tests, oxygen device use,
vital signs, comorbidities, and medications were extracted from electronic databases (Epic Caboodle and
Clarity; Epic Systems Corporation). If a patient was transferred from one Mount Sinai hospital to another,
we included both admissions. The final outcome (death or discharge) was assessed using the recorded
discharge disposition at the end of the patient’s admission. The study follow-up period ended on May 31,
2020 and patients still admitted at this time were considered censored.

Each patient’s clinical history was represented as a series of time intervals ranging from the time of
admission to the time of discharge, death, or censoring. The creation of a new interval was triggered by
any change in a patient’s laboratory values, vital signs, oxygen support devices, or oxygen settings (e.g.
FiO,) or any other time-varying variable. Non-time-varying information about each patient, including age
at admission, sex, admission site, smoking status, self-reported race and ethnicity, and comorbidities, was
also included. Table 1 contains a complete list of the variables considered in this study.

The detailed nature of our time interval data allowed us to calculate the values of the SOFA [4], gSOFA
[5], and CURB-65 [6] scores throughout each patient’s entire admission. For SOFA, oxygen support level
(as estimated by delivery device), FiO,, mean arterial pressure, and the Glasgow Coma Scale (GCS) were
obtained from nursing flowsheet data. Platelet count, bilirubin, creatinine, and PaO, values came from
laboratory result documentation. Vasopressor administration information came from the medication
administration record (MAR); a patient was considered to be receiving vasopressor support from the
documented time of administration until the order expired or was discontinued. Urine output was
documented in nursing flowsheets as individual events; urine output over the last 24 hours was calculated
by summing any documented urine output volumes within 24 hours of the start of the current interval.
Additional information required for the qSOFA and CURB-65 scores included respiratory rate and blood
pressure (systolic and diastolic), both of which were obtained from flowsheet documentation. CURB-65
includes a parameter for “confusion”; because this was not separately documented outside of unstructured
clinical notes, we took it to mean a GCS score of less than 15.

We randomly divided the patients into three groups. Dataset 1 (n=1613) was used to quantify each
variable’s association with mortality and choose preliminary candidates for the COBALT score. Dataset 2
(n=1613) was used to evaluate combinations of variables and select the final set of variables for the score.
Dataset 3 (n=1614) was used to evaluate the final performance of the score and compare it to SOFA,
gSOFA, and CURB-65. All three datasets were used to calculate mortality risk estimates for the four
scores. Supplementary Table S1 confirms that the distributions of study variables were consistent across
the three datasets.

Selection of candidate variables and weights for the COBALT score

To identify promising variables for a COVID-specific mortality risk score, we sought those for which the
associated mortality changed significantly across the observed values of the variable. For categorical
variables this meant significant variation in mortality across categories, while for continuous variables it
meant significant variation across the 0-25%, 25-50%, 50-75%, and 75-100% percentile ranges.
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We created 100 random variants of Dataset 1 by first creating a bootstrap sample of the patients and then
sampling a single time point uniformly from within each patient’s record. The values of 48 variables
(Tables 1-2) were obtained at the sampled times, and the cumulative incidences of mortality across the
different levels of each variable (starting at the sampled times) were compared using Gray’s K-sample
tests for the cumulative incidence of a competing risk [17-18], stratifying by site of admission and treating
hospital discharge to home and hospital discharge to a facility as competing risks. Gray’s tests provide a
test statistic and p-value that quantify the difference in cumulative incidence among groups; the 48
variables were ranked according to this p-value. Only those sampled patients for whom the variable in
question had been measured were included in each test; we did not attempt to impute values or otherwise
interpret missing values.

The median cumulative incidences of mortality across quartiles/categories of each variable at 14 days
after the time of measurement were used to determine the score weights (the values added to the score for
each variable). The value for each quartile/category was multiplied by 10 and rounded to the nearest
integer; the weight for the lowest mortality category was set to zero.

Creation of the COBALT composite score

The top 20 variables identified by Gray’s tests were selected as potential score candidates. Using Dataset
2 and the score breaks and weights from Dataset 1, variables were added to the score one at a time. The
associations between (a) value of the score at admission, (b) maximum value of the score during
admission, and (c) mean value of the score during admission and final outcome (death = 1, other
outcomes = 0) were assessed using the area under the receiver operating characteristic curve (AUC). At
each stage, the remaining variable whose addition led to the greatest increase in AUC for the score
measured at admission was identified. It was added to the composite score only if (a) DeLong’s test
revealed a statistically significant (p<0.01) increase in AUC, (b) the absolute value of the AUC increased
by more than 0.005, and (c) DeLong’s test did not reveal a statistically significant decline in AUC for the
maximum or mean scores.

Evaluation of score performance and creation of mortality tables

The same three AUC calculations used in the score selection process were applied to Dataset 3 and used
to assess the performance of the COBALT score relative to SOFA, gSOFA, and CURB-65. Mortality
rates across the ranges of each of the four scores (COBALT, SOFA, qSOFA, CURB-65) were calculated
per hospital and for all patients using the combined dataset (Datasets 1-3) who had achieved an outcome
at the end of the study period; 4751 out of 4840 patients, or 98.2%, were included.

Software and libraries
All preprocessing of the raw electronic health record data was performed in Python (version 3.7.7). All

statistical analysis was done in R (version 3.6.3). The Gray tests were performed in R using the cmprsk
package [19].
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Results
Characteristics of the study population and dataset

Table 1 describes the baseline characteristics of all 4840 patients in our study population. The population
was 56.5% male and 43.5% female with a median (IQR) age at admission of 66.4 (54.9-77.8) years.
Patients self-reported race and ethnicity separately; 24.6% identified as white, 27.7% as Black, 4.9% as
Asian/Pacific Islander, and 39.7% as “other”. Most of the patients listing their race as “other” reported
Hispanic ethnicity; the study population was 27.8% Hispanic overall. There was good representation
across the five Mount Sinai hospitals, which are situated in different neighborhoods across Manhattan,
Queens, and Brooklyn. The most common comorbidities were hypertension (46.1%), followed by
cardiovascular disease (e.g. coronary artery disease, heart failure; 44.0%), chronic lung diseases (e.g.
asthma, chronic obstructive lung disease, emphysema; 43.5%), diabetes mellitus type 2 (31.3%), and
chronic kidney disease (17.3%). Most patients (53.3%) had never smoked, and only 4.4% were current
smokers. The majority did not require substantial oxygen support on admission: 41.9% were admitted on
room air and 46.5% on low-flow oxygen (nasal cannula or non-rebreather mask).

Parameter selection for the COBALT risk score

We considered 48 variables (labs, demographics, comorbidities, vital signs, oxygen support level,
vasopressors; see Table 2) for inclusion in the risk score. Of these, 36 (75%) showed statistically
significant (p<0.05) differences in the cumulative incidence of mortality across quartiles/categories. We
chose the top 20 of these for further exploration. We later removed creatinine and EGFR from
consideration because BUN, another measure of kidney function, showed a stronger association with
mortality. We likewise removed respiratory rate because it was correlated with ventilation status, which
was already represented by oxygen support level. Because so many variables were observed to impact
mortality, it is likely that multiple combinations of variables could be used to construct useful scores and
indeed, different combinations of variables often produced similar AUC values on Dataset 2 (data not
shown). We therefore focused our attention on those variables that were most readily available: those that
required no blood draw or were routine labs.

The final six variables selected for the COBALT score were Glasgow Coma Scale (“Coma” = “C”),
oxygen support level (“Oxygen” = “0”), BUN (“B”), Age (“A”), lymphocyte percentage (“L”), and
troponin (“T”). The COBALT score is similar in structure to SOFA and can be calculated using a simple
additive formula as shown in Table 3.

Performance of SOFA, gSOFA, CURB-65, and COBALT scores

A comparison of COBALT to SOFA, qSOFA, and CURB-65 is shown in Figure 2. The COBALT score
outperformed all three comparator scores regardless of whether the score used was the score at admission
(AUCs: 0.81 for COBALT, 0.77 for SOFA, 0.75 for CURB-65, 0.69 for qSOFA), the maximum score
over the patient’s admission (AUCs: 0.91 for COBALT, 0.87 for SOFA, 0.85 for CURB-65, 0.82 for
gSOFA), or the mean score throughout the admission (AUCs: 0.91 for COBALT, 0.87 for SOFA, 0.87 for
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CURB-65, 0.85 for gSOFA). The COBALT score significantly outperformed SOFA (p<0.001 by
DeLong’s test for admission, maximum, and mean scores).

Because oxygen support level showed the strongest association with mortality, we confirmed that the
COBALT score still performed well when only patients who were admitted on room air or low-flow
oxygen were considered. The ROC curves for scores calculated at admission in this patient subset are
shown separately in Figure 2. Performance declined slightly (AUCs: 0.80 for COBALT, 0.76 for SOFA,
0.74 for CURB-65, 0.67 for gSOFA) but the relative rankings of the four scores were consistent with
those in the overall population.

Score-specific mortality calibration plots for COVID-19

Because even highly predictive scores can be poorly calibrated [29], we estimated mortality separately at
each possible value of the COBALT, SOFA, qSOFA and CURB-65 scores (Figure 3). We also calibrated
all four scores separately by hospital, as the five hospitals within our health system are located in different
neighborhoods with different racial, ethnic, and socioeconomic compositions and have different baseline
levels of COVID-19 mortality (Figure S1).

Mortality for the COBALT score is generally low (less than 5%) for maximum scores 0-10, moderate
(5-25%) for maximum scores 11-18, high (25-75%) for maximum scores 19-24, and very high (greater
than 75%) for maximum scores greater than 24. The tightest calibration (lowest variation in mortality
among hospitals at each score level) occurred when the mean score was used. The COBALT score’s
nearest competitor, SOFA, performs well in terms of AUC but suffers from high variation in mortality at
low score ranges; there was no level of the SOFA score at which mortality was consistently below 5% in
this population. The CURB-65 score, despite its lower AUC, is more tightly calibrated, particularly when
used to assess mortality risk at the time of admission.

Discussion

In this study, we present a novel clinical tool, the COBALT score, which estimates the risk of mortality in
hospitalized COVID-19 patients with superior performance compared to three commonly-used mortality
risk scores. To our knowledge, this is the first report to evaluate and calibrate widely-used mortality risk
scores (SOFA, gSOFA, and CURB-65) in COVID-19. While the COBALT score outperforms these
scores in terms of predictive ability, we recognize that some health providers would prefer to use scores
with which they are already familiar. The calibration plots shown in Figure 3 should assist providers who
want to take this approach. While this calibration was internal to our health system, it provides a sense of
the mortality risk and variation in mortality at each score level and ensures that uncertainty in mortality
risk can be communicated simply and transparently, especially in pandemic settings.

Notably, the mortality cutoffs for SOFA, gSOFA and CURB-65 in this COVID-19 population differ
substantially in some cases from those in earlier published mortality tables. For example, Ferreira et al
report overall mortality of less than 10% for SOFA scores of 0-3 calculated at admission, whereas we
found mortality rates as high as 50% in this population. Similarly, the original reference for qSOFA [5]
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estimated a 3-14 fold increase in mortality for patients with qSOFA scores of 2-3 relative to those with
scores of 0-1. We found a more linear increase in mortality among different gSSOFA score levels in this
population, as well as considerable variation in mortality within each qSOFA score level. These findings
reflect the importance of recalibrating mortality estimates for scores when they are used in contexts
outside those in which they were originally validated.

Most of the variables strongly correlated with COVID-19 mortality, shown in Table 2, are consistent with
the findings of prior studies. For example, we identified several laboratory values as potential risk score
candidates, including lymphocyte percentage, D-dimer, troponin, lactic acid dehydrogenase (LDH), and
blood urea nitrogen (BUN), all of which have been independently documented as prognostic factors in
COVID-19 [11, 20-28]. However, several findings in Table 2 were unexpected, for example that Black
race, Hispanic ethnicity, and BMI, which have been widely reported as predictive of COVID-19
prognosis, were only weakly associated with mortality [31]. In part, this was because we stratified the
Gray tests by admission site; each of our five hospitals has a distinct racial and ethnic composition
reflective of the surrounding neighborhood, and the effect of these variables within sites is likely weaker
than that among them. Similarly, the effect of BMI was likely reduced because the majority of our
admitted patients were overweight or obese (IQR 24.6-32.7), and our variable selection algorithm
prioritized variables with distinct mortality patterns across quartiles. Still, it is interesting to note that
variables that have been conclusively demonstrated to lead to increased COVID-19 hospitalization rates
[32] do not necessarily lead to increased mortality once a patient is already in the hospital.

The fact that 36 out of the 48 variables we considered for our score showed significant individual
associations with mortality raises the possibility that a multiplicity of mortality risk scores could
potentially produce high predictive accuracy in COVID-19. Indeed, this is consistent with our observation
that no two existing COVID-19 risk scores are exactly alike; the statistical algorithms deployed have
chosen different variables in virtually all cases [12-16,30]. Our position is that, given this observation,
less attention should be paid to improving predictive accuracy and more should be paid to a score’s
practical aspects, such as calibration and ease of use. We have attempted to prioritize these concerns in
our approach here.

Our study has several strengths. First, the Mount Sinai Health System admitted approximately 17% of all
hospitalized COVID-19 patients in New York City during the first U.S. wave of the COVID-19 pandemic
(March-April 2020). With five hospitals in three different boroughs represented in this study, we expect
our results to be broadly representative of the clinical course of COVID-19 in hospital settings. Second,
our data-driven approach to score design is novel and could serve as the basis for creation of simple
mortality risk scores for other diseases. Third, the COBALT score can be calculated by hand at the
bedside and uses only clinical observations and basic labs, a significant asset to triage and prognostication
in resource-constrained settings. And finally, in addition to evaluating the score’s predictive performance,
we also calibrated the score in our population of 4840 patients, both as one population as well as within
each of five different sites of admission.

As a retrospective study within a single health system, our study also has some limitations. First,
documentation of all kinds was inconsistent during the first wave of COVID-19, and the environments at
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different hospitals varied substantially. While it is unlikely that a laboratory result or medication
administration was missed, inconsistencies in flowsheet documentation during this period could mean that
the timings of different modes of oxygen administration were not always accurately captured. Second, the
score may need to be calibrated separately when used outside hospital settings. For example, COBALT
mortality thresholds reported here may differ when applied to skilled nursing facilities or to health
systems in countries outside the U.S. Finally, we were unable to include two health system hospitals
(Mount Sinai Beth Israel and Mount Sinai South Nassau) because, as of the time of this study, they did
not yet use the Epic electronic health record system.

The COBALT score provides an easy-to-use, data-driven bedside tool to assess the risk of mortality in
COVID-19 patients and outperforms other hospital mortality risk scores currently in widespread use. In
addition, our analysis and recalibration of existing scores is, we believe, unique in the COVID-19
literature. We hope our score and the approach we took to design it will prove useful to our colleagues in
the United States and throughout the world who continue to fight the COVID-19 pandemic.
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TABLES AND FIGURES

TABLE 1: Characteristics of study population. Reported laboratory values and vital signs are those

collected closest to the patient’s time of admission.

Characteristic

Age (years) — median (IQR)
Sex — No. (%)

Male

Female

Race — No. (%)

White
Black
Asian/Pacific Islander
Other

Unknown

Ethnicity — No. (%)

Hispanic
Non-Hispanic

Unknown

Hospital of Admission

Hospital 1 (quaternary care facility)
Hospital 2 (community hospital)
Hospital 3 (community hospital)
Hospital 4 (tertiary care hospital)

Hospital 5 (community hospital)

Insurance Status

Medicaid
Medicare
Private
Self-Pay
Other

Unknown

Comorbidities — No. (%)

Hypertension

Value
(n = 4840)

66.4 (54.9, 77.8)

2733 (56.5)
2107 (43.5)

1190 (24.6)
1342 (27.7)
238 (4.9)
1919 (39.7)
151 (3.1)

1345 (27.8)
2861 (59.1)
634 (13.1)

1762 (36.4)
821 (17.0)
800 (16.5)
561 (11.6)
896 (18.5)
751 (15.5)
1948 (40.2)
1089 (22.5)
109 (2.3)
392 (8.1)
551 (11.4)

2232 (46.1)
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- Cardiovascular diseases 2131 (44.0)
- Coronary artery disease 821 (17.0)
- Heart failure 704 (14.5)
- Chronic lung diseases 2107 (43.5)
- Asthma 419 (8.7)
- COPD/Emphysema 315 (6.5)
- Diabetes mellitus type 2 1513 (31.3)
- Chronic kidney disease 839 (17.3)
- Bleeding or clotting disorder 706 (14.6)
- Cerebrovascular disease 532 (11.0)
- Cancer 510 (10.5)
- Liver disease 239 (4.9)
- Pregnancy 156 (3.2)
- Prior transplant 129 (2.7)
- Human immunodeficiency virus (HIV) 99 (2.0)
Smoking status — No. (%)
- Current 214 (4.4)
- Former 1035 (21.4)
- Never 2580 (53.3)
- Unknown 1011 (20.9)
Baseline vitals — Median (IQR; number
missing)
- Body mass index (BMI) 28.0 (24.6-32.7; 927)
- Diastolic blood pressure (mmHg) 73.0 (65.0-82.0; 4)
- Systolic blood pressure (mmHg) 128.0 (114.0-144.0; 4)
- Glasgow coma score 15.0 (12.0-15.0; 1932)
- Mean arterial pressure (MAP) 90.0 (81.0-100.0; 423)
- Oxygen saturation (%) 95.0 (92.0-98.0; 4)
- Heart rate (bpm) 95 (82-109; 3)
- Respiratory rate 20 (18-22; 6)
- Temperature (°F) 98.6 (98.0-99.9; 5)
Baseline laboratory values — Median
(IQR; number missing)
- Albumin (g/dL) 3.2 (2.8-3.5; 166)
- Bilirubin (mg/dL) 0.6 (0.4-0.8; 166)

- Blood urea nitrogen (mg/dL) 19 (12-35; 79)
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- Creatinine (mg/dL)
- Creactive protein (mg/L)
- D-Dimer (ng/mL)

- Estimated glomerular filtration rate
(EGFR)

- Ferritin (ng/mL)

- Hemoglobin (g/dL)

- Interleukin-6 (IL6; pg/mL)

- Lactic acid dehydrogenase (LDH; U/L)

- Lymphocyte percentage (%)

- Pa02 (arterial; mmHg)

- Platelets (x10%/ulL)

- Procalcitonin (ng/mL)

- Troponin (ng/mL)

- White blood cell count (x10%/uL)
Baseline risk scores — Median (IQR)

- SOFA

- gSOFA

- CURB-65
Baseline oxygen requirement — No. (%)

- Room air

- Low flow / non-rebreather

- High flow O2

- Non-invasive ventilation (NIV)
(e.g. CPAP/BIPAP)

- Invasive mechanical ventilation (IMV)
- NA/No record

1.04 (0.80-1.64; 78)
116.7 (56.1-203.4; 671)
1.71 (0.91-3.53; 865)
60 (36-60; 78)

750 (340-1800; 723)
13.2 (11.7-14.5; 32)
70.9 (34.0-144.2; 2222)
427 (319-584; 852)
12.1 (7.8-18.6; 74)

87 (64-131; 3527)
211 (160-280; 36)
0.19 (0.08-0.66; 980)
0.020 (0.010-0.065; 537)
7.6 (5.6-10.6; 32)

1(0-3)
0 (0-1)
1(1-2)

2029 (41.9)
2248 (46.5)
74 (1.5)
200 (4.1)

228 (4.7)
61 (1.3)
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TABLE 2: Tests of variables’ association with mortality and selection of COBALT candidate
variables. The cumulative incidences of mortality among the 0-25%, 25-50%, 50-75%, and 75-100%

percentiles of each variable were compared. The variables selected for further evaluation are highlighted

in gray. Availability is summarized as follows: 1 = no blood required; 2 = blood required, routine lab; 3 =

blood required, specialized lab.

Percentiles Test P-value
Parameter (25%, 50%, 75%) Stati.stic (Median) Availability
(Median)
1 Oxygen support level (0-4) Categorical 392.7 <0.0001 1
2 Blood urea nitrogen (mg/dL) 12.0, 20.0, 41.0 326.7 <0.0001 2
3 Lymphocyte percentage (%) 7.8,13.2, 20.7 266.9 <0.0001 2
4 | Troponin (ng/mL) 0.010, 0.020, 0.073 252.7 <0.0001 2
5 Respiratory rate 18, 18, 20 250.7 <0.0001 1
6 Glasgow Coma Scale (GCS) 9, 14,15 227.4 <0.0001 1
7 Creatinine (mg/dL) 0.71,0.96, 1.63 218.8 <0.0001 2
8 EGFR 36.0, 60.0, 60.0 212.3 <0.0001 2
9 | White blood cell count (x1000/uL) 5.6,8.0,11.3 199.2 <0.0001 2
10 | Vasopressor administration Binary 153.3 <0.0001 1
11 | Procalcitonin (ng/mL) 0.07, 0.19, 0.77 152.6 <0.0001 3
12 | CRP (mg/L) 42.1,94.8, 182.5 152.5 <0.0001 3
13 | Age (years) 55.2, 66.0, 78.2 147.0 <0.0001 1
14 | LDH (U/L) 316.0, 414.5, 566.0 144.0 <0.0001 3
15 | Albumin (g/dL) 24,28,32 122.2 <0.0001 3
16 | D-Dimer (ug/mL) 0.90, 1.85, 3.96 118.3 <0.0001 3
17 | Interleukin-6 (pg/mL) 30.1, 65.6, 135.3 82.7 <0.0001 3
18 | Cardiovascular disease Binary 78.6 <0.0001 1
19 | Heart rate (bpm) 73, 84, 96 77.0 <0.0001 1
20 | Diastolic blood pressure (mmHg) 62,70,78 56.9 <0.0001 1
21 | Ferritin (ng/mL) 367.8, 782.0, 1792.6 49.2 <0.0001 3
22 | Oxygen saturation (%) 94, 96, 98 49.2 <0.0001 1
23 | Systolic blood pressure (mmHg) 110, 123, 137 31.9 <0.0001 1
24 | Platelets (x10%/ulL) 170.8, 235.0, 325.0 31.6 <0.0001 2
25 | PaO2/FiO2 85.8,145.7, 245.0 29.1 <0.0001 3
26 | Coronary artery disease Binary 24.7 <0.0001 1
27 | Hemoglobin (g/dL) 10.4,12.2,13.6 23.8 <0.0001 2


https://doi.org/10.1101/2020.08.31.20185363
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.08.31.20185363; this version posted September 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

18

28 | Temperature (°F) 97.5,98.2, 99.0 225 <0.0001 1
29 | Bilirubin (mg/dL) 0.4,0.6,0.8 20.0 0.0002 2
30 | Hypertension Binary 13.3 0.0003 1
31 | Heart failure Binary 12.5 0.0004 1
32 | Chronic kidney disease Binary 6.4 0.012 1
33 | History of smoking Binary 6.0 0.014 1
34 | Diabetes mellitus Il Binary 4.8 0.028 1
35 | Cancer/malignancy Binary 4.7 0.031 1
36 | Hispanic Binary 4.6 0.033 1
37 | Cerebrovascular disease Binary 3.0 0.083 1
38 | Prior transplant recipient Binary 3.0 0.086 1
39 | Black race Binary 2.7 0.10 1
40 | Emphysema/COPD Binary 1.6 0.21 1
41 | Chronic lung disease Binary 1.1 0.29 1
42 | Liver disease Binary 0.9 0.34 1
43 | Sex (Male/Female) Binary 0.7 0.40 1
44 | HIV Binary 0.7 0.40 1
45 | Body mass index 24.6, 28.0, 32.6 2.9 0.41 1
46 | History of bleeding/clotting disorder Binary 0.6 0.43 1
47 | Current smoker Binary 0.6 0.44 1
48 | Asthma Binary 0.6 0.44 1

Abbreviations: COPD chronic obstructive pulmonary disease, CRP C-reactive protein, EGFR estimated
glomerular filtration rate
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TABLE 3: Calculation of the COBALT score. An example calculation is shown for a [fictitious]
65-year-old patient who is on high flow oxygen with BUN of 18.0 mg/dL, troponin 0.020 ng/mL,
lymphocyte percentage 14%, no cognitive impairment (GCS=15).

Parameter Units Criterion Add Example
Calculation
Oxygen delivery Room air 0
method Nasal cannula / 2
non-rebreather mask
High-flow nasal cannula 4 4
CPAP/BiPAP 7
Invasive mechanical 7
ventilation (IMV)
Blood Urea Nitrogen mg/dL <12.0 or Unknown 0
(BUN) 12.1-20.0 1 1
20.1-40.0 3
>40.0 6
Troponin ng/mL <0.010 or Unknown 0
0.011-0.020 2 2
0.021-0.073 3
>0.073 6
Lymphocyte % >20.1 or Unknown 0
percentage 13.3-20.1 1 1
7.9-13.2 3
<7.8 5
Glasgow Coma 15 or Unknown 0 0
Scale (GCS) 14 1
7-13 3
<6 7
Age years <55 or Unknown 0
55-64 2
65-79 3 3
>80 5
Range: TOTAL = 11
0-36
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FIGURE 1: Flow chart of study design.
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Mount Sinai Health System
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28, 2020
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FIGURE 2: Comparison of AUC values for each mortality score for outcomes of death vs. other.
The top two panels show the performance of scores on admission for (left) all patients and (right) those
admitted on low-flow supplemental oxygen or room air only.
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FIGURE 3: Mortality estimates in a COVID-19 population. Mortality estimates are shown at each
possible score value for the (a) COBALT score (range: 0-36), (b) SOFA score (range: 0-24), (¢) gSOFA
score (range: 0-3), and (d) CURB-65 score (range: 0-5). Each colored dot represents the mortality at one
score value at one of five hospitals. The dark gray dots represent the overall mortality at each score value

in our entire patient population (n=4840). A dot is only present if sufficient patients (n>30) were present

for that score value and hospital. Mean scores are usually non-integer values and are represented by their

lower bounds (e.g. a mean score of 2.2 would be represented by a value of 2 in the graphs).

(a)

Mortality (Percent)

Mortality (Percent)

75

50

25

100

75

50

25

Score on Admission

%
..
e ©
® [ &l
°
¢ s ®
R ) 2
e
0%
0
ot
028"
P o)
0 10 20 30
Score on Admission
[ ]
)
® )
=¥
[ ]
[ ]
o ®
L]
0 5 10 15

Maximum Score

°®
e® o
e o
°
°
°
e
°
°
® o0
[ ]
P
oo‘cd"“"
0 10 20 30

COBALT Score

Maximum Score

0 5 10 15
SOFA Score

Mean Score

° Hospital
, Hospital 1
— Hospital 2
Hospital 3
Hospital 4
Hospital 5

-0° ® All Hospitals

10 20 30

Mean Score

Hospital
e ® Hospital 1
Hospital 2
® Hospital 3
Hospital 4
Hospital 5
® All Hospitals


https://doi.org/10.1101/2020.08.31.20185363
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.08.31.20185363; this version posted September 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

23
(c)
Score on Admission Maximum Score Mean Score
100
[ ]
Py Hospital
T 75 ¢ e Hospital 1
o ] ° 4 Hospital 2
o [ ]
~ 50 ® Hospital 3
2
S . ° Hospital 4
= & .
Eo o5 © ® L Hospital 5
L i ° ® All Hospitals
]
0
0 1 2 3 0 1 2 3 0 1 2 3
qSOFA Score
Score on Admission Maximum Score Mean Score
100
° Hospital
= I ]
c 75 ® Hospital 1
o) ® Hospital 2
°
o ° ¢ :
B o : ° ® Hospital 3
2z ° °
T ° Hospital 4
5 ? Hospital 5
° ospita
S 25 i P
° ° ® All Hospitals
M L ] [ ]
0 ® e
0 ;! 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

CURB-65 Score


https://doi.org/10.1101/2020.08.31.20185363
http://creativecommons.org/licenses/by-nc/4.0/

