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Abstract 16 

Older age is a strong risk factor for several diseases, including cancer. In cancer, older 17 

age is also frequently associated with a more aggressive, treatment-refractory tumor phenotype. 18 

The etiology and biology of age-associated differences among cancers are poorly understood.  19 

To address this knowledge gap, we sought to delineate the differences in tumor molecular 20 

characteristics between younger and older patients across a variety of tumor types. We found that 21 

tumors in younger and older patients exhibit widespread molecular differences. First, we 22 

observed that tumors in younger individuals, unlike those in older ones, exhibit an accelerated 23 

molecular aging phenotype associated with some hallmarks of premature senescence. Second, 24 

we found that tumors from younger individuals are enriched for driver gene mutations resulting 25 

in homologous recombination defects. Third, we observed a trend towards a decrease in immune 26 

infiltration and function in older patients and found that, immunologically, young tumor tissue 27 

resembles aged healthy tissue. Taken together, we find that tumors from young individuals 28 

possess unique characteristics compared to tumors in older individuals, which can potentially be 29 

leveraged for differential therapeutic strategies.  30 
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Introduction 31 

Aging refers to the decline in physiological functions with time, resulting in an increased 32 

risk of disease. Although advances in healthcare have extended lifespan substantially, cancer 33 

continues to be a significant contributor to global mortality. The United States projects 1.8 34 

million new cancer cases and 600,000 cancer-related deaths in 2020(Siegel et al., 2020). Several 35 

diseases, including cancer, are typically diagnosed in older populations. Older patients frequently 36 

have worse outcomes. The molecular correlates of such age-associated differences are not 37 

known. 38 

Moreover, the incidence of cancer in young adults is increasing at an alarming rate 39 

(Ahnen et al., 2014; Anders et al., 2009; Ben-Aharon et al., 2019). In the United States, one in 40 

twenty-nine males and one in seventeen females under the age of 49 are likely to develop cancer 41 

as per a recent report(Siegel et al., 2020). Tumors in the breast, colon, rectum, genital tract, skin, 42 

connective tissue, and thyroid gland are the most common in this age group (Bleyer et al., 2008; 43 

Jemal et al., 2010; Siegel et al., 2020).  44 

It is unclear whether tumors in younger and older adults have distinct biology. Breast 45 

cancers in young adults are typically larger, often harbor the triple-negative phenotype, and are 46 

associated with mutations in BRCA1, BRCA2, and TP53 (Anders et al., 2009; Lalloo et al., 47 

2006). Colorectal cancers in young adults may have a high degree of microsatellite instability 48 

(MSI) and are enriched for mutations in MYCBP2, BRCA2, PHLPP1, TOPORS, and ATR 49 

compared to older patients(Tricoli et al., 2018). While several lines of evidence suggest that 50 

cancers in young adults show unique histology and survival heterogeneity, their biology has not 51 

been well characterized (Bleyer et al., 2008; Keegan et al., 2016).  52 
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In this study, we conduct an unbiased analysis of primary tumors in The Cancer Genome 53 

Atlas (TCGA) to understand the biology of cancers in younger vs. older individuals. 54 

Furthermore, we sought to elucidate genomic, epigenomic, and transcriptomic aberrations in 55 

younger and older patients and contrast them with healthy tissue. Understanding the unique 56 

biology of tumors in younger and older patients may lead to personalized therapeutic strategies 57 

and the development of additional biomarkers.  58 
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Results 59 

Identification of age-associated cancers 60 

We first sought to identify cancers with significant age-dependent outcomes in TCGA, 61 

reasoning that the biology underlying the difference in outcomes may be more acute and 62 

interpretable in such cancers compared to cancers with no age-associated outcome differences. 63 

These cancer types were identified by a two-step filtration process involving a Cox-proportional 64 

hazards model as well as differential gene expression of primary tumors. First, tumor types in 65 

which the overall survival (OS) of a patient stratified by age at diagnosis were selected by Cox 66 

regression using age at diagnosis as a covariate. This identified thyroid carcinoma (THCA), low-67 

grade gliomas (LGG), acute myeloid leukemia (LAML), uterine corpus endometrial carcinoma 68 

(UCEC), glioblastoma multiforme (GBM), breast invasive carcinoma (BRCA), bladder 69 

urothelial carcinoma (BLCA), colon adenocarcinoma (COAD), kidney renal cell carcinoma 70 

(KIRC), skin cutaneous melanoma (SKCM), ovarian carcinoma (OV) and head and neck 71 

squamous cell carcinoma (HNSC) as tumor types in which overall survival was inversely related 72 

to age (FDR < 0.01, Fig. 1A, Supplementary Table 1). We divided samples from each of these 73 

tumor types into quartiles based on their age of diagnosis. The first and fourth quartile served as 74 

younger and older age groups, respectively (Supplementary Fig. 1A, Supplementary Table 2).  75 

Next, we identified tumors with an age-dependent molecular phenotype by differential gene 76 

expression (DGE) of younger and older groups. Tumor types that had greater than 1% of genes 77 

differentially expressed between the age groups were deemed to show an age-associated 78 

molecular phenotype (FDR < 0.05, Fig. 1B) and were selected for all further analyses. Tumor 79 

types in this group included BRCA, LGG, UCEC, OV, THCA, and COAD.  80 
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We wondered whether younger age groups would be associated with early-stage tumors. 81 

To our surprise, we did not find any association between age groups and tumor stage in most 82 

tumor types of interest; THCA was the only tumor type that displayed this trend. In THCA, 83 

Stage I tumors were associated with younger patients, while higher stages were associated with 84 

older patients (FDR < 0.05, Supplementary Fig. 1B). 85 

 86 

Aging drives proliferation and immune dysfunction in cancer 87 

 We sought to explore the association between age and functional aspects of tumor 88 

progression. To do this, we correlated gene expression levels of commonly used tumor 89 

progression markers (MYBL2, TOP2A, PLK1, CCND1, PCNA, and MKI67) with patient age. We 90 

found that in most tumor types, higher gene expression levels of these markers were inversely 91 

correlated with age, that is, more highly expressed in younger patients, indicating that tumors 92 

from younger patients may be more aggressive than those in older ones (FDR < 0.05, 93 

Supplementary Fig. 1C). To further explore this, we sought out to obtain a more detailed 94 

understanding of transcriptional changes associated with aging in cancer using differential gene 95 

expression. Of the tumor types we analyzed, we found that the BRCA, LGG, and UCEC had the 96 

most differentially expressed genes between younger and older patients (Fig. 1B). In line with 97 

the greater expression of proliferation markers in young patients, we found that gene set 98 

enrichment analysis of young vs. old DGE results for KEGG pathways associated with tumor 99 

growth linked younger patients to a proliferative phenotype (FDR < 0.05, Supplementary Fig. 100 

1D). 101 

Overall, we found that genes differentially expressed with aging show a high degree of 102 

overlap across tumor types, suggesting that at least some of the biology underlying aging 103 
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processes in cancer is consistent across tissue types. Using pairwise Fisher’s exact tests, we 104 

found that there is a greater overlap between overexpressed genes in younger patients across 105 

tumor types as compared to older ones (FDR < 0.05, Supplemental Fig. 1E). Seventeen genes 106 

were over-expressed in younger cohorts across more than three tumor types. These genes 107 

included ZNF518B, EDNRA, GMEB1, PPP1R10, and FERMT1 and have been linked to tumor 108 

growth, metastasis and poor survival in a variety of cancers(An et al., 2019; Gimeno-Valiente et 109 

al., 2019; Kavela et al., 2013; Laurberg et al., 2014; Liu et al., 2017). In contrast, we found ten 110 

genes to be over-expressed in old patients across at least three out of six tumor types. These 111 

include COQ3, EYA4, FER1L5, HOXB5, SYS1 and TSNAX and have been associated with a 112 

variety of cellular functions including mitochondrial function, tumorigenesis, memory formation 113 

and protein trafficking(Behnia et al., 2004; Cannon et al., 2005; Jonassen and Clarke, 2000; Lee 114 

et al., 2018). Altogether these findings indicate that primary tumors in younger patients have 115 

increased expression of tumor proliferation, progression, and metastasis genes. We hypothesized 116 

that such tumors while having better outcomes than in older patients, are, in fact, more 117 

aggressive but perhaps restrained by a more functional immune system. 118 

To explore this hypothesis, we conducted gene set enrichment analyses of differential 119 

expression results. This analysis showed that younger patients were enriched for pathways 120 

associated with immune response in BRCA, THCA, OV, and UCEC cohorts (FDR < 0.05, Fig. 121 

2A). Interestingly, we found that older patients in the LGG and COAD cohorts displayed the 122 

opposite pattern and were enriched for immune-associated pathways compared to younger 123 

patients, suggesting that aging-associated effects were tumor type specific. It is possible that this 124 

enrichment was associated with inflammaging rather than anti-tumor immunity. Inflammaging 125 

refers to inflammation commonly associated with aging and is considered to be one of the 126 
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several evolutionarily conserved pillars of senescence (Franceschi et al., 2018; Montecino-127 

Rodriguez et al., 2013; Nikolich-Žugich, 2018). 128 

Next, we aimed to understand whether the previously mentioned transcriptional changes 129 

reflected aging specific to cancer or were simply a consequence of healthy aging. To address this 130 

question, we compared young vs. old differential gene expression results from TCGA with the 131 

results from an identical analysis performed on healthy tissue (sourced from the Genotype-Tissue 132 

Expression project (GTEx) project). This analysis allowed us to identify tissue-type specific 133 

genes associated with aging (Supplementary Fig. 1F). EYA4, a gene associated with hearing 134 

loss and cardiomyopathy(Abe et al., 2018), was over-expressed in older individuals regardless of 135 

cancer status in four out of six tissue types. Similarly, HENMT1, NOA1, and ZNF518B were 136 

over-expressed in younger individuals in three out of six tissue types. These genes have been 137 

linked to piRNA methylation(Begik et al., 2020), mitochondrial function(Kolanczyk et al., 138 

2011), and tumorigenesis(Gimeno-Valiente et al., 2019). 139 

We included the METABRIC dataset (breast cancer) and further investigated these 140 

results at the level of activated pathways using GSEA. This analysis showed that the relationship 141 

between aging in cancer and healthy aging was tumor type-dependent (Fig. 2B). We found that 142 

in breast cancer, immune pathways (allograft rejection, IL-2 signaling, inflammatory response, 143 

interferon ɑ/ɣ response, complement, IL-6 signaling, apoptosis, and TNFɑ signaling) were 144 

overall upregulated in older healthy donors and, as shown above, in young cancer patients (FDR 145 

< 0.05, Fig. 2B). While thyroid cancer showed a similar phenotype of pathway activation, other 146 

tumor types did not display this pattern. Thus, patterns of pathway activation suggest that 147 

younger breast and thyroid cancer patients resemble immunological phenotypes of aged 148 

corresponding healthy tissue, indicating dysregulation of the aging process in cancer (Fig. 2B). 149 
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 To obtain a more granular understanding of immune function, we correlated immune cell 150 

infiltration (estimated using CIBERSORT(Newman et al., 2015)) with age tumor diagnosis. We 151 

found that the correlation between age and specific cell types varied between tumor types (Fig. 152 

2C). While we did not observe any strong correlations involving specific cell populations, we 153 

found that immune cells with anti-tumor potential were predominantly associated with younger 154 

populations. Indeed we found that CD8+ T cells were associated with younger THCA and UCEC 155 

patients. Similarly, CD4+ resting memory T cells were associated with younger BRCA and OV 156 

patients. M1 macrophages and antibody-secreting plasma cells were linked to younger BRCA 157 

patients (FDR < 0.05). Interestingly, older BRCA patients showed an increase in M2 158 

macrophages, and LGG patients were associated with CD8+ T cells (FDR< 0.05). Memory B 159 

cells were associated with older patients in BRCA and UCEC (FDR < 0.05). While the role of B 160 

cells in cancer is tumor-type dependent and remains controversial(Garaud et al., 2019; Zhang et 161 

al., 2016), M2 macrophages are one of the major immunosuppressive species in the tumor 162 

microenvironment(Pyonteck et al., 2013). However, increased T cell infiltration has been 163 

unequivocally shown to result in a more robust anti-tumor response and better prognosis in 164 

multiple tumor types(Hodi et al., 2010; Le et al., 2015; Topalian et al., 2012). These data are 165 

concordant with increased enrichment of immune infiltrating cells in young patients. 166 

 Taken together, we observed that several genes associated with progression, metastasis, 167 

and poor survival outcomes are associated with primary tumors from younger patients. 168 

Furthermore, we show that while immune pathway enrichment with aging occurs in a tumor-type 169 

specific manner, younger patients typically may harbor a more robust immune response in the 170 

tumor microenvironment. This appears to balance the effect of aggressive gene expression 171 

profiles (Supplementary Fig. 1D) found in these patients.  172 
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 173 

Functional analysis of age-associated DNA methylation marks 174 

Most mammalian cells undergo global loss of DNA methylation marks and other 175 

epigenetic modifications with aging, which consequently result in transcriptional imbalances(Sen 176 

et al., 2016). We hypothesized that a methylation signature of aging would exist in tumors as 177 

well. To test this, we identified tumor type-specific differentially methylated genes for the age 178 

groups of interest (see Methods). We found that LGG and BRCA had the highest number of 179 

differentially methylated genes (Supplemental Fig. 1G). Interestingly, a high percentage of 180 

genes were hypermethylated in older patients from the COAD, THCA, and BRCA cohorts 181 

(Supplemental Fig. 1G). 182 

As expected, we found a robust association between hypomethylated and over-expressed 183 

genes (Fig. 2D). This association was strongest in genes over-expressed in younger patients, 184 

where all tumor types showed significant overlaps with hypomethylated genes (FDR < 0.05, Fig. 185 

2D). In contrast, there were fewer overlaps between DNA hypomethylation and gene expression 186 

of genes that were over-expressed in older populations, where only OV showed this trend. 187 

We created gene lists representing the age-stratified (young or old) tumor-type specific 188 

intersection of hypomethylated and over-expressed genes. Next, we conducted Reactome 189 

pathway enrichment analysis(Yu and He, 2016) of these gene sets to understand epigenetically 190 

driven alterations. We found that gene lists from old LGG, THCA, and UCEC patients were 191 

enriched for few pathways (phases in mitosis, mTORC signaling, glycosylation), while the gene 192 

list from younger BRCA patients, but not older BRCA patients, was enriched for multiple 193 

pathways (Supplementary Table 3). Several pathways associated with the gene list obtained from 194 

young breast cancer patients were linked to senescence (senescence associated secretory 195 
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phenotype, cellular senescence, oxidative-stress induced senescence), epigenomic 196 

reprogramming (HDACs deacetylate histones, HDMs demethylate histones, DNA methylation), 197 

oncogenic signaling (Wnt signaling), and DNA damage response (DNA double-strand break 198 

response) (Fig. 2E).  These features describe aging imbalance and oncogenic processes, which 199 

may, in part, explain the aggressiveness of tumors from younger breast cancer patients. 200 

Taken together, we show that genes that are over-expressed in younger cancer patients 201 

may be epigenetically controlled. Furthermore, epigenetically controlled pathways associated 202 

with young breast cancer patients, but not other cancers, are enriched for senescence, suggesting 203 

dysregulated aging in the tumor. 204 

 205 

Tumors from young patients exhibit accelerated molecular aging and are senescent 206 

To understand the extent of aging-imbalance, we characterized the molecular age of a 207 

tumor in terms of the gene expression and DNA methylation (DNAm) profiles. We estimated the 208 

DNAm age from BRCA, LGG, UCEC, THCA, and COAD TCGA cohorts (Supplementary 209 

Table 4) and found a weak correlation with chronological age (R = 0.12, p = 6.6x10-8) in primary 210 

tumor samples (Fig. 3A). We did not estimate the DNAm age of the OV cohort since there were 211 

not enough samples for statistical analysis. Interestingly, the DNAm age of healthy normal 212 

adjacent tissue from TCGA (NAT) showed a high correlation with actual patient age (R = 0.79, p 213 

< 2.2x10-16), suggesting that aberrant epigenetic landscape of the tumor alters its epigenetic age. 214 

By comparing the donor age with DNAm age, we found that tumors from young and middle-215 

aged patients displayed an accelerated epigenetic age phenotype when compared to NAT (Fig. 216 

3B). However, tumors from older patients did not display this phenotype as prominently, where 217 

epigenetic age and actual age were much closer, suggesting that epigenetic age acceleration is 218 
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observed in younger populations. These results are in line with previous work, which showed 219 

that very young breast cancer patients had accelerated epigenetic ages(Oltra et al., 2019). Indeed, 220 

consistent with the findings of Horvath, 2013, apart from LGG, most tumor types tested 221 

exhibited the trend of reduced age acceleration upon aging (Fig. 3C). 222 

After observing this phenotype in DNA methylation, we aimed to recapitulate these 223 

findings in gene expression data. In order to do so, we used the framework set up by Ren and 224 

Kuan, 2020. Similar to the DNAm age calculator, Ren & Kuan have trained tissue-type specific 225 

age predictors for RNA-Seq data. We imputed RNA age using these tissue-specific models for 226 

BRCA, COAD, THCA, and UCEC (Supplementary Table 5). The analysis was limited to these 227 

tumor types because Ren & Kuan do not provide regression coefficients for other tissue types, or 228 

because there were no healthy samples in our dataset. Similar to the DNAm age calculator, the 229 

RNA age for healthy tissue correlated with chronological age much better than tumor tissue 230 

(Supplementary Fig. 2). Interestingly, we observed a similar trend of reduced age acceleration 231 

upon aging (p < 0.05, Fig. 3D). While we did not observe accelerated aging in tumors from 232 

young patients (potentially due to sample size), tumors from old patients had reduced age 233 

acceleration when compared with matched healthy tissue (p < 0.05, Fig. 3E). 234 

Next, we sought to further examine accelerated aging at the transcriptional level in breast 235 

cancer using gene signatures of aging. We focused this analysis on breast cancer since four 236 

unique datasets (TCGA-BRCA tumor, TCGA-BRCA normal tissue, METABRIC, and GTEx 237 

breast tissue) were available to us. We calculated the transcriptional age of all samples using 238 

single sample gene set enrichment analysis (ssGSEA) enrichment of genes upregulated with 239 

aging in primary human fibroblasts (mSigDB M8910). We found that younger breast cancer 240 

patients have an older tumor phenotype compared to chronologically older patients in the 241 
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TCGA-BRCA and METABRIC datasets (p < 0.05, Fig. 3F). In contrast, healthy breast tissue 242 

samples obtained from GTEx and TCGA do not display a transcriptional age acceleration 243 

phenotype. 244 

In order to assess these changes in other tumor types, we used differential pathway 245 

enrichment signals from an ssGSEA-based analysis. To do so, we estimated ssGSEA enrichment 246 

scores for younger and older patients across tumor types independently and subsequently 247 

calculated differential enrichment signals using a t-test. Similar to immune pathway activation 248 

(Fig. 2A), we found that pathways associated with aging and senescence show tumor-type 249 

specific patterns (Fig. 3G). Interestingly, younger BRCA patients were associated with almost 250 

all senescence and aging pathways we could find in MSigDB. Additionally, younger THCA 251 

patients were associated with cellular senescence, senescence associated secretory phenotype, 252 

oncogene-induced, oxidative stress-induced, and telomere stress-induced senescence along with 253 

several aging-related pathways (FDR < 0.05). Similarly, younger OV patients had a greater 254 

enrichment score for stress induced premature senescence than old ones (FDR < 0.05). In 255 

contrast, LGG was the only tumor type in which these pathways were differentially associated 256 

with older patients. 257 

Taken together, we show that molecular age acceleration and senescence are associated 258 

with younger patients, rather than older. Since some senescent phenotypes have been shown to 259 

promote tumor growth (Fane and Weeraratna, 2020), we show that aggressive tumor phenotypes 260 

may be explained, in part, by defunct cellular pathways controlling senescence. 261 

 262 

Age-associated mutational profiles 263 
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The majority of human cancers are caused by the sequential alteration of several genes 264 

over the course of multiple years(Vogelstein et al., 2013). We compared somatic mutations 265 

between tumors from younger and older patients in order to understand age-associated 266 

mutational patterns. The most commonly mutated genes in cancers with age-dependent outcomes 267 

were TP53 (39%), PIK3CA (23%), APC (13%), and PTEN (13%) (Fig. 4A). While all variants in 268 

a cancer driver genes do not have an equal impact in tumorigenesis, there is an increased 269 

probability of tumor growth when driver genes carry a larger number of variants(Carter et al., 270 

2009; Torkamani and Schork, 2008). Interestingly, younger patients were enriched for mutations 271 

in driver genes (TP53, ATRX, KMT2C, ARID1A) with more than one variant (FDR < 0.05, 272 

Fisher’s Exact Test). In line with previous research(Chalmers et al., 2017), we found that older 273 

patients had a higher tumor mutation burden (TMB) in most age-associated cancers (FDR < 0.05, 274 

Fig. 4B).  275 

Since mutations in multiple driver genes are associated with aggressive clinical features, 276 

we hypothesized that tumors from young patients might be enriched for driver mutations, 277 

contributing to their aggressive phenotype. In order to test this hypothesis, we stratified tumor 278 

type-specific driver mutations (Bailey et al., 2018) by age groups. We found that tumor-type 279 

specific nonsynonymous driver gene mutations, with the exception of EGFR in LGG, are more 280 

common in younger patients from the UCEC and LGG TCGA cohorts (FDR < 0.005, Fig. 4C), 281 

suggesting once more that younger patients, despite their better outcome, have intrinsically more 282 

aggressive tumors, at least in some tumor types. Younger LGG patients were highly enriched for 283 

mutations in TP53, ATRX, and IDH1, and younger UCEC patients were enriched for PTEN, 284 

ATRX, CTCF, BRCA2, RPL5, and FAT1 in addition to other genes (Supplementary Table 6). 285 

Similarly, younger breast cancer patients in the METABRIC dataset were enriched for TP53 286 
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mutations, while older patients were enriched for PIK3CA mutations (Supplemental Fig. 3A). 287 

However, we could not detect these associations in the TCGA-BRCA dataset. Additionally, 288 

younger UCEC patients were enriched for mutations in DNA damage response genes, suggesting 289 

homologous recombination defects (Supplemental Fig. 3B). Furthermore, we report that older 290 

UCEC patients are enriched for the high copy number phenotype from integrative genomic 291 

clusters published by Getz et al., 2013 (FDR < 0.0001, Fig. 4D). 292 

Next, we stratified UCEC variants by type to better understand functional alterations in 293 

younger patients. We found that younger UCEC patients were enriched for frameshift insertions, 294 

nonsense, nonstop, splice site, and translation start site mutations (FDR < 0.05, Fig. 4E). 295 

Interestingly, younger patients were enriched for mutations in the PI3K-PTEN-AKT-mTOR and 296 

RTK-RAS signaling pathways, while older patients had more TP53 mutations (FDR < 0.05, Fig. 297 

4F). Enrichment analysis of driver genes more frequently mutated in younger patients revealed 298 

four distinct network clusters. These include PIK3CA/RTK-RAS signaling pathways, the beta 299 

catenin pathway, DNA-damage response (DDR) pathways, and histone modulatory pathways 300 

(FDR < 0.01, Fig. 4G, Supplementary Fig. 3C-F, Supplementary Table 7). Similar enrichment 301 

analysis in old UCEC patients revealed a single cluster of TP53 associated pathways (FDR < 302 

0.05, Supplemental Fig. 3G, Supplementary Table 8), suggesting that tumors from young 303 

UCEC patients may have a more heterogeneous mutational landscape. 304 

Taken together, we show the enrichment of genomic aberrations in young patients that 305 

results in more aggressive tumors. We find that younger UCEC patients are enriched for 306 

mutations, while older patients exhibit a high copy number phenotype. Similarly, younger BRCA 307 

patients were associated with TP53 mutations, while older ones were associated with PIK3CA 308 

mutations.  309 
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Discussion 310 

Aging is a major risk factor for global morbidity and mortality, particularly for cancer 311 

development. While cancers are predominantly diagnosed in older populations aged > 65 years, 312 

the increasing frequency of certain tumors in young adults demands immediate attention. With 313 

this focus, developing an understanding of aging-related changes in tumors may aid in refining 314 

various prevention and treatment options. Recent findings have highlighted the links between 315 

aging and tumor biology in specific tumor types(Kim et al., 2020; Osako et al., 2020), however, 316 

none have yet performed a multi-omics comparison across tumor types.  Here, we performed a 317 

systematic analysis of publicly available TCGA Cohorts to elucidate the complex and unique 318 

biology of tumors across younger and older age groups. We identified six TCGA tumor types 319 

that exhibit an age-associated outcome and molecular phenotype. While the aging-associated 320 

effects vary by tumor type, we show that these tumor types exhibit dysregulated molecular aging, 321 

which drives several processes involving tumorigenesis and the anti-tumor response. We find 322 

that most young patients exhibit accelerated epigenetic aging when compared to healthy 323 

counterparts, potentially resulting in impaired cellular function. In addition, we find that younger 324 

cancer patients often have a stronger association with aging and senescence-related pathways 325 

than older ones. 326 

Further, the survey of downstream biological pathways enriched in tumors as a function 327 

of age enables us to uncover potential therapeutic opportunities for younger patients compared to 328 

older patients, respectively.  The interplay of cellular aging and tumor development in younger 329 

patients has complex biology involving genomic and epigenomic defects that govern the 330 

interaction of tumor cells with the stroma(Schosserer et al., 2017). Indeed, stabilizing the 331 

epigenomic landscape through the use of DNA methyltransferase inhibitors (DNMTi) and 332 
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histone deacetylase inhibitors (HDACi) serve as powerful anti-tumor tools across tumor types 333 

(Christmas et al., 2018; Hull et al., 2016; Rodríguez-Paredes and Esteller, 2011). DNMT and 334 

HDAC1/3 inhibition have been shown to be a viable therapeutic strategy for several cancers by 335 

inhibiting tumor growth as well as augmenting the anti-tumor immune response. While clinical 336 

studies have not assessed differential sensitivity in young and old age groups, our analyses 337 

suggest that young patients could exhibit enhanced sensitivity to such treatment regimens. 338 

Recent work by Oltra et al. shows that HDAC5 inhibition differentially induces apoptosis in 339 

breast cancer cell lines sourced from young patients(Oltra et al., 2020). Epigenomic 340 

reprogramming of young breast cancer patients results in age-acceleration at the transcriptional 341 

level as well, thereby causing gross functional alterations. We also find that young breast cancer 342 

patients are enriched for senescence-associated pathways and that these changes are 343 

epigenetically driven. Additionally, we report that young thyroid and endometrial cancer patients 344 

are associated with senescence-related pathways at a transcriptional level. 345 

We show that the senescence-associated pathways enriched in younger breast and thyroid 346 

cancer patients include SASP, an IL-6 mediated secretory phenotype of persistent senescence 347 

involving NF-κB signaling, proteolytic enzymes, growth factors, cytokines, and inflammation, 348 

ultimately causing tumor progression, malignant transformation, and proliferation(Di et al., 349 

2014; Gosselin et al., 2009; Krtolica et al., 2001; Malaquin et al., 2013; Mavrogonatou et al., 350 

2020). Additionally, we find that younger breast cancer patients are enriched for oxidative stress-351 

induced senescence, which promotes senescence in SASP fibroblasts, larger tumors, and 352 

ultimately SASP(Hiebert et al., 2018). As co-administration of senolytic agents with traditional 353 

chemotherapeutic drugs is gaining interest (Fleury et al., 2019; Gayle et al., 2019), our data 354 
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suggest that tumors from younger patients may be more susceptible to this treatment strategy 355 

than older ones.  356 

In addition to a senescent phenotype, we show that younger breast cancer patients are 357 

enriched for immune-associated pathways. However, tumors from younger breast cancer patients 358 

are often triple negative and are associated with BRCA1 and BRCA2 mutations, resulting in 359 

aggressive tumors with poor prognosis(Anders et al., 2009; Young et al., 2009) and an increased 360 

tumor mutational burden (TMB)(Lal et al., 2019). Several studies have shown a strong link 361 

between TMB and the anti-tumor immune response, potentially due to an increased neoantigen 362 

burden(Fernandez et al., 2019; Rizvi et al., 2015; Yarchoan et al., 2017). Given the extensive 363 

epigenomic aberrations seen in young patients, it is possible that these neoantigens may be 364 

epigenetically silenced. This, in turn, would lead to poor prognosis even though the patients are 365 

enriched for immune pathways, potentially explaining the increased sensitivity of epigenetic 366 

drugs in younger patients(Bell et al., 2018). While the datasets used for this analysis did not have 367 

a substantial amount of triple negative cases, future population-based studies could test this 368 

hypothesis. 369 

Next, we find that younger endometrial cancer patients are particularly enriched for 370 

mutations in several driver genes, including DNA damage response (DDR) genes. Although 371 

pathway enrichment analysis of these genes reveals that the PI3K and RTK-RAS pathways are 372 

the most mutated, clinical trials targeting these pathways have shown modest success(Dedes et 373 

al., 2011; Oda et al., 2005). Mutations in DDR genes of young UCEC patients lead to 374 

homologous recombination deficiencies and hypermutator phenotypes. Such populations are 375 

sensitive to several therapeutic strategies, including Poly (ADP-Ribose) polymerase 1 inhibition 376 

(PARPi)(McCabe et al., 2006). PTEN was the most differentially mutated gene in young UCEC 377 
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patients. PARPi, when coupled with PTEN mutations, confers synthetic lethality to such 378 

tumors(Mendes-Pereira et al., 2009), suggesting an additional benefit of PARPi in young UCEC 379 

patients. Additionally, we show that young LGG patients are enriched for ATRX and IDH1 380 

mutations. Similar to PTEN in UCEC, mutations in ATRX confer sensitivity to combined PARPi 381 

and radiotherapy(Fazal Salom et al., 2018). Furthermore, young LGG patients may be sensitive 382 

to IDH1 inhibitors such as Ivosidenib(DiNardo et al., 2018). 383 

Finally, even though young patients are associated with better survival outcomes, 384 

molecular data suggests they are more aggressive tumors that may be restrained  by a stronger, 385 

more highly activated functional immune system. We found that the gene signatures of immune 386 

pathways exhibit higher expression in younger donors, with increased infiltration of B and T 387 

cells (the primary cell types associated with anti-tumor immune memory). Therefore, we have 388 

begun to characterize the unique biology of tumors in young adults, demonstrate that aging-389 

associated dysfunction is tumor-type specific, and explore the biological systems underlying 390 

aggressive tumors. These dysregulated aging and oncogenic processes associated with the 391 

aggressive tumors from young patients may be leveraged for differential therapeutic strategies 392 

and biomarker discovery.  393 
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Methods 394 

Age Groups 395 

Previously identified quartiles served as age group limits for individual age-associated tumor 396 

types from the TCGA cohort. Additionally, the quartile limits for the TCGA breast cancer cohort 397 

was employed to stratify the METABRIC cohort into age groups. The GTEx cohort was, 398 

however, classified as young and old using an alternate methodology. Young samples are from 399 

individuals younger than 50 years, and old samples are from individuals older than 59 years. 400 

This was necessary since age was a discrete variable in the GTEx dataset. 401 

Differential Gene Expression Analysis 402 

Differentially expressed genes (FDR < 0.05) between young and old age groups were identified 403 

across all datasets. In the case of the microarray dataset, limma was run with default parameters. 404 

For RNA-Seq based data, lowly expressed genes that had less than two counts per million reads 405 

in more than two samples were removed from the analysis. The data was voom transformed prior 406 

to fitting a linear model using limma(Ritchie et al., 2015). Empirical Bayes shrinkage was 407 

applied to the model in both cases. 408 

Pathway Enrichment Analysis 409 

We computed pathway enrichment analysis using GSEA and Reactome pathway analysis. 410 

Briefly, GSEA was computed for differential gene expression results using 1000 permutations of 411 

hallmark and KEGG pathways using the fgsea R package(Sergushichev, 2016). We carried out 412 

Reactome pathway enrichment analysis using clusterProfiler(Yu et al., 2012). Pathways with an 413 

adjusted p-value (Benjamini-Hochberg) less than 0.05 were considered significantly enriched. 414 

Differential Methylation Analysis 415 
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We transformed gene level beta values to m-values using the wateRmelon R package(Pidsley et 416 

al., 2013) and subsequently identified differentially methylated genes using limma. 417 

ssGSEA Analysis 418 

ssGSEA was estimated using publicly available signatures on MSigDB and the GSVA R 419 

package(Hänzelmann et al., 2013). The Poisson kernel was employed for microarray and raw 420 

count data, while the Gaussian kernel was employed with TPM data. Differential analyses were 421 

conducted using the Wilcoxon test and t test. 422 

DNAm Age Calculation 423 

The epigenetic age for age-dependent cancers, along with normal adjacent tissue (NAT), was 424 

imputed using the online DNAm age calculator (https://dnamage.genetics.ucla.edu/home) 425 

(Horvath, 2013). This tool predicts age from the DNAm coefficients of 353 CpG sites. 426 

Imputations that correlated with the internal gold standard less than 0.8 were discarded, as 427 

recommended by the tool, from downstream analyses. Groups were compared using Wilcoxon 428 

tests. 429 

RNA Age Calculation 430 

We used batch corrected FPKM data (TCGA tumor, TCGA NAT and GTEx) obtained from 431 

Wang et al. (Wang et al., 2018) to determine transcriptional age using the RNAAgeCalc R 432 

package(Ren and Kuan, 2020). The regression model for imputing age was the Dev signature, 433 

which encompassed coefficients for genes that had the largest variation across samples. Groups 434 

were compared using Wilcoxon tests. 435 

Gene Overlap 436 

Pairwise comparison of differentially expressed genes (FDR < 0.05) between young and old 437 

samples from each tumor type was performed using Fisher’s exact tests from the GeneOverlap R 438 
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package. P-values were corrected by the Benjamini-Hochberg method. The overlap between 439 

hypermethylated (FDR < 0.05) and downregulated genes (FDR < 0.05), and vice versa, was 440 

similarly computed. 441 

Differential mutation analysis 442 

MAF files were obtained from GDC and METABRIC, respectively. We discarded the top 20  443 

frequently mutated genes (FLAGS) in public exomes before proceeding with analyses (Shyr et 444 

al., 2014). The enrichment of Single Nucleotide Variants (SNVs) in age groups per tumor type 445 

was calculated using Fisher’s exact test from the maftools R package(Mayakonda et al., 2018). 446 

Tumor mutation burden (TMB) was calculated by dividing the total number of nonsynonymous 447 

variants in a sample by genome size (50 MB). SNV classes and TMB were compared across age 448 

groups using the Wilcoxon test. 449 

Data Availability 450 

TCGA clinical data were obtained from Liu et a.l(Liu et al., 2018), CIBERSORT data from 451 

Vesteinn et al. (Thorsson et al., 2018), driver gene calls from Bailey et al. (Bailey et al., 2018) 452 

and TCGA-UCEC integrative genomic clusters from Getz et al. (Getz et al., 2013). Gene 453 

expression data for TCGA samples using RNASeq, methylation profiling data using Illumina 454 

450K, and mutect2 MAF files were downloaded from the Genomic Data Commons. 455 

Preprocessed gene-level methylation data were obtained from GDAC. Batch corrected gene 456 

expression data were obtained from Wang et al. (Wan g et al., 2018). Clinical data, gene 457 

expression by microarray, and MAF files for the Metabric dataset(Curtis et al., 2012; Pereira et 458 

al., 2016) were obtained from cbioportal(Gao et al., 2013). Gene expression using RNASeq was 459 

obtained from the GTEx consortium v8 release. 460 

Code Availability 461 
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All analyses were performed on R (www.r-project.org) version 3.5.1. Code for all analyses is 462 

available on https://github.com/yajass/tcga_aging_final.  463 
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Figure Legends 464 

Figure 1: Tumor type selection 465 

(A) Hazard ratios (HRs) for overall survival as a function of tumor diagnosis age. HRs greater 466 

than 1 are associated with decreased survival probability in older patients. Tumor types in dark 467 

blue have significantly different outcomes based on age (FDR < 0.01) (B) Differentially 468 

expressed genes (DEG) between younger and older patients (FDR < 0.05) from tumor types with 469 

HR > 1. The bar plot indicates the fraction of DEG. Tumor types with HR > 1 and DEG > 1% 470 

were termed age-associated cancers (light blue). 471 

Figure 2: Differential gene expression and methylation links immune function and 472 

senescence to young patients 473 

(A) Gene set enrichment analysis of DEG between younger and older patients across tumor 474 

types. Pathways in red are associated with older patients, and those in blue are associated with 475 

younger patients (FDR < 0.05). (B) Gene set enrichment analysis of DEG between tissue sourced 476 

from younger and older cancer patients (black) as well as corresponding healthy individuals 477 

(grey). (C) Pearson correlation coefficients of CIBERSORT (relative) scores with age across 478 

tumor types (FDR < 0.05). (D) The bar plots show the overlap between hypomethylated and 479 

over-expressed genes in young (top) and old patients (bottom). (E) Reactome pathway 480 

enrichment analysis of hypomethylated and over-expressed genes. Point size reflects the ratio of 481 

the number of genes present in the differential gene list and the number of genes present in the 482 

pathway. 483 

Figure 3: Young patients are associated with senescence and accelerated aging 484 

(A) Scatterplot of DNA methylation age and chronological age in tumor (dark blue) and healthy 485 

(red) tissue. (B) The difference between DNA methylation age and chronological age (DNAm 486 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.08.30.20184762doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.30.20184762
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pan-cancer analysis reveals unique molecular patterns associated with age 

age acceleration difference) is plotted against chronological age bins. (C) DNAm age 487 

acceleration difference is plotted against age bins for breast cancer (dark green), colon cancer 488 

(light brown), low grade glioma (blue), thyroid cancer (dark brown), and uterine endometrial 489 

carcinoma (green). (D) The difference between RNA age and chronological age (RNA age 490 

acceleration difference) is plotted against age bins for tumor (dark blue) and normal (red) 491 

samples. (E) Paired analysis of RNA age acceleration difference in younger and older patients. 492 

(F) Single sample gene set enrichment analysis of genes associated with aging in healthy (top) 493 

and tumor (bottom) breast samples. (G) The scatter plot shows BH-adjusted p values for 494 

differential pathway enrichment analysis between young (filled circles) and old (hollow circles) 495 

patients from the BRCA (dark green), COAD (light brown), LGG (blue), OV (dark brown), 496 

THCA (green) and UCEC (purple) TCGA cohorts. 497 

Figure 4: Mutation Analysis 498 

(A) Oncoplot of the top 10 most frequently mutated genes in BRCA, COAD, LGG, OV, THCA, 499 

and UCEC. (B) Comparison of tumor mutation burden in younger (blue) and older (yellow) 500 

patients. Stars indicate BH-adjusted p values. (C) The forest plot shows tumor-type specific 501 

driver gene mutations more commonly found in younger (blue) and older patients (FDR < 502 

0.005). (D) Stacked bar plots show the relative proportion of integrative genomic clusters in 503 

younger and older UCEC patients. (E) Boxplots show the frequency of variants in younger (blue) 504 

and older (yellow) UCEC patients. Stars indicate BH-adjusted p values. (F) Oncoplot shows 505 

mutations that are differentially enriched in younger and older UCEC patients (FDR <0.05) and 506 

is accompanied by a lollipop plot of PTEN. (G) Reactome pathway analysis of driver genes 507 

mutated in young UCEC patients. Nodes represent the fraction of the number of mutated genes 508 

associated with young UCEC patients (FDR < 0.05) and pathway size. Edges represent the 509 
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number of shared genes across pathways. 510 

 511 

Figure S1:  512 

(A) Age distribution that classifies patients as younger and older. (B) The forest plot shows the 513 

association between tumor stage and age. Tumor stages with a log odds ratio greater than 0 are 514 

associated with older patients. (C) Gene expression correlation coefficients (Spearman) with age 515 

for genes associated with tumor progression markers are visualized as a heatmap. Stars indicate 516 

BH-adjusted p values. (D) Gene set enrichment analysis of DEG for KEGG pathways associated 517 

with tumor proliferation. Pathways in red are associated with older patients, and those in blue are 518 

associated with younger patients (FDR < 0.05). (E) The overlap between DEGs associated with 519 

young (blue) and old (red) patients visualized as a heatmap. The color gradient reflects log odds 520 

ratios, and stars indicate BH-adjusted p values. (F) The Venn diagrams show the overlap 521 

between DEGs (FDR < 0.05) associated with young and old individuals across tumor (TCGA) 522 

and healthy (GTEx) datasets. (G) The total number of differentially methylated genes (DMG) in 523 

younger and older patients are visualized (top). Stacked bar plots represent relative amounts of 524 

hypermethylation status in younger (blue) and older (yellow) patients. 525 

Figure S2: Scatter plots of imputed RNA age and chronological age for TCGA and GTEx 526 

datasets 527 

Figure S3:  528 

(A) Oncoplot of differential mutations in younger and older patients from the METABRIC 529 

dataset (FDR < 0.05) along with a lollipop plot showing the type of P53 variants. (B) The 530 

heatmap displays mutation status in DNA damage response genes. Black areas represent mutated 531 

genes. (C-F) Oncoplots of the RTK-RAS and PI3K pathways for younger and older patients. 532 
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Genes in blue are oncogenes, while genes in red are tumor suppressor genes. (G) The network 533 

diagram represents reactome pathway enrichment analysis of driver genes in older UCEC 534 

patients. Nodes represent the fraction of the number of mutated genes associated with old UCEC 535 

patients (FDR < 0.05) and pathway size. Edges represent the number of shared genes across 536 

pathways.  537 
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