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Abstract 41 
The number of COVID-19 deaths is often used as a key indicator of SARS-CoV-2 epidemic size. 42 
However, heterogeneous burdens in nursing homes and variable reporting of deaths in elderly 43 
individuals can hamper comparisons of deaths and the number of infections associated with them 44 
across countries. Using age-specific death data from 45 countries, we find that relative differences 45 
in the number of deaths by age amongst individuals aged <65 years old are highly consistent across 46 
locations. Combining these data with data from 15 seroprevalence surveys we demonstrate how 47 
age-specific infection fatality ratios (IFRs) can be used to reconstruct infected population 48 
proportions. We find notable heterogeneity in overall IFR estimates as suggested by individual 49 
serological studies and observe that for most European countries the reported number of deaths 50 
amongst ≥65s are significantly greater than expected, consistent with high infection attack rates 51 
experienced by nursing home populations in Europe. Age-specific COVID-19 death data in 52 
younger individuals can provide a robust indicator of population immunity. 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 61 
 62 
 63 
 64 
 65 
 66 
 67 
 68 
 69 
 70 
 71 
 72 
 73 
 74 
 75 
 76 
 77 
 78 
 79 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 26, 2020. ; https://doi.org/10.1101/2020.08.24.20180851doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.24.20180851
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

As SARS-CoV-2 continues its rapid global spread, increased understanding of the underlying level 80 
of transmission and infection severity are crucial for guiding pandemic response. While the testing 81 
of COVID-19 cases is a vital public health tool, variability in surveillance capacities, case-82 
definitions, testing indications, and health-seeking behaviour can cause difficulties in the 83 
interpretation of case data. Due to more complete reporting COVID-19 deaths are often seen as a 84 
more reliable indicator of epidemic size. If reliably reported, the number of COVID-19 deaths can 85 
be used to infer the total number of SARS-CoV-2 infections using estimates of the infection fatality 86 
ratio (IFR, the ratio of COVID-19 deaths to total SARS-CoV-2 infections). Estimates of the IFR 87 
derived from studies that carefully estimate the number of infected individuals in a particular 88 
setting can help make the link between deaths and total infections as well as refine estimates of 89 
the relative burden of mortality in different age groups1. While it is clear that infection severity 90 
increases significantly with increasing age2,3, there remain key unanswered questions as to the 91 
consistency of mortality patterns across countries. Underlying heterogeneities in the age structure 92 
of the population, or in the prevalence of comorbidities can contribute to differences in the levels 93 
of observed COVID-19 fatalities4. In addition, when looking at the total number of COVID-19 94 
deaths, the level of transmission amongst the general population can be difficult to disentangle 95 
from large outbreaks in vulnerable populations such as nursing homes and other long-term care 96 
settings. Indeed for many countries, the SARS-CoV-2 pandemic has been characterized by a heavy 97 
burden in nursing home residents, with over 20% of all reported COVID-19 deaths occurring in 98 
nursing homes in countries such as Canada, Sweden and the United Kingdom5. In other countries, 99 
few COVID-19 deaths have been reported in nursing home settings such as in South Korea and 100 
Singapore due to successful epidemic control and/or shielding policies5. The reporting of COVID-101 
19 deaths for older individuals can also be subject to inconsistencies across settings due to variable 102 
prevalence of comorbidities with which a COVID-19-associated death could be mistakenly 103 
attributed and varying practices of post-mortem testing for COVID-19. Age-specific COVID-19 104 
death data can therefore provide valuable insights into the underlying nature of transmission, as 105 
the reporting of deaths amongst younger populations is likely to be more robust than that of elderly 106 
individuals. 107 
 108 
In this context, simply comparing the total number of deaths across countries may provide a 109 
misleading representation of the underlying level of transmission. SARS-CoV-2 seroprevalence 110 
surveys, which estimate the number of people with detectable antibodies against the virus, provide 111 
valuable information on the proportion of the population that have ever experienced a SARS-CoV-112 
2 infection at a given time-point6–9. These seroprevalence surveys, however, can be subject to a 113 
number of biases and variable performance of different serological assays can complicate the 114 
comparison of results across different studies10. Additionally, when exploring the relationship 115 
between the number of infections and deaths in an ongoing outbreak, adjustments for delays 116 
between infection and seroconversion, and seroconversion and death are critical to the 117 
interpretation of results. Here, we present a model framework that integrates age-specific COVID-118 
19 death data from 45 countries with 15 national-level seroprevalence surveys, providing new 119 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 26, 2020. ; https://doi.org/10.1101/2020.08.24.20180851doi: medRxiv preprint 

https://paperpile.com/c/WoLAHs/7Y4F
https://paperpile.com/c/WoLAHs/vPKf+U6RN
https://paperpile.com/c/WoLAHs/gjCs
https://paperpile.com/c/WoLAHs/6wmE
https://paperpile.com/c/WoLAHs/6wmE
https://paperpile.com/c/WoLAHs/z9oF+S3sk+bBdm+eIsx
https://paperpile.com/c/WoLAHs/d2wT
https://doi.org/10.1101/2020.08.24.20180851
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

insights into the consistency of infection fatality patterns across countries (Figure 1A). We use our 120 
model to produce ensemble IFR estimates by age and sex in a single harmonized framework as 121 
well as estimates of the proportion of the population infected in each country. Further, we use these 122 
estimates to reconstruct the expected number of deaths in older individuals (≥65 years), which we 123 
compare to reported deaths in each setting, highlighting heterogeneity in the burden of mortality 124 
amongst elderly individuals across countries.   125 
 126 
Age-specific mortality patterns  127 
Using population age structures and age-specific death data, we compare the number of deaths by 128 
age within each country, using the number of deaths in 60-65 year olds as the reference. We find 129 
a very consistent pattern in the relative risk of death by age for individuals <65 years old across 130 
countries and continents, with a strong log-linear relationship between age and risk of death for 131 
individuals 30-65 years old (Figure 1B, Supplementary Methods S1). The observed relative risk 132 
of death in older individuals appears substantially more heterogeneous across locations. Given the 133 
potential for important variability in mortality associated with nursing home outbreaks across 134 
countries, we first investigate mortality patterns specifically in the general population, using age-135 
specific deaths ≥65 from England, where granularity of the data allows us to remove deaths in 136 
nursing home populations. We find that the log-linear relationship between age and risk of death 137 
continues into older age groups (Figure 1B). To assess the generalizability of data from England 138 
to other countries, we use these estimates to reconstruct the number of non-nursing home deaths 139 
reported in 13 other countries and find the predictions were consistent with the observed number 140 
of deaths in these countries (Figure 1C, Supplementary Methods S2). 141 
 142 
In order to translate relative risks of death by age to underlying IFR, we combine age-specific 143 
death data with 15 seroprevalence surveys, representing 12 of the 45 countries (2 different studies 144 
were each available for Belgium, Denmark and Netherlands, Supplementary Table S1). We use 145 
daily time-series of reported deaths to reconstruct the timing of infections and subsequent 146 
seroconversions. To limit biases that can be introduced by outbreaks in nursing home settings and 147 
the variable reporting practices of fatalities amongst individuals ≥65, we fit our model 148 
investigating the relationship between seroconversion and mortality exclusively to death data from 149 
those <65 years old. To infer IFRs in age groups ≥65 years, we use our estimates of the relative 150 
risk of death derived from England data only, without considering reported deaths from individual 151 
countries in these age groups. As our baseline model, we use an ensemble model where we include 152 
the results from all national-level seroprevalence studies together within a single framework. In 153 
addition, we consider separate models where we use the results of each serostudy individually to 154 
estimate IFRs in all locations, allowing us to investigate the consistency of estimates provided by 155 
different studies. As older individuals have fewer social contacts11 and are more likely to be 156 
isolated through shielding programmes we assume a baseline relative infection attack rate of 0.7 157 
for individuals aged ≥65, relative to those <65, and assume equal infection attack rates across age 158 
groups <65 years. We find that age-specific IFRs estimated by the ensemble model range from 159 
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<0.001% (95%CrI: 0-0.001) in those aged 5-9 years (ranging from 0-0.001% across individual 160 
national-level serostudies) to 7.27% (95%CrI: 6.91-7.66%) in those aged 80+ (ranging from 2.66-161 
16.78% across individual national-level serostudies) (Figure 2A). A mean increase in IFR of 162 
0.52% with each 5-year increase in age (95%CrI: 0.49-0.55%) was estimated for ages ≥10 years. 163 
We estimate that the risk of death given infection for men is significantly higher than that of 164 
women (Figure 2A) particularly in older individuals with ensemble IFR estimates of 8.62% for 165 
men aged 80+ (95%CrI: 8.19-9.07%) and 5.93% for women aged 80+ (95%CrI: 5.63-6.24%), 166 
consistent with previous findings12,13. Differences in ensemble IFR estimates by sex for age groups 167 
<20 years are less clear due to the small number of reported deaths in these age groups resulting 168 
in large uncertainty. 169 
 170 
 171 
Consistency of IFR estimates across seroprevalence surveys 172 
Simple comparisons of the relationship between reported seroprevalence values and the 173 
cumulative incidence of COVID-19 deaths 15 days after the end of each seroprevalence survey, 174 
suggest large heterogeneity in the ratio of deaths to infections across settings (Figure 2B). We use 175 
our model framework to facilitate more robust comparisons of the IFR across settings, considering 176 
only age-specific deaths amongst <65 year olds. Using the country-specific demographic 177 
distributions (both age and sex) we estimate population-weighted IFRs for each country. Taking 178 
France as a reference population, the ensemble model estimates a population IFR of 0.65% for 179 
France (95% CrI: 0.62-0.68%) though we find notable heterogeneity in IFR estimates as suggested 180 
by individual seroprevalence studies, with a median range of 0.24-1.50% (Figure 2C). In 181 
particular, seroprevalence studies from England (1.50%, 95%CrI: 1.24-1.80%) and New York 182 
(1.88%, 95%CrI: 1.78-2.00%), both suggest a significantly higher IFR while studies in Slovenia 183 
(0.24%, 95%CrI: 0.22-0.28%), Denmark (0.25%, 95%CrI: 0.22-0.31%) and Finland (0.25%, 184 
95%CrI: 0.22-0.32%) support a lower IFR than that of the ensemble model. Potential explanations 185 
for these differences include different prevalences of high-risk populations (e.g. individuals with 186 
comorbidities), differences in the methodology and representativeness of the seroprevalence 187 
studies, heterogeneities in the availability and quality of care or variations in the reporting of 188 
COVID-19 deaths. We find that studies conducted with blood bank sera (which do not include 189 
children and require individuals to be asymptomatic at the time of sample collection) gave similar 190 
results to studies in the general population (Supplementary Figure S5). Considering the 191 
demographic structures of each country, we find that population-weighted IFR estimates by the 192 
ensemble model are highest for countries with older populations such as Japan (0.90%, 95%CrI: 193 
0.85-0.94%) and Italy (0.77%, 95%CrI: 0.73-0.81%), whilst the lowest IFRs among the 45 194 
countries are for Kenya (0.07%, 95%CrI: 0.06-0.07%) and Pakistan (0.12%, 95%CrI: 0.12-0.13%) 195 
(Figure 2D). 196 
 197 
Our ensemble model reproduces the reported seroprevalence values for the majority of studies 198 
including the dynamics of reported seroprevalence over time (Figure 3B). Of the 45 countries 199 
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included in our analysis, representing 3.4 billion people, we estimate an average of 2.41% 200 
(95%CrI: 2.21-2.64%, individual serostudy range: 1.04-6.41%) of these populations had been 201 
infected by the 30th of May 2020 ranging from 0.07% (95%CrI: 0.05-0.09%, individual serostudy 202 
range: 0.03-0.18%) in Japan to 23.66% (95%CrI: 22.13-25.28%, individual serostudy range: 9.99-203 
62.89%) in Ecuador. Consistent with other studies, these results indicate that the majority of 204 
countries are likely a long way from standard herd immunity thresholds at the national-level 12,14,15. 205 
 206 
Heterogeneities in ≥65 mortality 207 
Using our model framework we estimate the number of deaths expected in the absence of nursing 208 
home transmission in those aged ≥65 years, given the reported number of deaths in younger age 209 
groups. These estimates can be compared to the reported number of COVID-19 deaths in ≥65 year 210 
olds (Figure 4A). We find that many countries in South America had significantly fewer reported 211 
deaths in individuals ≥65 years than expected, consistent with under-reporting of COVID-19 212 
deaths amongst elderly individuals. For example, we find that in Ecuador there are 231 fewer 213 
reported deaths per 100,000 in those ≥65 years than expected (95%CrI: 211-253), equivalent to 214 
approximately 3,000 missing deaths. While lower infection attack rates in elderly populations due 215 
to reduced contacts and/or successful shielding policies may also explain lower mortality amongst 216 
older individuals, in sensitivity analyses we show that for some countries unrealistically low 217 
infection attack rates amongst ≥65 year olds compared to the rest of the population would be 218 
required to reconcile the reported number of deaths in these age-groups (Supplementary Figure 219 
S3). 220 
 221 
By contrast, for many European countries we observe a higher incidence of deaths in older 222 
individuals than expected (Figure 4A). This is consistent with the large proportion of reported 223 
COVID-19 deaths attributable to outbreaks in nursing homes, highlighting the enormous burden 224 
experienced by these communities in many higher-income countries. Using France as a reference 225 
population, we use the age and sex distribution of nursing home residents to derive a population-226 
weighted IFR of 5.45% (95%CrI: 5.18-5.74%) among French nursing home residents, assuming 227 
equal frailty of individuals in nursing homes and the general population of the same age and gender 228 
(Figure 4B). Using this estimate of the IFR would suggest that 29.05% of the nursing home 229 
population had been infected by 30th May 2020 (95%CrI: 27.60-30.58%), a 6.14 fold higher 230 
infection attack rate than the general population (Supplementary Methods S3). Assuming 231 
individuals in nursing homes are twice as frail as the general population would imply a relative 232 
infection attack rate of 3.07 or 14.52% (95%CrI: 13.80-15.29%) of the nursing home population 233 
infected. In our baseline model we have derived IFR estimates assuming the absence of excess 234 
nursing home transmission and mortality so as to facilitate robust comparisons of IFR and general 235 
population transmission across settings. However, we demonstrate that where high rates of 236 
infection have occurred amongst nursing home residents, population IFR estimates will be 237 
significantly greater than in scenarios where these populations have been successfully shielded or 238 
experienced little exposure (Figure 4C). For example, in France, including deaths in nursing 239 
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homes, increases the IFR from 0.60% for the general population (95%CrI: 0.57-0.63%) to 0.88% 240 
overall (95%CrI: 0.84-0.93%), assuming equal frailty. This highlights the complexity in 241 
comparing headline IFR estimates across populations where very different levels of transmission 242 
may have occurred in these hyper-vulnerable communities. 243 
 244 
Discussion 245 
Seroprevalence surveys have, to date, shown inconsistent patterns in age-specific attack rates 246 
(Figure S7). Contact patterns are likely to have changed significantly over the course of the 247 
pandemic, particularly for older individuals who may have further reduced social contacts as part 248 
of shielding interventions or natural behavioural change. To attempt to account for this, in our 249 
baseline model, we have assumed equal infection attack rates amongst <65s and a relative attack 250 
rate of 0.7 amongst individuals aged ≥65. Sensitivity analyses where we assume constant attack 251 
rates across ages provides similar estimates (Figure S6). Here we have used national reporting 252 
systems of COVID-19 associated deaths, however, other approaches exist. For example, excess 253 
deaths have been used to estimate SARS-CoV-2 burden, though these are rarely available by age 254 
and sex. We find a consistent relationship between the total number of reported COVID-19 deaths 255 
and excess deaths for 21 countries, where both are available, with the notable exceptions of Peru 256 
and Ecuador, consistent with our finding that these two countries have fewer reported deaths than 257 
expected (Figure S1).  258 
 259 
Translating the number of COVID-19 deaths into estimates of the number of infections requires 260 
careful consideration of fatalities that may have occurred from outbreak events in highly 261 
vulnerable populations. This study shows the valuable information provided by the age distribution 262 
of COVID-19 deaths and how deaths in those aged <65 in particular can be used to provide simple, 263 
robust estimates of the underlying proportion of the population that have been infected. This is of 264 
critical use in a context where most infections are unobserved. Our approach allows us to identify 265 
countries where excess transmission in nursing home populations is likely to have occurred, far 266 
exceeding that of the general population, and locations where deaths in the elderly population are 267 
likely to be under-reported. The results and modelling framework we present demonstrate how 268 
age-specific death data alone can be used to reconstruct the underlying level of infection. This 269 
approach could be applied at sub-national scale and may be of particular use in settings where 270 
there do not exist the resources to carry out large, representative seroprevalence studies. 271 
 272 
 273 
 274 
 275 
 276 
 277 
 278 
 279 
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 335 
Figures 336 

 337 
Figure 1. Patterns of COVID-19 mortality across settings. (A) Countries with age-specific 338 
death data (beige tiles) and locations with seroprevalence data (coloured points). (B) Estimated 339 
median and 95% credible interval (CrI) of the proportion of the population that have died in each 340 
age group, relative to the proportion that have died among 55-59 year olds in that country (black 341 
dots and lines), plotted on a log-linear scale. Coloured dots represent the country- and age-specific 342 
risks of COVID-19 death in the population relative to that of 55-59 year olds observed from 343 
reported death data, accounting for population age distributions (Supplementary Methods S1). All 344 
data points are plotted at the midpoint of the reported age group. The grey shaded areas highlight 345 
the relative risks of death by age for age groups ≥65, excluded from model fitting and black stars 346 
represent estimates inferred from England data only which are derived independent of nursing 347 
home deaths. (C) Comparing the reconstructed number of deaths with reported data for age-groups 348 
60 or 65+ for a subset of countries where nursing home deaths could be excluded. Black dots and 349 
lines indicate the estimated median and 95% CrI; coloured bars show the reported incidence of 350 
non-nursing home deaths aged ≥60. Countries labelled with an asterisk * indicate where the 351 
number of deaths were reconstructed for ages 65+, to align with the reported age-groups for each 352 
country. 353 
 354 
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Figure 2 355 

 356 
Figure 2. Infection fatality ratio (IFR) estimates. (A) Estimated median and 95% credible 357 
interval (CrI) of the IFR, stratified by age and sex and plotted on a log-linear scale. The IFR is 358 
estimated with the ensemble model (filled dots and black lines). Black stars on the right-hand side 359 
represent the estimated IFRs for age-groups ≥65, which were excluded from the fitting of the 360 
ensemble model. The coloured shaded dots represent median IFRs estimated from separately 361 
fitting to each individual serosurvey. (B) Relationship between the reported seroprevalence values 362 
and cumulative incidence of COVID-19 deaths 15 days after the end of seroprevalence sampling. 363 
Results from >1 serostudy were available for Belgium, Denmark, and Netherlands (Supplementary 364 
Table S1). (C) Using France as a reference country, population-weighted IFR estimates derived 365 
from fitting individual serological surveys in the model with points and lines indicating the median 366 
and 95% CrI. The blue dashed line and ribbon indicate the median and 95% CrI of the population-367 
weighted IFR produced by the ensemble model. Hollow dots represent the estimates from 368 
subnational serological surveys that were excluded from the fitting of the ensemble model. (D)  369 
Median and 95% CrI of the population-weighted IFRs estimated by the ensemble model for each 370 
of the 45 countries, coloured by continent. Grey shaded dots represent the median estimates for 371 
each country, by fitting the model with each individual seroprevalence survey. 372 
 373 
 374 
 375 
 376 
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Figure 3 377 

 378 
Figure 3. Infection attack rates. (A) Estimates of the infected population proportion for each 379 
country as of 30 May 2020. Grey shaded dots indicate the median estimates by fitting the model 380 
with each individual seroprevalence survey. Coloured dots and lines represent the median and 95% 381 
credible intervals (CrI) estimated by the ensemble model. (B) Proportion seropositive over time 382 
for each of the 12 countries with national-level seroprevalence data. Green curve and ribbon 383 
indicate the median and 95% CrIs estimated by the ensemble model. Dots and lines represent the 384 
mean and 95% binomial confidence interval reported by the published seroprevalence data. For 385 
countries with > 1 seroprevalence surveys,  black dots and lines correspond to the study-1 as 386 
referenced in Figure 2 and Supplementary Table S1, whereas pink dots and lines correspond to the 387 
study-2 (e.g. Belgium-2). Blue shaded regions indicate the start and end dates of sampling for each 388 
seroprevalence survey. 389 
 390 
  391 
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Figure 4 392 

 393 
Figure 4. Infection fatality patterns amongst ≥60s. (A) Difference between the reported and 394 
expected incidence of COVID-19 deaths per 100,000 population amongst ≥60s or ≥65s in each 395 
country. Coloured bars represent the median difference and black lines represent 95% credible 396 
intervals (CrIs). Countries labelled with an asterisk * indicate where the number of deaths were 397 
reconstructed for ages 65+, to align with the reported age-groups for each country. (B) Population-398 
weighted IFRs for the general population and nursing home residents, using France as a reference 399 
population. The relative frailty of nursing home residents is assumed to be 1 (yellow), 1.5 (green), 400 
or 2 (blue). Dots and lines indicate the median and 95% CrIs estimated by the ensemble model. 401 
(C) Population-weighted IFR in France, estimated with different assumed infection attack rates 402 
and relative frailty for nursing home residents relative to the general population. The black dashed 403 
line represents the median population-weighted IFR estimated when assuming a zero infection 404 
attack rate amongst nursing home residents. 405 
 406 
 407 
 408 
 409 
 410 
 411 
 412 
 413 
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Methods 414 
 415 
Data 416 
Age- and sex- specific COVID-19 fatality data 417 
We collated national-level age-stratified COVID-19 death counts from official government and 418 
department of health webpages and reports for 45 countries. Where available, the stratification by 419 
both age and sex were used. Sub-national age-stratified death counts were additionally collated for 420 
regions where seroprevalence surveys had been conducted. For countries/regions where 421 
information on age was missing for a subset of deaths, we assumed the age-distribution of the 422 
missing subset to be the same as that of the deaths with available age data. Information on age was 423 
missing for 28% of deaths in Belgium and 29% in Spain. In addition, the time series of daily 424 
reported deaths from each country/region were obtained from the COVID-19 Data Repository by 425 
the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University16.  426 
 427 
Seroprevalence studies 428 
We used data from 18 SARS-CoV-2 seroprevalence surveys from 15 countries/regions where the 429 
results were representative of the general population and where age-stratified death data were also 430 
available, shown in Figure 1A and Supplementary Table S1. In the ensemble model we consider 431 
only the 15 national-level seroprevalence surveys, representing 12 countries. Where reported, 432 
estimates of seroprevalence adjusted for assay performance and/or population demographics were 433 
used preferentially to unadjusted estimates (Supplementary Table S1).  434 
 435 
 436 
Model 437 
We combined age- and sex-specific COVID-19 death data from 45 countries with data from 15 438 
seroprevalence surveys, to jointly infer the age- and sex-specific IFRs and country-specific 439 
cumulative probabilities of infection. Age- and sex-specific IFRs were estimated in 5-year age-440 
groups, with individuals aged 80+ considered as a single age group. Let 𝑁𝑁𝑐𝑐,𝑎𝑎,𝑠𝑠 be the population 441 
size for the age group a of sex s in country c. The expected number of deaths for the age group a 442 
of sex s in country c, 𝐷𝐷𝑐𝑐,𝑎𝑎,𝑠𝑠 is estimated as shown in equation 1, which we assume to follow a 443 
Poisson distribution. 𝛬𝛬𝑐𝑐 denotes the cumulative probability of infection in country c, 𝛿𝛿𝑎𝑎 the relative 444 
probability of infection in age-group a, and 𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎,𝑠𝑠the infection fatality ratio of age-group a and 445 
sex s. 446 
 447 
 448 

𝐷𝐷𝑐𝑐,𝑎𝑎,𝑠𝑠 = 𝑁𝑁𝑐𝑐,𝑎𝑎,𝑠𝑠 ⋅ 𝛬𝛬𝑐𝑐 ⋅ 𝛿𝛿𝑎𝑎 ⋅ 𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎,𝑠𝑠  449 
[Equation 1] 450 

 451 
The expected number of deaths estimated by 5-year age-groups were summed to match the 452 
corresponding age-groups of observed deaths when reported in coarser age-groups. We fit 453 
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exclusively to the reported number of deaths for age groups <65 years for each country (i.e. 454 
including all age-groups where the upper bound is <65 years). IFRs for age groups ≥65 were 455 
derived from age-specific death data reported by the Office for National Statistics (ONS) in 456 
England17, which allows us to exclude deaths among nursing home residents (Supplementary 457 
Methods S2). As an external validation, we apply these IFRs to reported death data for a subset of 458 
13 countries where an adjustment for deaths occurring in nursing homes could be applied 459 
(Supplementary Methods S2). 460 
 461 
To align estimates of the cumulative probability of infection, 𝛬𝛬𝑐𝑐, with data from seroprevalence 462 
surveys, we used daily time-series of reported deaths to infer the timing of infections and 463 
subsequent seroconversions. We assumed a gamma distributed delay between onset and death with 464 
mean of 17.8 and standard deviation of 8 days2 and a gamma distributed delay between onset and 465 
seroconversion with a mean of 10 and standard deviation of 8 days18. We derive the approximated 466 
seroprevalence at a given survey period 𝑡𝑡, 𝜆𝜆𝑐𝑐,𝑡𝑡, as shown in equation 2, where 𝑆𝑆𝑐𝑐,𝑖𝑖 is the inferred 467 
number of seroconversions in country 𝑐𝑐 on day 𝑖𝑖, 𝐷𝐷𝑐𝑐,𝑖𝑖 the  number of new deaths reported in 468 
country c on day i, and 𝑇𝑇𝑐𝑐 is the date of reporting of the age-stratified cumulative death data. 469 
 470 

𝜆𝜆𝑐𝑐,𝑡𝑡 = 𝛬𝛬𝑐𝑐 ⋅�𝑆𝑆𝑐𝑐,𝑖𝑖

𝑡𝑡

𝑖𝑖=1

/�𝐷𝐷𝑐𝑐,𝑖𝑖

𝑇𝑇𝑐𝑐

𝑖𝑖=1

 471 

 472 
[Equation 2] 473 

 474 
For each seroprevalence survey the expected number of seropositive individuals in country 𝑐𝑐 at 475 
sampling period 𝑡𝑡, 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐,𝑡𝑡, is assumed to follow a Binomial distribution as shown in equation 3, 476 
where 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐,𝑡𝑡 is the number of serological samples taken in country 𝑐𝑐 at time 𝑡𝑡19.  477 
 478 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐,𝑡𝑡 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐,𝑡𝑡 ,  𝜆𝜆𝑐𝑐,𝑡𝑡) 479 
 480 

[Equation 3] 481 
 482 
Where reported, seroprevalence estimates adjusted for test performance and/or population 483 
demographics were used preferentially to unadjusted values (Supplementary Table S1). To 484 
investigate the contribution of different serological studies to the likelihood the model was fit 485 
separately to each individual serostudy, including an additional 3 subnational seroprevalence 486 
studies (Supplementary Table S1). All parameters were estimated in a Bayesian framework using 487 
RStan20.  488 
 489 
Code and Data Availability 490 
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All code and data necessary to reproduce this analysis are available at 491 
https://github.com/meganodris/International-COVID-IFR . 492 
 493 
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Supplementary Information 

Country/Region Study Period N N Positive (%) Population Age Source 

Belgium 

03/03/2020 – 05/04/2020 3,910 113 (2.9%) a General 0-101 (1) 
20/04/2020 – 26/04/2020 3,397 204 (6.0%) a General 0-101 (1) 
14/04/2020 – 16/04/2020 900 43 (4.8%) Blood donors 18-75 (2) 
27/04/2020 – 29/04/2020 900 42 (4.7%) Blood donors 18-75 (2) 
11/05/2020 – 13/05/2020 900 42 (4.7%) Blood donors 18-75 (2) 

Czech Republic 23/04/2020 – 01/05/2020 25,549 107 (0.4%) General 18-89 (3) 

Denmark 

06/04/2020 – 08/04/2020 4,072 61 (1.5%) b Blood donors 17-69 (4) 
14/04/2020 – 19/04/2020 5,326 101 (1.9%) Blood donors 17-69 (5) 
20/04/2020 – 26/04/2020 5,820 93 (1.6%) Blood donors 17-69 (5) 
27/04/2020 – 03/05/2020 5,422 130 (2.4%) Blood donors 17-69 (5) 

England 26/04/2020 – 13/06/2020 1,757 95 (5.4%) General 16+ (6) 

Finland 

13/04/2020 – 19/04/2020 362 9 (2.5%) General 18-69 (7) 
20/04/2020 – 26/04/2020 674 17 (2.5%) General 18-69 (7) 
27/04/2020 – 03/05/2020 426 12 (2.8%) General 18-69 (7) 
04/05/2020 – 10/05/2020 514 8 (1.6%) General 18-69 (7) 
11/05/2020 – 17/05/2020 401 4 (1.0%) General 18-69 (7) 
18/05/2020 – 24/05/2020 210 9 (4.3%) General 18-69 (7) 
25/05/2020 – 31/05/2020 178 5 (2.8%) General 18-69 (7) 
01/06/2020 – 07/06/2020 190 6 (3.2%) General 18-69 (7) 

France 09/03/2020 – 15/03/2020 3,084 36 (1.1%) General 0+ (8) 
06/04/2020 – 12/04/2020 3,221 208 (6.7%) General 0+ (8) 

Geneva 

06/04/2020 – 10/04/2020 341 16 (4.8%) a,b General 5+ (9) 
14/04/2020 – 17/04/2020 469 40 (8.5%) a,b General 5+ (9) 
20/04/2020 – 24/04/2020 577 63 (10.9%) a,b General 5+ (9) 
27/04/2020 – 02/05/2020 604 40 (6.6%) a,b General 5+ (9) 
04/05/2020 – 09/05/2020 775 84 (10.8%) a,b General 5+ (9) 

Luxembourg 15/04/2020 – 05/05/2020 1,862 35 (1.9%) General 18-79 (10) 

Netherlands 01/04/2020 – 15/04/2020 7,361 200 (2.7%) Blood donors 18-72 (11) 
01/04/2020 – 17/04/2020 2,096 75 (3.6%) General 2+ (12) 

New York City 19/04/2020 – 28/04/2020 5,946 1,350 (14.0%)b General 18+ (13) 
New York State 19/04/2020 – 28/04/2020 15,101 2,114 (22.7%)b General 18+ (13) 

Scotland 17/03/2020 – 17/03/2020 500 0 (0.0%) Blood donors 18-75 (14) 
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21/03/2020 – 23/03/2020 500 6 (1.2%) Blood donors 18-75 (14) 

Spain 17/04/2020 – 11/05/2020 61,075 3,054 (5.0%) General 0+ (15) 
18/05/2020 – 01/06/2020 63,564 3,305 (5.2%) General 0+ (15) 

Slovenia 10/04/2020 – 10/04/2020 1,318 41 (3.1%) General 0-99 (16, 17) 

Sweden 

27/04/2020 – 03/05/2020 1,200 66 (5.5%) a,c Hospital outpatients 0-95 (18) 
04/05/2020 – 10/05/2020 1,200 58 (4.8%) a,c Hospital outpatients 0-95 (18) 
11/05/2020 – 17/05/2020 1,200 73 (6.1%) a,c Hospital outpatients 0-95 (18) 
18/05/2020 – 24/05/2020 1,200 76 (6.3%) a,c Hospital outpatients 0-95 (18) 

a Adjusted for population demographics. 

b Adjusted for assay performance. 

c The number of samples is reported as approximately 1,200 samples per week18. The absolute number of positive samples was inferred using the reported 
seroprevalence values assuming sample sizes of exactly 1,200 per week. 

Table S1. Seroprevalence studies 
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Supplementary Methods 1 

S1. Relative risk of COVID-19 death by age 2 

To explore the risk of reported COVID-19 death by age in each country age-specific relative risks 3 
(RR) of death were calculated as shown in equation 1, where 𝐷𝐷𝑐𝑐,𝑎𝑎 and 𝑁𝑁𝑐𝑐,𝑎𝑎 are the country and 4 
age-specific number of deaths and population size, respectively. The age-group 55-59 was chosen 5 
as the preferential reference group as it is less likely to be influenced by deaths associated with 6 
outbreaks in nursing home settings. As the reported age-groups varied by country, the age group 7 
with an upper bound of 59 was chosen as the reference group where possible. Where this was not 8 
an available age-group, the age-group with an upper bound of 64 was selected as the reference.  9 

 10 

[Equation 1] 11 

 12 

S2. Inferring IFR estimates amongst ≥65s 13 

We fit our model exclusively to deaths <65 years. We use age-specific death data for England, 14 
reported by the Office of National Statistics (ONS)19, to derive IFR estimates for age groups ≥65, 15 
adjusted for nursing home deaths and assuming a baseline relative infection attack rate of 0.7 for 16 
those aged 65+ relative to individuals aged <65 as shown in Equation 2.  17 

 18 

[Equation 2] 19 

Here, 𝐷𝐷𝑎𝑎,𝑠𝑠 is the number of age and sex-specific non-nursing home COVID-19 deaths, 𝑁𝑁𝑎𝑎,𝑠𝑠is the 20 
age and sex-specific population size, 𝛬𝛬 is the cumulative probability of infection and 𝛿𝛿𝑎𝑎 is the age-21 
specific relative infection attack rate. The age- and sex- specific number of non-nursing home 22 
COVID-19 deaths were calculated by assuming that all COVID-19 deaths that occurred in nursing 23 
homes were aged 65+ and that the age-sex-distribution of these deaths follows the same age-sex-24 
distribution as all COVID-19 deaths ≥65 years. We applied this adjustment to an additional 13 25 
countries where the proportion of COVID-19 deaths attributable to nursing homes had been 26 
reported, assuming the cumulative proportions to be constant in time (Table S2). In the case of 27 
France, deaths that occurred in nursing homes are reported separately to those that occurred in 28 
hospital. As minimal proportions of reported hospitalised deaths are expected to be attributable to 29 
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2 

nursing home residents, we treat the reported hospitalised deaths in France as non-nursing home 30 
deaths. To assess the generalizability of IFRs ≥65 derived from this data, we apply them to the 13 31 
additional countries and find that they can reconstruct the number of non-nursing home deaths 32 
relatively well in these countries (Figure 1C). 33 

 34 

Country Date of 
Reporting 

% (LTC/Total COVID-19 
deaths) 

Denmark 24/04/2020 33.76% (133/394) 
England 01/05/2020 26.06% (8,280/31,777) 
Finland 28/05/2020 45.05% (141/313) 

Germany 03/05/2020 36.11% (2,401/6,649) 
Hungary 18/04/2020 19.19% (33/172) 
Ireland 06/05/2020 62.33% (857/1,375) 

Northern Ireland 08/05/2020 45.74% (274/599) 
Norway 02/05/2020 60.19% (127/211) 
Portugal 23/04/2020 39.88% (327/820) 
Scotland 10/05/2020 44.76% (1,438/3,213) 
Sweden 14/05/2020 56.47% (1,637/2,899) 

Switzerland 12/05/2020 53.00% (927/1,749) 
Wales 01/05/2020 26.37% (413/1,566) 

Table S2. The proportion of reported COVID-19 deaths attributable to nursing home/long-term 35 
care (LTC) settings for 13 countries. 36 

 37 

S3. Population IFR estimates and nursing home transmission  38 

To account for nursing home deaths in the estimation of IFR, we define 2 distinct populations - 39 
that of nursing home residents, 𝑁𝑁𝑁𝑁𝑁𝑁, and that of the general population excluding nursing home 40 
residents, 𝑁𝑁𝑔𝑔. For each of these populations we derive single population-weighted IFR values, 41 
𝐼𝐼𝐼𝐼𝐼𝐼𝑔𝑔 and 𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁𝑁𝑁  (Figure 4B), using the age and sex-specific IFR estimates produced by the 42 
ensemble model and the demographic distributions of each population as shown in equations 3 43 
and 4. 𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎,𝑠𝑠 is the age and sex-specific IFR estimates from the ensemble model, 𝛼𝛼𝑎𝑎,𝑠𝑠 is the 44 
proportion of the population in age group 𝑎𝑎 and sex 𝑠𝑠, and 𝛾𝛾 is the frailty of nursing home residents 45 
relative to that of the general population of the same age and sex.  46 

𝐼𝐼𝐼𝐼𝐼𝐼𝑔𝑔 = �𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎,𝑠𝑠 ⋅ 𝛼𝛼𝑎𝑎,𝑠𝑠 47 

[Equation 3] 48 

𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁𝑁𝑁 = 𝛾𝛾 ⋅ ∑ 𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎,𝑠𝑠 ⋅ 𝛼𝛼𝑎𝑎,𝑠𝑠                                                        49 
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[Equation 4] 50 

To demonstrate how varying levels of transmission in nursing home settings can affect estimates 51 
of IFR (Figure 4C) we apply a simplified calculation of the overall IFR, shown in equation 5. Here, 52 
the total number of COVID-19 deaths in nursing home settings, 𝐷𝐷𝑁𝑁𝑁𝑁, is varied through values of 53 
the nursing home infection attack rate, 𝜆𝜆𝑁𝑁𝑁𝑁, and relative frailty, 𝛾𝛾, as shown in equation 6, where 54 
values of 𝛾𝛾>1 represents increased frailty of nursing home residents relative to that of the general 55 
population. The total number of COVID-19 deaths in the general population, 𝐷𝐷𝑔𝑔, the infection 56 
attack rate of the general population, 𝜆𝜆𝑔𝑔, and the population sizes of both the general and nursing 57 
home populations, 𝑁𝑁𝑔𝑔 and 𝑁𝑁𝑁𝑁𝑁𝑁 remain fixed. 58 

𝐼𝐼𝐼𝐼𝐼𝐼 =  
𝐷𝐷𝑔𝑔 + 𝐷𝐷𝑁𝑁𝑁𝑁

𝜆𝜆𝑔𝑔 ⋅ 𝑁𝑁𝑔𝑔 + 𝜆𝜆𝑁𝑁𝑁𝑁 ⋅ 𝑁𝑁𝑁𝑁𝑁𝑁
 59 

[Equation 5] 60 

𝐷𝐷𝑁𝑁𝑁𝑁 = 𝛾𝛾 ⋅ 𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁𝑁𝑁 ⋅ 𝜆𝜆𝑁𝑁𝑁𝑁 61 

[Equation 6] 62 

Using the total number of reported COVID-19 deaths attributed to nursing home residents the 63 
infection attack rate in nursing home settings can be approximated, shown in Equation 7, under 64 
different scenarios of the relative frailty of nursing home residents, 𝛾𝛾. 65 

𝜆𝜆𝑁𝑁𝑁𝑁 = 𝐷𝐷𝑁𝑁𝑁𝑁
𝛾𝛾⋅𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁𝑁𝑁⋅𝑁𝑁𝑁𝑁𝑁𝑁

       66 

[Equation 7] 67 

 68 

Supplementary Discussion 69 
S4. Excess Deaths 70 
In our main analysis we use the number of COVID-19 deaths reported by individual countries. As 71 
the completeness of reporting of these data across countries is unclear, we investigate the number 72 
of excess deaths as compared to previous years, where available, for a subset of 21 countries. We 73 
use data from The Economist “covid-19-excess-deaths-tracker” repository which collates data 74 
from statistical bureaus, health ministries and government departments20. Of the 21 countries for 75 
which excess death data were available we find largely consistent numbers of excess deaths and 76 
reported COVID-19 deaths used in our analysis, per 100,000 population (Figure S1). Two outliers 77 
include Ecuador and Peru, where the number of excess deaths is much larger than the reported 78 
number of COVID-19 deaths, consistent with where our model predicts the largest difference in 79 
expected and reported COVID-19 deaths amongst ≥65s (Figure 4).  80 
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 81 

 82 
Figure S1. (A) Excess deaths per 100,000 population for 21 countries, January-May 2020, as 83 
compared to averages for the same time period of previous years. (B) Relationship between excess 84 
deaths and reported COVID-19 deaths per 100,000 population. The dashed line represents the x=y 85 
line, highlighting where excess deaths would equal reported COVID-19 deaths per 100,000. 86 
 87 
 88 
 89 
 90 
 91 
 92 
 93 
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Supplementary Figure S2. Fit to age-specific death data in age groups <65. Coloured bars represent 97 
the observed age-specific number of deaths in each country (blue=male, red=female, green=both). 98 
Black points and lines represent the median and 95% credible interval model estimates. 99 
 100 
 101 
 102 
 103 
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Supplementary Figure S3. Estimates of the proportion seropositive over time. The green line and 107 
ribbons represent the median and 95% credible interval estimates of the proportion seropositive 108 
over time. Coloured points and lines represent the proportion seropositive as reported by 109 
seroprevalence studies and the blue shading shows the timing of each seroprevalence sampling 110 
period. 111 
 112 
 113 
 114 
 115 

 116 
Figure S4. Ensemble model fit to reported seroprevalence values. Dots and lines represent median 117 
and 95% credible interval estimates from the ensemble model. The black dashed line indicates the 118 
x=y line, highlighting where reported and estimated seroprevalence would be equal. 119 
 120 
 121 
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 122 
Figure S5. Estimated and reported seroprevalence over time where both blood donor and general 123 
population seroprevalence surveys were conducted. Green line and ribbon indicate the median and 124 
95% credible interval estimates of the ensemble model. Blue shading represents the timing of 125 
sampling of each reported seroprevalence estimate. Dots and lines show the mean and 95% 126 
binomial confidence intervals of the reported seroprevalence, where black represents studies 127 
conducted amongst the general population and pink represents studies conducted in blood donor 128 
samples.  129 
 130 
 131 
 132 

Age Male 
Median (95%CrI) % 

Female 
Median (95%CrI) % 

Mean 
Median (95%CrI) % 

0-4 0.002 (0.001-0.002) 0.002 (0.001-0.002) 0.002 (0.001-0.002) 
5-9 0.000 (0.000-0.000) 0.001 (0.000-0.000) 0.000 (0.000-0.000) 

10-14 0.001 (0.000-0.001) 0.000 (0.001-0.002) 0.000 (0.000-0.001) 
15-19 0.002 (0.001-0.002) 0.001 (0.001-0.002) 0.002 (0.001-0.002) 
20-24 0.005 (0.004-0.006) 0.003 (0.002-0.004) 0.004 (0.003-0.004) 
25-29 0.012 (0.010-0.014) 0.007 (0.005-0.008) 0.009 (0.008-0.011) 
30-34 0.024 (0.021-0.026) 0.010 (0.009-0.012) 0.017 (0.015-0.019) 
35-39 0.040 (0.037-0.044) 0.018 (0.016-0.020) 0.029 (0.027-0.031) 
40-44 0.077 (0.072-0.083) 0.028 (0.025-0.031) 0.053 (0.049-0.056) 
45-49 0.118 (0.110-0.126) 0.053 (0.049-0.058) 0.086 (0.081-0.091) 
50-54 0.223 (0.210-0.236) 0.084 (0.078-0.091) 0.154 (0.0146-0.162) 
55-59 0.344 (0.326-0.362) 0.138 (0.130-0.148) 0.241 (0.229-0.253) 
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60-64 0.473 (0.446-0.500) 0.246 (0.213-0.262) 0.359 (0.340-0.379) 
65-69 0.868 (0.824-0.913) 0.417 (0.396-0.439) 0.642 (0.610-0.676) 
70-74 1.445 (1.373-1.521) 0.707 (0.671-0.744) 1.076 (1.022-1.132) 
75-79 2.973 (2.824-3.129) 1.580 (1.500-1.663) 2.276 (2.162-2.396) 
80+ 8.619 (8.187-9.072) 5.928 (5.631-6.240) 7.274 (6.909-7.656) 

 133 
Table S4. Ensemble model age- and sex-specific infection fatality ratio estimates. Median and 134 
95% credible intervals (CrI), for males, females and the mean of male and female estimates. 135 

 136 
 137 
 138 

 139 
Figure S6. Ensemble age- and sex-specific IFR estimates. (A) Median and 95% credible interval 140 
ensemble IFR estimates assuming equal attack rates amongst <65 year olds and a relative attack 141 
rate of 0.7 for individuals aged 65+. (B) Median and 95% credible interval ensemble IFR estimates 142 
assuming equal attack rates across all ages. 143 
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 144 
Supplementary Figure S7. Observed minus expected incidence of deaths aged 60 or 65+, per 145 
100,000 population, by country under different assumptions of the relative infection attack rate 146 
(AR) amongst over 65s. 147 
 148 
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 149 
Figure S8. Age-specific seroprevalence data from 4 serostudies9,13,15,18, plotted at the age-group 150 
mid-points. 151 
 152 
  153 
 154 
 155 
 156 
 157 
 158 
 159 
 160 
 161 
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