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Abstract: ​While studies have established the existence of ​differences in the epidemiological and             
clinical patterns of lung adenocarcinoma between male and female patients, we know relatively             
little regarding the molecular mechanisms underlying such sex-based differences. In this study,            
we explore said differences through a meta-analysis of transcriptomic data. We performed a             
meta-analysis of the functional profiling of nine public datasets that included 1,366 samples from              
Gene Expression Omnibus and The Cancer Genome Atlas databases. Meta-analysis results show            
an enrichment of Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways              
related to the immune response, nucleic acid metabolism, and purinergic signaling. We discovered             
the overrepresentation of terms associated with the immune response, particularly with acute            
inflammatory response, and purinergic signaling in female lung adenocarcinoma patients, which           
could influence reported clinical differences. Further evaluations of the identified differential           
biological processes and pathways could lead to the discovery of new biomarkers and therapeutic              
targets. Our findings also emphasize the relevance of sex-specific analyses in biomedicine, which             
represents a crucial aspect influencing biological variability in disease. 
 
Keywords: ​NSCLC​; ​biomarkers​;​ functional profiling; meta-analysis, sex characteristics 
  

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.24.20180026doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.08.24.20180026
http://creativecommons.org/licenses/by/4.0/


2 ​ of ​20 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
  

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.24.20180026doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.24.20180026
http://creativecommons.org/licenses/by/4.0/


3 ​ of ​20 

1. Introduction 
 

Lung cancer is the most frequently diagnosed cancer and the leading cause of cancer-related              
death worldwide, representing 18.4% of all cancer deaths ​[1]​. Exposure to tobacco, domestic             
biomass fuels, asbestos, and radon represent the most relevant lung cancer risk factors ​[1–3]​. 

Lung cancer exhibits differences in clinical characteristics and outcomes depending on sex,            
with better survival observed in women ​[3–5]. While lung cancer incidence worldwide is higher in               
men, there exists an increasing trend in women that cannot be solely explained by tobacco               
consumption ​[1,2]​. Furthermore, studies have reported sex-dependent differences in estrogen          
receptors and their impact on lung cancer ​[6–8]​; however, conflicting results have attributed             
susceptibility of lung cancer in women to genetic variants, hormonal factors, molecular            
abnormalities, and oncogenic viruses ​[3,9–11]​. 

Adenocarcinoma represents the most frequent non-small cell lung cancer (NSCLC) subtype in            
both sexes ​[12]​, with a higher predominance in women compared to men (41% of cases in women                 
versus 34% in men) ​[3,5,11]​. Interestingly, Wheatley-Price et al. demonstrated a more pronounced             
survival rate difference between male and female lung adenocarcinoma patients when compared to             
other tumor types ​[5]​. 

A range of transcriptomic studies have described those biological processes contributing to the             
pathology of NSCLC or lung adenocarcinoma; however, technical variability among studies,           
inter-individual biological variability, and reduced sample size represent potential confounding          
factors in the evaluation of these contributions ​[13–19]​. In addition, limited efforts have been made               
to explore the molecular mechanisms underlying sex-based differences in lung adenocarcinoma,           
with few studies considering this differential perspective ​[20,21]​. These limitations can be partially             
addressed through meta-analysis, a robust methodology that combines information from related           
but independent studies to derive results with increased statistical power and precision ​[22,23]​. 

To explore the molecular mechanisms underlying sex-based differences in lung          
adenocarcinoma, we performed a meta-analysis based on functional profiles of transcriptomic           
studies. After an exhaustive review and selection, we retrieved and analyzed nine studies from              
Gene Expression Omnibus (GEO) ​[24] and The Cancer Genome Atlas (TCGA) ​[25]​, and then              
combined the results in a random-effects meta-analysis. This approach allowed the identification of             
functional alterations caused by ​lung adenocarcinoma​ in men and women.  

 
 
 

2. Results 
 

We have organized our findings into three sections: the first describes the studies reviewed              
and selected in the systematic review; the second section reports on the results of the bioinformatic                
analysis of each of these selected studies as follows: i) exploratory analysis, ii) differential              
expression, and iii) functional characterization; and the third section presents the results of the              
differential functional profiling by sex. 

 
2.1. ​Study Search and Selection 
 

The systematic review identified 207 non-duplicated studies, of which 48.8% included both            
male and female patients (​Figure S1​). After applying inclusion and exclusion criteria (see ​Figure 1​),               
we selected nine transcriptomic studies for further analysis (​Table 1​). The selected studies             
represented a population of 1,366 samples (369 controls and 997 cases), of which 44% were from                
men and 56% from women (​Figure 2​). 71.16% of the samples were from early-stage patients, and                
91.29% were from patients older than 50 years. To reduce variability, we focused our study on                
early-stage samples. Further information regarding the selected studies is detailed in ​Table 1​,             
Figure 2​, and ​Supplementary​ ​Table S1​. 
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Table 1.​ Studies selected after the systematic review 
 

Study Platform Publication 
GSE10072 Affymetrix Human Genome U133A Array [26] 
GSE19188 Affymetrix Human Genome U133 Plus 2.0 Array [27] 
GSE31210 Affymetrix Human Genome U133 Plus 2.0 Array [28,29] 
GSE32863 Illumina HumanWG-6 v3.0 Expression BeadChip [30] 
GSE63459 Illumina HumanRef-8 v3.0 Expression BeadChip [31] 
GSE75037 Illumina HumanWG-6 v3.0 Expression BeadChip [32] 
GSE81089 Illumina HiSeq 2500 [33] 
GSE87340 Illumina HiSeq 2000 [34] 

TCGA Illumina HiSeq 2000 [25] 
 
 

 

 
Figure 1.​ Flow of information through the different phases of the systematic review, following 
PRISMA Statement guidelines ​[35]​. 
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Figure 2.​ Number of samples per study, divided by sex and experimental group (ADC – lung 
adenocarcinoma samples). 

 
2.2. Individual Analysis 
 

Exploratory analysis found a lack of abnormal behavior except for three samples in principal              
component analysis (PCA) and unsupervised clustering; therefore, we excluded the GSM47570 and            
GSM47578 samples in study GSE19188, and the GMS773784 sample in study GSE31210 from further              
analysis. 

The differential expression results for each study demonstrated a large number of differentially             
expressed genes when comparing female lung adenocarcinoma patients to female control patients,            
and male adenocarcinoma patients to male control patients (​Supplementary Table S2​). However,            
the evaluation of sex-based differences in lung adenocarcinoma patients provided a small number             
of significantly affected genes (see ​Supplementary Table S3​), with no intersecting genes. While this              
was a gene set analysis based on logistic models, we were able to analyze all genes in each study,                   
ordered by their differential expression level (regardless of significance), to discover sets of genes              
involved in the same biological function that share the same expression pattern.  

Individual functional enrichment analysis of Gene Ontology (GO) terms and Kyoto           
Encyclopedia of Genes and Genomes (KEGG) pathways revealed a diversity of significant results             
among datasets, which we have summarized in ​Table 2​. When analyzing intersections, UpSet plots              
(​Figure 3​) established that most results were exclusive to a single study or common between two to                 
four studies. 
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Table 2. Summary of functional enrichment analysis results by Gene Ontology functions (BP:             
Biological Process, MF: Molecular Functions, CC: Cellular Component), and KEGG pathways. “Up”            
terms are overrepresented in female lung adenocarcinoma patients, while “Down” terms are            
overrepresented in male lung adenocarcinoma patients.  
 

 Significant GO BP 
terms 

Significant GO MF 
terms 

Significant GO CC 
terms 

Significant KEGG 
pathways 

 Up Down Total Up Down Total Up Down Total Up Down Total 
GSE10072 26 153 179 29 8 37 16 40 56 1 5 6 
GSE19188 7 12 19 0 3 3 11 20 31 1 4 5 
GSE31210 21 2 23 0 0 0 4 0 4 8 2 10 
GSE32863 428 51 479 28 5 33 40 41 81 27 6 33 
GSE63459 0 26 26 0 3 3 8 27 35 1 4 5 
GSE75037 245 35 280 14 4 18 14 21 35 22 5 27 
GSE81089 2 1 3 7 1 8 7 4 11 1 1 2 
GSE87340 178 62 240 3 0 3 48 13 61 26 1 27 

TCGA 294 228 522 28 30 58 21 70 91 30 17 47 
 
 
 

 
Figure 3. UpSet plots for ​(a) GO biological process, ​(b) GO molecular functions, ​(c) ​GO cellular                
components, and ​(d) KEGG pathways. UpSet plots detailing the number of common elements             
among GO terms in our functional enrichment analysis. Horizontal bars indicate the number of              
significant elements in each study. The vertical bars indicate the common elements in the sets,               
indicated with dots under each bar. The single points represent the number of unique elements in                
each group. 
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2.3. Meta-analysis 
 
We performed a functional meta-analysis for each of the 8,672 GO functions and KEGG              

pathways, including every term found in at least two studies. Results with a false discovery rate                
(FDR) of < 0.05 included 106 GO biological processes (BP), 3 GO molecular functions (MF), and 20                 
KEGG pathways, which were associated with 21 wider functional groups. We rejected potential             
bias on the significant results after the inspection of funnel plots; furthermore, sensitivity analyses              
failed to indicate alterations in the results due to the inclusion of any study. The results for the 129                   
significant GO terms and KEGG pathways are further detailed in ​Supplementary Table S4​,             
including FDR, the log odds ratio (LOR), and its 95% confidence interval (CI), and the standard                
error (SE) of the LOR. 

 
 

2.3.1. Upregulated Functions 
 

We discovered that 43.88% of detected functions related to immune response (​Supplementary            
Table S4 and ​Figure 4​), which were all upregulated in female lung adenocarcinoma patients​. The               
results provided evidence for the positive regulation of an acute inflammatory response, with CD8+              
alpha-beta T cell differentiation and activation, B cell proliferation and activation, and an increase of               
interleukin (IL) biosynthesis, including IL-2, 6, 8, 10 and 17.  

 

 
Figure 4. Summary dot plot of GO BP meta-analysis results. Only those significant terms with a                
LOR over 0.4 are shown. 
 
 
“Metabolism - Nucleic acids metabolism ​and signaling” was the second most abundant            

functional group upregulated in female lung adenocarcinoma patients, comprising 8.63% of the            
altered functions. These GO terms and KEGG pathways are mainly related to purinergic signaling              
through G protein-coupled receptors and cytidine metabolism. Other functional groups          
u​pregulated in female lung adenocarcinoma patients include lipid metabolism, cell migration, and            
homeostasis. 

 
 
2.3.2. Downregulated Functions 
 

23.26% of the significant functions exhibited lower activity in female when compared to male              
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lung adenocarcinoma patients. Downregulated functional groups include those related to          
apoptosis, cell cycle progression, cell junctions, DNA repair and telomere protection, mitochondrial            
processes, neural development, post-translational changes, post-transcriptional changes, protein        
degradation, and transcription regulation (​Supplementary Table S4​ and ​Figure 4​). 

 
2.4. Metafun-NSCLC Web Tool 
 

The Metafun-NSCLC web tool (https://bioinfo.cipf.es/metafun-nscls) contains information       
related to the nine studies and 1,329 samples involved in this study. For each study, this resource                 
includes fold-changes of genes and LOR of functions and pathways that can be explored by users to                 
identify profiles of interest.  

We carried out a total of 8,672 meta-analyses. For each of the 129 significant functions and                
pathways, Metafun-NSCLC depicts the global activation level for all studies and the specific             
contribution of each study, using statistical indicators (LOR, CI, and p-value) and graphical             
representations by function as forest and funnel plots. This open resource hopes to contribute to               
data sharing between researchers, the elaboration of new studies, and the discovery of new              
findings. 

 
 

 
3. Discussion 
 

Cases of NSCLC, including adenocarcinoma, exhibit differences in incidence, prevalence, and           
severity in female and male patients ​[1,3,5,36]​. Elucidating the molecular basis for this sex-based              
differential impact will have clinical relevance, as this conformation can guide/improve both            
diagnosis and treatment. 

Biomedical research generally underrepresents female patients, with sex-based differences         
rarely considered ​[37,38]​. Our systematic review of transcriptomic studies revealed that only 48.8%             
of NSCLC-related datasets considered both sexes, a figure similar (49%) to that reported by              
Woitowich et al. ​[38]​. Sex-based differences have an impact on disease biomarkers, drug response,              
and treatment ​[37]​, and, therefore, sex must represent a critical component of experimental design.              
Added to this problem, we faced a lack of standardization among studies and detailed clinical               
information (mutations, smoking status, stages) when searching for suitable datasets. The           
consideration of Findable, Accessible, Interoperable, and Reusable (FAIR) data principles ​[39]​, a            
requisite for quality science, would ensure that generated data can be of further use throughout the                
scientific community. 

To the best of our knowledge, only two studies have attempted to address the functional               
alterations caused by NSCLC in both male and female patients - Shi et al. ​[21]​, taking only into                  
account women and Araujo et al. ​[20]​. Shi et al. ​[21] integrated the samples of two datasets for a                   
differential expression analysis followed by a functional enrichment analysis, whereas Araujo et al.             
[20]​ independently processed six datasets and jointly analyzed their results. 

In this study, we addressed sex-based differences in NSCLC patients through meta-analysis to             
address previous limitations and improve on those approaches employed by others. This robust             
methodology integrates groups of data and provides results with higher statistical power and             
precision ​[22,23] and reveals findings that cannot be obtained through the intersection or addition              
of results in individual studies.  

Our results demonstrate an enrichment of immune response-related terms in female lung            
adenocarcinoma patients, which agrees with the findings of Araujo et al. ​[20]​. The analyzed              
functions suggest the positive regulation of CD8+ alpha-beta T cell activation and differentiation in              
female lung adenocarcinoma patients, which play an essential role in antitumor immunity [39,40].             
Furthermore, Ye et al. ​[40] discovered a more abundant population of effector memory CD8+ T cells                
in female lung adenocarcinoma patients, which agrees with our results. A previous study described              
CD8+ lymphocyte levels as a prognostic biomarker in NSCLC [41], and specifically in lung              
adenocarcinoma [42], with a correlation between higher levels of CD8+ lymphocytes with higher             
survival rates and lower disease recurrence. Elevated levels of active CD8+ T cells in female lung                
adenocarcinoma patients could form part of the molecular mechanism underlying higher survival            
rates when compared to male lung adenocarcinoma patients. Activation of the Notch signaling             
pathway decreases CD8+ T lymphocyte activity in lung adenocarcinoma [43]; therefore, the            
downregulation of the Notch signaling pathway discovered in female lung adenocarcinoma           
 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.24.20180026doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.24.20180026
http://creativecommons.org/licenses/by/4.0/


9 ​ of ​20 

patients could explain higher CD8+ T activity when compared to male lung adenocarcinoma             
patients 

 
Concerning the immune response, we also detected differences that supported the increased            

production of IL-2, which is known to stimulate T cell proliferation and the production of effector T                 
cells, thereby amplifying the lymphocytic response ​[41]​. Higher levels of IL-2 could also relate to               
increased activity of CD8+ T cells in female lung adenocarcinoma patients. Increased levels of IL-10               
are also supported in female lung adenocarcinoma patients and, although IL-10 has            
anti-inflammatory and anti-immune activities ​[42,43]​, studies have suggested a dual role in cancer.             
In advanced lung adenocarcinoma, high expression of IL-10 receptor 1 correlates with worse             
prognosis ​[42], while IL-10 expression by T-regulatory cells inhibits apoptosis through Programmed            
death-ligand 1 inhibition ​[43]​. Nevertheless, IL-10 correlates with better prognosis when expressed            
by CD8+ T cells in early stage NSCLC ​[44] and it seems to activate the antitumor control of CD8+ T                    
cells ​[45]​. IL-2 and IL-10 could have an increased activity in early stage female patients 

, alongside with a higher population of active CD8+ T cells than males, conferring women a                
survival advantage. 

We also detected the positive regulation of IL-6 biosynthesis in female lung adenocarcinoma             
patients, with ​increased IL-6 levels correlating with worse prognosis in NSCLC patients in previous              
studies ​[46,47]​. Network analysis in non-smoking female lung adenocarcinoma patients described           
IL-6 as one of the pathology’s central nodes ​[21]​, and these findings agree with our results, which                 
provide evidence of the critical role of IL-6 in tumor progression in female lung adenocarcinoma               
patients. IL-8 and IL-17 also exhibit increased production and biosynthesis in female lung             
adenocarcinoma patients, with said interleukins known to influence tumor growth and metastasis            
and correlate with worse prognosis ​[48–50]​. 

Although altered immune responses can positively and negatively influence tumor          
progression, our findings, and others, have detected GO terms that point to an elevated acute               
immune response in female compared to male lung adenocarcinoma patients. Of note, sex-based             
immunological differences in lung adenocarcinoma might have an impact on immunotherapy           
response. Different studies have addressed the role of sex in immunotherapy ​[40,51–53]​,            
establishing improved survival for female NSCLC patients. The discovered molecular pathways           
differentially activated between male and female lung adenocarcinoma patients may underlie           
phenotypic differences regarding immunotherapy response. 

 
We also detected an upregulation of purinergic signaling and nucleic acid metabolism in             

female lung adenocarcinoma patients, a finding not described in previous studies. In NSLC has              
been described An antitumor effect of the P2X4 receptor has been described in NSLC ​[54]​, which                
also exhibits sexual dimorphism in murine brain microglia ​[55]​. Other P2 and A2 receptors play a                
role in NSCLC ​[54]​, but evidence of sex-based differences in receptor expression in human NSCLC               
patients has yet to be reported. Thus, the exploration of the differential role of purinergic signaling                
between male and female lung adenocarcinoma patients may represent an interesting proposition.  

 
Our study has characterized functional differences between sexes in lung adenocarcinoma,           

shedding light on the functional basis behind this pathology in men and women. While our               
meta-analysis findings confirmed the conclusions of other studies, we also report previously            
undescribed alterations in biological processes that may broaden this field of study. Further             
knowledge regarding how those factors related to the functional mechanisms described above            
differentially impact male and female lung adenocarcinoma patients may improve our           
understanding of the disease and improve treatment and diagnosis through biomarker           
identification.  

 
 

4. Materials and Methods  
 

Bioinformatics and statistical analysis employed R software v.3.5.3 ​[56]​. ​Supplementary Table           
S5​ details R packages and versions. 

 
4.1. Study Search and Selection 
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Publicly available datasets were collected from GEO ​[24]​, ArrayExpress ​[57]​, and TCGA ​[25]​. A              
systematic search of studies published in the period 2004-2018 was conducted in 2019 following the               
preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines ​[35]​.           
Several keywords were employed in the search, including lung adenocarcinoma (ADC),           
non-small-cell lung carcinoma (NSCLC), Homo sapiens, and excluding cell lines. 

Eleven variables were considered for each study, including the clinical characteristics of the             
patients (e.g., sex and smoking habit) and experimental design (e.g., sample size and sample              
extraction source). The final inclusion criteria were: 

 
Sex, disease stage, and smoking habit variables registered 
RNA extracted directly from human lung biopsies 
Both normal and lung adenocarcinoma samples available 
Patients had not undergone treatment before biopsy 
Sample size of > 3 for case and control groups in both sexes 

 
Finally, normalized gene expression data of six array NSCLC datasets (GSE10072, GSE19188,            

GSE31210, GSE32863, GSE63459, and GSE75037) and counts matrix of three RNA-seq NSCLC            
datasets (GSE81089, GSE87340, and TCGA-LUAD) were retrieved. 

 
4.2. Individual Transcriptomics Analysis 
 

Individual transcriptomics analysis consisted of three steps: pre-processing, differential         
expression analysis, and functional enrichment analysis (​Figure 5a​). 

Data pre-processing included the standardization of the nomenclature of the clinical variables            
included in each study, normalization of RNA-seq counts matrix, and exploratory analysis.            
RNA-seq counts were pre-processed with the ​edgeR ​[58] R package using the trimmed mean of               
m-values (TMM) method ​[59]​. Annotation from probe set to Entrez identifiers from the National              
Center for Biotechnology Information ​[60] database and gene symbol was carried out with the              
biomaRt ​[61] R package. When dealing with duplicated probe-to-Entrez mappings, the median of             
their expression values was calculated. The exploratory analysis included unsupervised clustering           
and PCA, to detect patterns of expression between samples and genes, and the presence of batch                
effect in each study (​Figure 5b​). 

Differential expression analyses were performed using the ​limma ​[62] R package. To detect             
differentially expressed genes in male and female lung adenocarcinoma patients, the following            
contrast was applied:  

 
(ADC.W - Control.W) - (ADC.M - Control.M) 
 

where ADC.W, Control.W, ADC.M and Control.M correspond to lung adenocarcinoma affected           
women, control women, lung adenocarcinoma affected men and control men, respectively. Paired            
samples design was implemented, and tobacco consumption was included as a batch effect to              
reduce its impact on data. P-values were calculated and corrected for FDR ​[63]​. This comparison               
allows the detection of genes and functions altered by the disease and that have higher or lower                 
activity in women when compared to men. Significant functions and genes were considered when              
FDR < 0.05. 

Functional enrichment analyses were performed using the Gene Set Enrichment Analysis           
(GSEA) implemented in the ​mdgsa ​[64] R package. P-values were, again, corrected for FDR. For               
functional annotation, two functional databases were used: the KEGG Pathway database ​[65] and             
GO ​[66]​. GO terms were analyzed and propagated independently for each GO ontology: BPs, MFs,               
and cellular components (CC). Those annotations excessively specific or generic were filtered out,             
keeping functions with blocks of annotations between 10 and 500. Intersections within groups were              
analyzed with UpSet plots ​[67]​ (​Figure 5c​). 
 
4.3. Functional Meta-analysis 
 

Functional GSEA results were integrated into a functional meta-analysis ​[68] implemented           
with ​mdgsa ​and ​metafor ​[69] R packages. Meta-analysis was applied under the DerSimonian & Laird               
random-effects model ​[70], taking into account individual study heterogeneity. This model           
considers the variability of individual studies by increasing the weights of studies with less  
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Figure 5.​ Workflow and analysis design. ​(a)​ Summary of the analysis design followed in this work, 
(b)​ example of exploratory analysis performed at the pre-processing stage, ​(c)​ example of UpSet plot 
as an intersection analysis for functional enrichment analysis results, and ​(d)​ examples of forest and 
funnel plots to assess meta-analysis results. 
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variability when computing meta-analysis results. Thus, the most robust functions between studies            
are highlighted. 

A total of 6,467 GO BP terms, 785 GO CC terms, 1207 GO MF terms, and 213 KEGG pathways                   
were evaluated. P-values, FDR corrected p-values, LOR, and 95% CIs of the LOR were calculated               
for each evaluated function. Functions and pathways with FDR < 0.05 were considered significant,              
and both funnel and forest plots were computed for each (​Figure 5d​). These representations were               
checked to assess for possible biased results, where LOR represents the effect size of a function, and                 
the SE of the LOR serves as a study precision measure ​[71]​. Sensitivity analysis (leave-one-out               
cross-validation [69]) was conducted for each significant function to verify possible alterations in             
the results due to the inclusion of any study. 
 
 
4.4. Metafun-NSCLC Web Tool 
 

All data and results generated in the different steps of the meta-analysis are available in the                
Metafun-NSCLC web tool (​https://bioinfo.cipf.es/metafun-nsclc​), which is freely accessible to any          
user and allows the confirmation of the results described in this manuscript and the exploration of                
other results of interest. 

 
The front-end was developed using the Angular Framework. All graphics used in this web              

resource have been implemented with Plot.ly except for the exploratory analysis cluster plot, which              
was generated with​ ggplot2. 

This easy-to-use resource is divided into five sections: 1) Summary of analysis results in              
each of the phases. Then, for each of the studies, the detailed results of the 2) exploratory analysis,                  
3) differential expression, and 4) functional profiling. The user can interact with the web tool               
through graphics and tables and also search for specific information for a gene or function. Finally,                
section 5) provides several indicators for the significant functions identified in the meta-analysis             
that inform whether they are more active in men or women.  

 
 
5. Conclusions 
 

We identified immune responses and purinergic signaling as the two main biological processes             
altered between female and male lung adenocarcinoma patients by a meta-analysis of            
transcriptomic datasets. Immune responses and purinergic signaling exhibit increased activity in           
female lung adenocarcinoma patients, whereas other processes (such as DNA repair) are more             
active in male lung adenocarcinoma. Although further biological experiments are required to verify             
and fully explore these findings, our results provide new clues to understand the molecular              
mechanisms of sex-based differences in lung adenocarcinoma patients and opens new perspectives            
to identify new biomarkers and therapeutic targets. 

 
 

Data Availability​: ​The data used for the analyses described in this work is publicly available at GEO                 
(​https://www.ncbi.nlm.nih.gov/geo/​) and the Genomic Data Commons Data Portal (TCGA,         
https://portal.gdc.cancer.gov/​). The accession numbers of the GEO datasets downloaded are: GSE10072,           
GSE19188, GSE31210, GSE32863, GSE63459, GSE75037, GSE81089 and GSE87340. Only the samples associated            
with the project TCGA-LUAD were downloaded from the TCGA. 
 
Computer Code and Software: ​The code developed for the analyses described in this work is publicly                
available at GitLab (​https://gitlab.com/ubb-cipf/metafunr​). All software and versions used are detailed in            
Supplementary Table S5​. 
 
Supplementary Materials. ​Figure S1​: Distribution of sex information among the reviewed studies, ​Table S1​:              
Distribution of clinicopathological characteristics of each study population, ​Table S2​: Summary of differential             
expression analysis results, ​Table S3​: Significant genes differentially expressed between male and female lung              
adenocarcinoma patients, ​Table S4​: All significant GO terms and KEGG pathways in the functional              
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Supplementary Figure S1​. Information regarding sex distribution among reviewed         
studies. 
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Table S2. ​Summary of differential expression analysis results. Two exploratory differential           
expression analyses were performed (ADC Women - Control Women, ADC.W -Control.W; ADC            
Men - Control Men, ADC.M - Control.M), together with the contrast of interest: (ADC.W -               
Control.W) - (ADC.M - Control.M). When performing the contrast of interest, “Up” terms are              
overrepresented in female lung adenocarcinoma patients, while “Down” terms are overrepresented           
in male lung adenocarcinoma patients.  

Study  (ADC.W-ControlW)-
(ADC.M-Control.M) ADC.W-ControlW ADC.M-Control.M 

GSE10072 
Up 0 1199 3182 

Down 0 1296 2688 

GSE19188 Up 0 2348 5828 
Down 0 2111 3830 

GSE31210 Up 0 3310 3560 
Down 0 2370 2543 

GSE32863 Up 6 5243 2458 
Down 1 4507 2172 

GSE63459 Up 0 2409 1561 
Down 0 2064 1611 

GSE75037 Up 1 5779 4115 
Down 1 5117 3680 

GSE81089 Up 3 2654 3564 
Down 0 3383 4262 

GSE87340 Up 1 4887 1875 
Down 3 4958 1841 

TCGA Up 1 5861 5397 
Down 0 5569 5269 
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Table S3.​ Genes differentially expressed between male and female lung adenocarcinoma patients 

ENTREZ ID Gene Name Up / Down logFC adj.pval Study 

9086 Eukaryotic translation initiation factor 1A 
Y-linked Up 0.606 

1.514 
0.014 

7.38*10-7 
GSE32863 
GSE75037 

146330 F-box and leucine rich repeat protein 16 Down 1.247 
2.157 

0.028 
0.003 

GSE32863 
GSE75037 

3394 interferon regulatory factor 8 Up 1.177 0.028 GSE32863 

80301 pleckstrin homology domain containing 
O2 Up 0.986 0.028 GSE32863 

3689 integrin subunit beta 2 Up 1.393 0.043 GSE32863 

11309 solute carrier organic anion transporter 
family member 2B1 Up 1.123 0.049 GSE32863 

83706 fermitin family member 3 Up 0.866 0.049 GSE32863 

252948 testis-specific transcript, Y-linked 16 Up 1.655 
2.983 

1.98*10-7 
3.3*10-14 

GSE81089 
TCGA 

107987337 ZFY antisense RNA 1 Up 1.609 0.001 GSE81089 
6736 sex determining region Y Up 1.519 0.007 GSE81089 

694 BTG anti-proliferation factor 1 Up 0.859 0.007 GSE87340 
64582 G protein-coupled receptor 135 Down 2.213 0.007 GSE87340 
22979 EFR3 homolog B Down 1.799 0.03 GSE87340 
54753 zinc finger protein 853 Down 1.581 0.04 GSE87340 
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Table S5.​ Software and versions used in this study. 

Software / R package Version 
R 3.5.3 

AnnotationDbi 1.44.0 
Biobase 2.42.0 
biomaRt 2.38.0 

edgeR 3.24.3 
GEOQuery 2.50.5 
ggdendro 0.1-20 

ggpubr 0.2 
hgu133plus2.db 3.2.3 

illuminaHumanv3.db 1.26.0 
KEGG.db 3.2.3 

limma 3.38.3 
mdgsa 1.14.0 

metafor 2.1-0 
methods 3.5.3 

org.Hs.eg.db 3.7.0 
reshape 0.8.8 

stats 3.5.3 
SummarizedExperiment 1.12.0 

TCGAbiolinks 2.10.5 
tidyverse 1.2.1 
UpSetR 1.3.3 

utils 3.5.3 
 

The ​Metafun-NSCLC​ web tool is freely available at: https://bioinfo.cipf.es/metafun-nsclc 
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