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ABSTRACT 
 
Accurately estimating the seroprevalence of antibodies to SARS-CoV-2 requires the use of 

appropriate methods.  Bayesian statistics provides a natural framework for considering the 

variabilities of specificity and sensitivity of the antibody tests, as well as for incorporating prior 

knowledge of viral infection prevalence. We present a full Bayesian approach for this purpose, 

and we demonstrate the utility of our approach using a recently published large-scale dataset 

from the U.S. CDC.  

 

INTRODUCTION 

Antibody tests for COVID-19 have been increasingly deployed to estimate the 

seroprevalence of antibodies to SARS-CoV-21. Although antibody tests can provide important 

estimations on the prevalence of the viral infection in populations, the test results must be 

interpreted with caution due to the presence of false positives and false negatives2. Therefore, a 

critical statistical challenge is how to accurately estimate the prevalence of the viral infection in 

populations while accounting for the false positive and false negative rates of the antibody tests.  

Recently, the U.S. Centers for Disease Control and Prevention (CDC) published a large-

scale study on antibody tests from 10 sites in the U.S. administered between March 23 and May 

12, 20203. The CDC antibody tests employed an enzyme-linked immunosorbent assay with 

a specificity (i.e., 1 – false positive rate) of 99.3% (95% CI, 98.3%-99.9%) and sensitivity 

(i.e., true positive rate) of 96.0% (95% CI, 90.0%-98.9%)3. In order to take the test 

accuracy into the consideration, the CDC study applied the following simple correction: 

Robs = P�Sensitivity + (1-P) � (1-Specificity), where Robs is the observed seroprevalence 

in the study samples and P is the unknown seroprevalence in populations. Using the 

point estimates of the sensitivity (96.0%) and specificity (99.3%) of the antibody tests, 

they obtained the point estimate of the population prevalence P = (Robs – 0.007)/0.953.   
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There are two main limitations with such an approach. First, only the point estimate of 

population prevalence P was obtained. Although the CDC study also generated 

confidence intervals for the point estimate based on a non-parametric bootstrap 

procedure, the confidence interval does not provide a probabilistic measurement of the 

uncertainty associated with all possible values of the unknown prevalence. Second, the 

above CDC approach could not account for any prior knowledge of the population 

prevalence P, which can lead to inaccurate estimation especially when the true rate of 

viral infection is low, even with high specificity and sensitivity of the tests4,5. 

To overcome the above limitations, we have developed a Bayesian approach. Our 

approach is not a simple application of Bayes’ theorem by plugging in the point 

estimates of sensitivity and specificity into the formula and computing a posterior 

probability. Instead, our approach is a full Bayesian procedure that models the known 

variability in the sensitivity (95% CI, 90.0%-98.9%) and specificity (95% CI, 98.3%-

99.9%) of the antibody test, and we can incorporate any prior knowledge of the viral 

infection rate to estimate the entire posterior probability distribution of the unknown 

population prevalence.  

 

MATERIALS AND METHODS 

Bayesian modeling 

Let Nt and Np denote the number of people tested in total and the number of people tested as 

positive, respectively. Let p denote the unknown seroprevalence of antibodies to SARS-CoV-2. 

Let θ denote the true positive rate of the antibody test (i.e., sensitivity). Let κ denote the false 

positive rate of the test (i.e., 1 – specificity). Then, we can define the following likelihood function: 

L(Nt, Np | p, κ, θ) =  (pθ + (1- p)κ)Np + (p(1-θ) + (1- p)(1-κ))(Nt - Np)
  (1) 
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In Eq. (1), the term (pθ + (1- p)κ)Np corresponds to the probability of observing Np people that 

have tested positive, since a person with a positive test result can either be infected (with the 

probability of p) and correctly test positive (with the probability of θ), or not infected (with the 

probability of 1 - p) and falsely test positive (with the probability of κ). Similarly, the term (p(1-θ) 

+ (1- p)κ)(Nt - Np) corresponds to the probability of observing (Nt - Np) people whose test results 

were negative. 

To estimate the posterior probability of p,, we need to sample from the following posterior 

distribution: 

Prob(p, κ, θ | Nt, Np) � L(Nt, Np | p, κ, θ) � Prior(p) � Prior(κ) � Prior(θ)   (2) 

To specify the prior distribution for p, κ, and θ, we chose beta distributions as they are 

commonly used to model probabilities6. 

p ~ Beta (αp, βp)            (3) 

κ ~ Beta (ακ, βκ)            (4) 

θ ~ Beta (αθ, βθ)         (5) 

where αp, βp, ακ, βκ, αθ, and βθ denote shape parameters of the corresponding beta distributions. 

For the unknown parameter p, we chose to use a non-informative flat prior probability 

distribution for this study (i.e., αp = βp = 1), although it can be adjusted if prior knowledge of the 

proportion of infected people for a particular region is known (see more in the Discussion 

section). For κ and θ, we chose informative priors to reflect the known specificity and sensitivity 

of a particular antibody test.  Specifically, the shape parameters of ακ, βκ, αθ, and βθ  can be 

estimated using the method of moments5 as follows: 

   ακ =  μκ(μκ(1-μκ)/σκ
2 -1)    (6) 

   βκ =  (1-μκ)(μκ(1-μκ)/σκ
2 -1)    (7) 

   αθ =  μθ(μθ(1-μθ)/σθ
2 -1)    (8) 

   βθ =  (1-μθ)(μθ(1-μθ)/σθ
2 -1)    (9) 
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where μκ and σκ
2, and μθ and σθ

2 represent the mean and variance of the test specificity and 

sensitivity, respectively. For this study, the mean of specificity and sensitivity is 99.3% and 

96.0%, respectively. The variances of specificity and sensitivity were approximated7 as s(1-s)/n, 

where s is the mean value of specificity or sensitivity, and n = 618 according to the CDC 

validation study on the antibody test accuracy8. 

We used WinBUGS9 (version 1.4.3) to implement the above models. In particular, the 

likelihood function was implemented using the “ones trick”10 of WinBUGS (see the GitHub 

repository https://github.com/qunfengdong/AntibodyTest for the implementation details). The 

posterior distributions were estimated with the Markov Chain Monte Carlo (MCMC) sampling in 

WinBUGS using the following parameters: the number of chains of 4, the number of total 

iterations of 100,000, burn-in of 10,000, and thinning of 4. Convergence and autocorrelations 

were evaluated with trace/history/autocorrelation plots and the Gelman-Rubin diagnostic11. 

Multiple initial values were applied for MCMC sampling. The above Bayesian procedure was 

validated with simulated datasets generated by our customized R12 script (available in the above 

GitHub repository).  

 

Seroprevalence data  

The seroprevalence data was taken from the aforementioned CDC publication3.  Our 

approach requires two inputs: (i) the total number of tested samples and (ii) the number of 

positive samples. For this project, we only focused on gender-specific data in the CDC study. 

We extracted the total number of male and female samples from the original Table 1 in the CDC 

publication. However, the number of positive samples was not reported in the CDC publication. 

To infer those numbers for both genders, we extracted the CDC estimated seroprevalence, P, 

for both genders from the original Table 2 in the CDC publication. Using the equation P = (Robs 

– 0.007)/0.953 mentioned above, we obtained the observed seroprevalence Robs for 
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both genders, which were used for calculating the number of observed positive male and 

female samples by multiplying Robs to the total number of samples in each respective gender. 

Table 1 lists the calculated number of test positive samples, rounded to the nearest integer in 

each site. 

Table 1. Number of positive samples calculated from the CDC publication3 

Sites 
Number of positive samples  
(number of total samples) 
Female Male 

Western Washington State 31 (1930) 27 (1334) 
New York City metro area 73 (1333) 65 (1149) 

Louisiana 45 (677) 36 (507) 
South Florida 20 (964) 22 (778) 

Philadelphia metro area 8 (422) 14 (402) 
Missouri 25 (1018) 32 (864) 

Utah 16 (673) 13 (465) 
San Francisco Bay area 4 (653) 11 (571) 

Connecticut 28 (729) 43 (702) 
Minneapolis metro area 12 (454) 6 (406) 

 

 

RESULTS 

We applied our Bayesian approach to the data listed in Table 1. It is important to emphasize 

that Bayesian approaches produce entire probability distributions instead point estimates6. 

Figure 1 depicts the posterior distributions of the seroprevalence of antibodies to SARS-CoV-2 

virus in 10 U.S. sites. Table 2 lists both the original CDC point estimates with the accompanying 

95% confidence intervals, and our Bayesian estimates, which were presented as the medians 

and 95% credible intervals of the posterior distributions. It is worth noting that confidence 

intervals and Bayesian credible intervals are two different concepts13, thus they are not 

technically comparable despite being listed together in Table 2 for convenience. Although the 

posterior medians are similar to the original CDC point estimates overall, the entire posterior 

distributions (fig. 1) inferred by our Bayesian approach accurately capture the uncertainties 

associated with seroprevalence (i.e., the posterior distribution provides a precise probability 
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associated with every possible value of seroprevalence), which cannot be achieved through 

confidence intervals.   

Table 2. Estimated seroprevalence of antibodies to SARS-CoV-2 in populations 

Sites 
CDC estimate3 

(95% confidence interval), % 
Posterior median 

(95% credible interval), % 
Female Male Female Male 

Western Washington State 1.7  
(0.7-1.9) 

1.4 
(0.8-2.4) 

1.0 
(0.2-1.9) 

1.5 
(0.4-2.5) 

New York City metro area 5.7 
(4.2-7.0) 

5.9 
(4.5-7.6) 

5.0 
(3.6-6.5) 

5.3 
(3.8-6.9) 

Louisiana 7.0 
(4.7-9.4) 

6.8 
(4.2-9.3) 

6.3 
(4.4-8.6) 

6.8 
(4.6-9.5) 

South Florida 2.2 
(1.2-3.4) 

2.2 
(1.1-3.6) 

1.5 
(0.4-2.8) 

2.3 
(1.0-3.8) 

Philadelphia metro area 1.9 
(0.7-3.7) 

3.0 
(1.3-5.2) 

1.5 
(0.2-3.2) 

3.1 
(1.3-5.4) 

Missouri 2.6 
(1.5-3.7) 

3.1 
(1.8-4.6) 

1.9 
(0.7-3.2) 

3.2 
(1.8-4.8) 

Utah 2.5 
(1.2-4.1) 

2.2 
(0.9-3.6) 

1.9 
(0.6-3.4) 

2.4 
(0.8-4.3) 

San Francisco Bay area 0.7 
(0.2-1.9) 

1.2 
(0.4-2.7) 

0.3 
(0.02-1.2) 

1.4 
(0.3-3.0) 

Connecticut 4.1 
(2.6-5.9) 

5.7 
(3.8-7.6) 

3.4 
(1.9-5.1) 

5.8 
(3.9-7.9) 

Minneapolis metro area 2.7 
(1.2-4.8) 

0.7 
(0-2.3) 

2.2 
(0.7-4.2) 

1.1 
(0.1-2.7) 

 

 

DISCUSSION 

Antibody tests have been increasingly applied to estimate the prevalence of people who have 

been infected by the SARS-CoV-2 virus. For example, New York City recently released data of 

more than 1.46 million coronavirus antibody test results on August 18, 2020. Accurately 

analyzing such data is critical for developing important public health policies14. Our Bayesian 

approach can account for the variabilities in antibody tests (i.e., uncertainties in the sensitivity 

and specificity of the tests). In addition, the Bayesian approach can easily incorporate prior 

knowledge of the proportion of infected people for a particular region. This is particularly 

important for accurate estimation if the true prevalence is low5. Moreover, the Bayesian 

approach also provides a natural framework for updating the estimation based on new data, 
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which is particularly relevant to the continuous monitoring of the seroprevalence of coronavirus 

antibodies. For example, New York City is still releasing coronavirus antibody test results on a 

weekly basis15. By turning the estimated posterior distribution from previous weeks into a prior 

distribution for the next week, the seroprevalence of coronavirus antibody can be quickly 

updated within a solid Bayesian probabilistic inference framework.   
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FIGURE LEGEND 
 

Figure 1. The posterior probability density of the prevalence of female (red) and male (blue) 

infected by SARS-CoV-2 virus in 10 U.S. sites: (A) Western Washington State, (B) New York 

City metro area, (C) Louisiana, (D) South Florida, (E) Philadelphia metro area, (F) Missouri, (G) 

Utah, (H) San Francisco Bay area, (I) Connecticut, and (J) Minneapolis metro area. 
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