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allocations over groups but still follow a similar pattern with the myopic policy in that the

group that gets the majority of the daily supply is roughly the same with the group that

gets all under the myopic policy. This suggests the decision-maker to take the marginal

vaccination e↵ect of each group into consideration when making allocation. When the daily

supply is increasing at the beginning periods and then becomes steady, all the myopic

policies still perform the best while the old-first policy performs slightly worse. However,

they all have significant increases in confirmed cases and deaths compared to the setting

of constant daily supply. This is because there is limited room for improvement when the

supply at the beginning is scare, which illustrates the importance of vaccine supply in early

stages of the epidemic.

Finally, we discuss the trade-o↵ between e�ciency and equity. To account for it, we

consider a policy that allocates a portion of the daily supply according to the pro rata

policy and allocates the remaining portion according to the myopic policy. Our numerical

study shows that when more doses are reserved for the myopic policy, both the confirmed

cases and deaths averted have a decreasing margin. Moreover, 50% reduction in the averted

cases associated with pure myopic policy can be achieved by reserving only 30% of the

capacity for the myopic policy, and 47% reduction in averted deaths associated with pure

myopic policy requires merely 20% of the capacity to the myopic policy. We also examine

the impact of fairness on the myopic policy using Gini index.

The organization of the paper is as follows. Section 2 provides a literature review

of papers on vaccine allocation. In Section 3, we formally introduce the age-structured

SAPHIRE model. Section 4 presents the description of the data set and details of parameter

estimation. Section 5 contains comprehensive numerical experiment of allocation policies.

We conclude the paper in Section 6.

2. Literature Review

This paper is most relevant to papers on vaccine allocation for the COVID-19 pandemic.

Babus et al. (2020) consider a joint COVID-19 vaccine allocation and stay-at-home order

problem over di↵erent age-occupation groups. They use a fractional probit model to cal-

culate the probability of infection given a physical proximity and form a linear program

to determine the optimal vaccine allocation and stay-at-home order for age-occupation

groups with an objective of minimizing the risk of infections and the economic losses. They
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illustrate that vaccine allocation should emphasize age-based mortality risk more than

occupation-based exposure risk. This motivates our study on the allocation of COVID-19

vaccines to di↵erent age groups. Matrajt et al. (2020) use a non-interacting age-stratified

SEIR based compartmental model to study the vaccine allocation problem for COVID-19

to di↵erent age groups. They set all the parameters in the model according to the litera-

ture and solve the optimization problem with a single capacity constraint under di↵erent

objectives. They find that when minimizing deaths, it is optimal to vaccinate group 75+

first if the vaccine e↵ectiveness is low, while it is optimal to vaccinate younger groups first

if the e↵ective coverage is high. When minimizing symptomatic infections, priority was

given to the younger groups. In this paper, we consider multi-period allocation and allow

mixing across groups. We obtain a similar characterization of the optimal static allocation

policies under the above objectives. In addition, we propose several dynamic heuristics

that outperforms static policies in terms of both confirmed cases and deaths. There are

some papers provide guidelines for (ethical) allocation of limited doses of future COVID-

19 vaccines. See Henn (2020), Emanuel et al. (2020a), Emanuel et al. (2020b), and Liu

et al. (2020b). Recently, the Advisory Committee on Immunization Practices (ACIP) has a

workshop discussing COVID-19 vaccine prioritization, see Dooling (2020) for more details.

This paper is related to papers studying other interventions for COVID-19. For example,

Birge et al. (2020) study the priority of lockdowns for regions in NYC using a variant of

space-stratified SEIR compartmental model with o↵-the-shelf disease transmission param-

eters and commuting matrix calculated with data from SafeGraph. Housni et al. (2020)

use a SIR based compartmental model to study the e↵ect on the testing capacity after

reopenning.

Papers studying vaccine allocation for other diseases like influenza are closely related to

this paper even though COVID-19 has di↵erent characteristics (e.g., larger mortality rate

and di↵erent morbidity rate compared with influenza). Mylius et al. (2008) develop an

age-structured SEIR model validated by the 1957-1958 asian flu pandemic. They compare

the e↵ectiveness of two policies, a policy prioritizing high-complication risk and a policy

prioritizing high-risk of infection, and show that which one is better depends on the time

of vaccination. Medlock and Galvani (2009) develop an age-structured SEIR model with

additional compartments for vaccinated individuals to determine the optimal vaccine allo-

cation for the swine-origin H1N1 influenza outbreak. Their contact matrix shows strong
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mixing within the same age groups and moderately high mixing between children and

people of their parents’ ages, This renders the optimal allocation to prioritize schoolchil-

dren and adults aged 30-39 as schoolchildren are most responsible for transmission and

their parents serve as bridges to the rest of the population. Medlock et al. (2009) further

extend Medlock and Galvani (2009) to include two levels of risk for complications due to

influenza infection and incorporate staggered delivery of vaccine doses. Lee et al. (2010)

use an agent-based SEIR model to justify the e↵ectiveness of the at-risk individuals-first

policy recommended by ACIP for the 2009 H1N1 influenza pandemic. Tuite et al. (2010)

develop an age-structured SEIR model in which each age group is further classified by risks,

and evaluate four vaccination strategies using the 2009 H1N1 data of Ontario, Canada.

Matrajt and Jr (2010) use a similar model with only two age groups (children and adults)

calibrated by the 2009 H1N1 pandemic in US to compare optimal vaccination strategies

started at di↵erent time during the pandemic under the settings of developing country and

developed country. Yarmand et al. (2014) consider a two-phase vaccine allocation problem

in which a limited doses of vaccines are allocated to di↵erent regions in the first phase and

additional doses are allocated in the second phase to contain the epidemic. They propose

two formulations of the problem, a two-stage stochastic linear program and a newsvendor

formulation, and test their solutions for the seasonal influenza in North Carolina. Lee et al.

(2015) propose a disease propagation model coupled with a vaccination queuing model

which can be used to derive the optimal timing for switching from the prioritized vaccina-

tion strategy to the nonprioritized strategy during the course of the influenza pandemic.

Nguyen and Carlson (2016) use a space-structured stochastic SIR model to derive the

optimal vaccine allocation under di↵erent time of vaccination, interacting levels between

cities, and vaccine capacities. Dalgıç et al. (2017) numerically compare the e↵ectiveness of

vaccine policies derived from agent-base models and compartmental models for influenza

pandemic. Duijzer et al. (2018) study a non-interacting meta-population SIR model and

provide structural characterizations of the the optimal vaccine allocation. They propose a

concept of does-optimal (similar the vaccination marginal e↵ect in this paper), and show

that to minimize total infections, it is ine�cient to allocate vaccines to groups under post-

peak stage of the epidemic. We refer to Li et al. (2018) and Venkatramanan et al. (2019)

for more recent work on influenza vaccine allocation. See Moore and Lessler (2015) for the

optimal allocation of oral cholera vaccines.
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The control of the above papers are all one-shot allocations (except Yarmand et al. (2014)

considering a two-phase allocation). To the best of our knowledge, Teytelman and Lar-

son (2013) and Long et al. (2018) are the only two papers considering dynamic allocation

policies for epidemics. Teytelman and Larson (2013) employ a new non-interacting space-

structured influenza-spread model with parameters inferred from the 2009-2010 H1N1

pandemic. They propose several dynamic heuristics including a pro rata heuristic, a pre-

peak heurisitc, a greedy heuristic, a critical period heuristic, and a telescope-to-the-future

switching algorithm heuristic. They show that the switching algorithm heuristic performs

the best in terms of infections averted. It is worth pointing out that although the greedy

heuristic allocates the vaccine doses one by one to the region with the highest marginal

benefit for the next vaccine while the myopic policy in this paper allocates the total daily

available doses to the age group with the highest vaccination marginal benefit. Moreover,

since the epidemic model in this paper is totally di↵erent from the one in Teytelman and

Larson (2013), the vaccination marginal benefit is computed di↵erently. Moreover, they

only provide numerical values of vaccination marginal benefits under di↵erent parameter

settings while we provide an analytic form with a direct explanation.

Long et al. (2018) develop a space-structured SIR model and estimate the contact matrix

by a gravity model. Using the 2014 Ebola case data from Guinea, Liberia, and Sierra Leone,

they evaluate several heuristic policies for hospital beds allocation: a static allocation deter-

mined by the fraction of the accumulated infections of each region at some time, a static

greedy R0 policy, a myopic LP policy, and a policy obtained from approximate dynamic

programming. They particularly focus on their performances under di↵erent availability of

data for parameter estimation and find that overall the myopic policy performs the best.

We would like to mention that the LP formulation for their myopic policy is di↵erent from

the one in this paper as we focus on vaccine allocation, and more importantly, we are

able to explain the allocation pattern of the myopic policy using the vaccination marginal

e↵ect. In addition, the gravity model used in Long et al. (2018) to estimate the contact

matrix is demonstrated unrealistic for COVID-19 by Li et al. (2020). Hence, as this paper

aims to provide valuable suggestions on COVID-19 vaccine allocation among age groups,

we directly estimate the contact matrix using the epidemic model and the data from NYC

(which is challenging due to the many local optimal solutions). Moreover, we propose and
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evaluate some variants of myopic policy (death-weighted myopic, two-day myopic, and

seven-day myopic), and shows that the two-day myopic policy is better.

This paper is related to papers discussing equity of disease intervention resources. It

has been observed that a more e�cient allocation policy typically has a less degree of

fairness and vice versa (Kaplan and Merson 2002, Yi and Marathe 2015). Therefore, there

are some discussions on the trade-o↵ between e�ciency and fairness in the literature.

Kaplan and Merson (2002) study the balance between e�ciency and equity in allocating

HIV-preventing resources. They propose a policy that reserves a proportion of the total

resources for fair allocations (allocation proportional to AIDS cases) and uses the remaining

resources for cost-e�cient allocations. In this paper, we also follow the same idea to balance

the e�ciency and fairness. Teytelman and Larson (2013) investigate the performance of

the convex combination of an e�cient switching allocation policy and a pro rata policy.

They find that the total number of infections is a decreasing convex function of the weight

assigned for the switching allocation policy by numerical experiments. Yi and Marathe

(2015) propose a framework to measure fairness of an allocation and use an agent-based

SEIR model to derive the relationship between e�ciency and degree of fairness under

di↵erent e�ciency measures and fairness axioms. All the above papers observe that a small

sacrifice of fairness can have a big decrease in infections. This is also observed in our

numerical studies. For other discussion on fairness of allocation, we refer to Lawrence O.

Gostin (2009), Huang et al. (2017), and Enayati and Özaltın (2020).

3. Model

In this section, we present an age-structured SAPHIRE model. In this model, the total pop-

ulation is divided into seven compartments including susceptible compartment, exposed

compartment, presymptomatic infectious compartment, unascertained infectious compart-

ment, ascertained infectious compartment, isolated compartment, and removed compart-

ment. Each compartment is further divided into five age group (labeled 1,...,5 in ascending

order): 0-17, 18-44, 45-64, 65-74, 75+. The dynamics of the age-structured SAPHIRE model

is given by the following equations (1)-(7). Figure 1 illustrates the status transition of age

group 1 and how susceptible individuals in age group 1 are infected. We should mention

that for simplicity, this figure does not specify all the transitions.
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Figure 1 Disease dynamics for the SAPHIRE model
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Dq
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Ri(t+1) =Ri(t)+
Ai(t)+ Ii(t)

Dr
+

Hi(t)

Dh
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where the meaning of the notations in (1)-(7) are listed in Table 1.

In equation (1), Si(t) � vi(t) is the unvaccinated individuals in group i, and

�
P

j
⌧ji(Ij(t)+↵(Pj(t)+Aj(t)))

Nj
is the force of infection for group i, i.e., the rate that an unvacci-

nated susceptible individual in group i gets infected. Here, we assume that only susceptible

individuals get vaccination, which can be achieved, e.g., by performing a test prior to vac-

cination (similar assumption can be found in Lee et al. 2015). For simplicity, we assume

that each individual only need one dose of vaccines for immunity and will immediately
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Table 1 Description of notations

Si(t): the number of susceptible individuals in age group i at time t;

Ei(t): the number of exposed individuals in age group i at time t;

Pi(t): the number of presymptomatic infectious individuals in age group i at time t;

Ai(t): the number of unascertained infectious individuals in age group i at time t;

Ii(t): the number of ascertained infectious individuals in age group i at time t;

Hi(t): the number of isolated individuals in age group i at time t;

Ri(t): the number of removed individuals in age group i at time t;

Ni: the population size of age group i;

�: the transmission rate due to the contact between an infectious individual and a susceptible individual;

⌧ij: the contact rate of an individual in age group i with an individual in age group j;

↵: the discount factor of the transmission rate due to the contact between an unascertained infectious

individual and a susceptible individual;

De: the average time from exposed to infectious;

ri: the fraction of ascertainment in age group i;

Dp: the average time from presymptomatic infectious to symptomatic infectious;

Dr: the average time from symptomatic infectious to recovered;

Dq: the average time from ascertained infectious to isolation;

Dh: the average time from isolation to recovered;

vi(t): the quantity of vaccines allocated to age group i at time t.

become immune to the disease after vaccination. This assumption will not a↵ect the quali-

tative characterization of our allocation policies. Of course, it is more realistic to model the

varying probability of being infected after vaccination at di↵erent time before immunity is

fully established and consider two or more doses vaccination requirement. The transmis-

sion of unascertained infectious is discounted by a factor ↵ (Li et al. 2020). We use (⌧ji)i,j

to model the mixing rate of di↵erent age groups. See Fumanelli et al. (2012), Liu et al.

(2020a) for more on age-specific social contact characterizations. Equation (2) means that

the increment of exposed individuals for group i equals the new infected individuals in

group i minus the average number of exposed individuals in group i who become presymp-

tomatic (i.e., Ei(t)
De

). Equation (3) means that the increment of presymptomatic individuals

for group i equals Ei(t)
De

minus the average number of presymptomatic individuals in group

i who become unascertained infectious (with probability 1� ri) or ascertained infectious

(with probability ri). Equation (4) means that the increment of unascertained individuals

for group i equals the new unascertained infectious individuals transferred from presymp-

tomatic individuals minus the average number of unascertained individuals in group i who
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are removed from the system (recovered and immune to the disease or deceased). Equa-

tions (5)(6)(7) have similar explanations. We do not consider birth rate and death rate in

our model as the data we use ranges around 3 months and the birth and the death from

natural causes can be ignored.

4. Data Description and Parameter Estimation

In this section, we describe the data set and how we use it to estimate parameters in our

model. The epidemic data we use is disclosed from the NYC Department of Health and

Mental Hygiene (NYC Health 2020), which covers the epidemic trajectory of New York

City, including daily confirmed cases and deaths, etc. Reported cases are divided by five

age groups, 0-17, 18-44, 45-64, 65-74, and 75+ respectively. The age group population

information is drawn from a 2017 census (Baruch College 2017). Some summary statistics

of di↵erent age groups are provided in Table 2. The table includes the total number of

confirmed cases and deaths in NYC from March 17 to June 8, as well as the fatality rate

of each group. It also covers the proportion of the population that belongs to the group,

where the total population in NYC (Manhattan area) is around 1.58 million.

Table 2 Summary statistics

age total cases total deaths population ratio fatality rate

0-17 6590 0 0.228 0

18-44 74828 678 0.384 0.009062308

45-64 77460 4019 0.245 0.051878418

65-74 25307 4309 0.080 0.170265658

75+ 24607 8583 0.064 0.348790219

A brief timeline of the epidemic progression and the city’s response is outlined as follows

(Wikipedia contributors 2020). On March 1, the first case of COVID-19 was confirmed in

New York State. On March 3, the first recorded person-to-person spread cases were con-

firmed. The epidemic then went through exponential growth, with a number of confirmed

cases of 17,800 by March 25. On the other hand, on March 14, all New York public libraries

were shut down. On March 17, facilities including theaters, concert venues, and nightclubs

were closed. And on March 22, a stay at home order was put into e↵ect where the majority

of businesses were paused. As the situation started to turn better in May and June, the
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city resumed operations according to a four-phase reopening plan, which began on June

8, and on July 20, the final phase was being executed.

We use the epidemic data of New York City, from March 17 to June 8, a total of 84 days,

to estimate our model parameters. The reasons for this selection can be summarized as

follows. First, New York City is the first major US city struck by the epidemic, and it went

through both the increasing phase and declining phase of the epidemic, which provides us

rich data about di↵erent stages of the epidemic. Second, the time period of our study is

approximately during the execution of the stay-at-home order, where the level of social and

economical activity stays roughly constant. This simplifies the model as we do not need

to incorporate di↵erent levels of economic activity in the model, which is not our focus

in this paper. Also, since lock-down is a common action taken when facing COVID-19,

the estimated model parameters and insights drawn from the model can be more useful

in places out of New York City at di↵erent times. Third, since we are focusing on the

disease spread between di↵erent age groups rather than geographical regions, New York

city is relatively the best fit because it has a high population density in a rather small

area, compared to places like Florida or Texas. But we may expect that the transition

parameters among age groups can be quite di↵erent at di↵erent locations, due to factors

including local age structure, level of urbanization, etc.

The way we estimate the parameters is described as follows. Some parameters related

to the COVID-19 disease are set according to Hao et al. (2020): Dr = 2.9, Dh = 30, De =

2.9, Dp = 2.3, Dq = 6, � = 1.4 and ↵= 0.55. Although these parameters are estimated from

the epidemic data of Wuhan, we would expect disease-specific parameters to be similar in

NYC. See Birge et al. (2020) for the same treatment of using disease-specific parameters

from Wuhan for epidemic models of NYC. But we caution that the parameters related

to mixing patterns among age groups can be quite di↵erent at di↵erent locations, this is

possibly because of di↵erent age structures, di↵erent levels of social distancing policies, etc.

The ascertainment rates also depend on locations. Hence, we have to estimate the contact

rate matrix (⌧ij)1i,j5 among age groups and the ascertainment rate r1, ..., r5 for the five

age groups.

Given a set of all the parameters of the model and the initial number of individuals in

each age group and compartment pair, we are able to compute the number of individuals

in each age group and compartment pair in all future dates including the daily number
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of confirmed cases and deaths of each age group. Our objective function (a function of

the parameters) is the weighted sum of squared error of the daily number of confirmed

cases and deaths predicted by the model to the actual data. The weights are set so that

our prediction for confirmed cases and deaths for each age group have similar normalized

error. We optimize the objective function with python’s built-in minimization function

(SLSQP algorithm). In fact, since the equations that define our model are nonconvex, there

exist many local optimal solutions to the objective function and many of them are quite

di↵erent from each other. In order to address this problem, we impose several inequalities

of entries of the contact matrix (revealed from the contact matrix estimated from other

papers, e.g., Fumanelli et al. 2012) into the optimization problem. After we incorporate

these constraints, the resulting two local optimal solutions that have the lowest objective

value are very close to each other with an average percentage di↵erence of 0.375% and a

max percentage di↵erence of 4.75%. See Appendix EC.2 for more details. Table 3 presents

one of the estimated contact matrices and Table 4 presents the estimated ascertainment

rates.

Table 3 Estimation of contact rates among age groups

⌧ 0-17 18-44 45-64 65-74 75+

0-17 0.0657 0.0255 0.0000 0.0000 0.0000

18-44 0.0151 0.0551 0.0053 0.0053 0.0053

45-64 0.0000 0.0084 0.0832 0.0131 0.0130

65-74 0.0000 0.0256 0.0400 0.0397 0.0397

75+ 0.0000 0.0320 0.0496 0.0496 0.0878

Table 4 Estimation of ascertainment rates

0-17 18-44 45-64 65-74 75+

r 0.014 0.105 0.142 0.142 0.183

The plot for the projected confirmed cases against actual data is shown in Figure 2a.

Figure 2b shows the projected deaths against actual data. Figure 3a and Firgure 3b repre-

sent the projected and actual daily confirmed cases for each age group, respectively. This

set of parameters provides a fairly good projection of the confirmed cases and the order
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of epidemic peaks of all the groups matches the real data. The prediction of the deaths

is slightly underestimated with a root mean squared error (RMSE) of 83. However, the

accumulated deaths for each group of our model is very close that of the real data. We can

see from Figure 4b that the ratio of the accumulated deaths of each age group converges

quickly to that of the actual data, and Figure 4a shows the same result.

Figure 2 Projected confirmed cases and deaths vs. actual data

(a) Confirmed cases (b) Deaths

Figure 3 Projected confirmed cases in each age group vs. actual data

(a) Projected confirmed cases (b) Actual confirmed cases

Some insights can be drawn from the estimated parameters. First, from the scales of ⌧

we can see that the contact rates are quite heterogeneous. The highest frequency of contact
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Figure 4 Ratio of accumulated confirmed cases and deaths from each age group in NYC

(a) Confirmed cases (b) Deaths

is within the 45-64 group and the 75+ group, which we argue could be because the 45-64

aged people are still carrying out some economical activities during lockdown that are

necessary to keep the city running, while for younger people, there are more proportion of

o�ce workers who could possibly work remotely and have a smaller frequency of contact

with others. For the older group, the 65-74 aged may have a larger proportion of living

alone, while the 75+ group may live in nursing homes and contact more often with others.

Second, the ascertainment rate for di↵erent age groups also varies significantly, with an

overall ascertainment rate of around 11%. For the kids, it is actually very small, which

partially agrees with the recent news (see, e.g., CBS News 2020) that many children are

tested positive on the virus, and would be otherwise not found infected if not tested.

This raises a concern that children may also be impacted by the virus. For other groups,

it generally follows the order of age, where the older, the more likely to be ascertained.

This observation is also consistent with our knowledge of the coronavirus, that it is more

dangerous to older people.

5. Vaccine Allocation Policy

In this section, we evaluate several vaccine allocation policies (static and dynamic) using

our age-structured SAPHIRE model and the parameters estimated. We consider the pop-

ulation of NYC (Manhattan area) in the planning horizon from Mar 17 to June 8 (84

days). Both the case of constant daily supply and the case of increasing daily supply are

investigated. We also discuss the trade-o↵ between e�ciency and fairness.

5.1. Static Allocation

We consider static allocation policies in this subsection, i.e., the proportion of daily avail-

able vaccines allocated to each group is the same for each day. Assume that if all the
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Table 5 Daily vaccine allocation for minimizing

deaths

doses 0-17 18-44 45-64 65-74 75+

2500 0 0 0 0 2500

5000 0 0 0 1184 3816

7500 0 0 0 2507 4993

10000 0 0 620 3322 6057

12500 0 0 2041 3779 6680

15000 0 0 3506 4102 7392

Table 6 Daily vaccine allocation for minimizing

deaths, per 10,000 people

doses 0-17 18-44 45-64 65-74 75+

2500 0 0 0 0 246

5000 0 0 0 93 376

7500 0 0 0 198 492

10000 0 0 16 262 597

12500 0 0 53 298 658

15000 0 0 90 323 728

susceptible individuals in a group are vaccinated and there are doses allocated to this group

in the future, then the vaccines cannot be transferred to other groups and are wasted. In the

following, we derive optimal static allocation policies with respect to di↵erent objectives

(total confirmed cases, the total deaths, and their weighted summation) under di↵erent

daily available doses.

Constant daily supply case We assume the daily number of available doses takes values

from 2,500 to 15,000. The total doses over the planning horizon will be able to cover from

15% to 80% of the total population. Note that 80% coverage of the total population is

su�cient for herd immunity even with a high basic reproduction number of R0 = 3.54 (Hao

et al. 2020).

We first consider minimizing the total number of deaths across all groups. For this

objective, the vaccine allocation is shown in Table 5. From this table, we can see that when

the daily available vaccines are very limited (e.g., 2500 doses), the optimal static allocation

policy only focuses on the 75+ age group since they are the most vulnerable to the virus.

As the daily available vaccines increase, the policy allocates some doses for younger groups

as well. Although these groups are more resistant to severe disease outcomes, providing

vaccination to them can help protect the most vulnerable group as well, as they have a

large contact rate with the oldest group. Meanwhile, for people aged between 0-44, the

policy suggests not to provide vaccination even if the daily available doses increase to

15000. This is because the fatality rates among these groups are extremely low, and their

contact levels with the most vulnerable groups are relatively small, so in order to achieve

the minimum deaths, we prefer not to give vaccination to them.
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Table 7 Daily vaccine allocation for minimizing

confirmed cases

doses 0-17 18-44 45-64 65-74 75+

2500 0 0 384 619 1498

5000 0 0 1880 1037 2083

7500 0 695 2892 1435 2479

10000 0 1758 3616 1641 2986

12500 0 2838 4344 1936 3383

15000 0 3909 5143 2177 3771

Table 8 Daily vaccine allocation for minimizing

confirmed cases, per 10,000 people

doses 0-17 18-44 45-64 65-74 75+

2500 0 0 10 49 148

5000 0 0 48 82 205

7500 0 11 74 113 244

10000 0 29 93 129 294

12500 0 47 112 153 333

15000 0 64 132 172 372

We also look at the allocation amount of each age group scaled by their population. Table

6 shows the daily number of vaccine per 10,000 people, allocated to each age group. From

this table we can observe that even though the absolute number of vaccines per capita is

increased, the scale of increase for younger groups is not that significant as indicated by

the previous table. The oldest group still has the largest vaccines per capita when the daily

supply of vaccines increases.

Figure 5a shows the estimated number of deaths as a function of total available doses.

The horizontal axis represents the daily available doses, the vertical axis represents the

minimal deaths by implementing the optimal static allocation policy. We can see from this

figure that the decrease in deaths becomes less significant when the daily available vaccines

become large.

We now consider the optimal static policy by minimizing the total confirmed cases

from all age groups. Table 7 shows the optimal vaccine allocation to each age group for

di↵erent daily available doses. We observe from this table that the pattern is similar but

Table 5 allocates more to older groups. Besides, the optimal static policy allocates vaccines

to younger groups even when the supply is limited. This illustrates that when supply is

limited, allocates all the available vaccines to the oldest group has a smaller marginal e↵ect.

Again, an allocation per capita and the e↵ect of total doses on total confirmed cases are

provided in Table 8 and Figure 5b respectively. We can see that to better prevent the virus

from spreading in the population, the oldest group is given less vaccine compared to the

previous allocation policy, while other groups are given more to decrease the spread within

them. The e↵ect of available doses on the total number of confirmed cases is almost linear,
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meaning that the incremental doses have equal margins. This indicates that in order to

prevent the spread of the virus, it is better to provide as many doses of vaccine as possible,

as the increased doses always have a nearly constant marginal e↵ect.

Figure 5 Estimated number of deaths and confirmed cases vs. available doses

(a) Death (b) Confirmed cases

The decision-maker may not simply want to minimize the total confirmed cases or the

total deaths. Instead, it is more likely to set an objective that combines these two measures.

So, here we consider an objective which is defined as:

weight of death⇥ deaths+ confirmed cases

In this case, we fix the total number of daily available doses to be 10,000. Then we increase

the weight of death from 1 to 40 to see how the policy is changed. Table 9 shows the

optimal allocation under di↵erent weight of deaths. We can observe that when death gets

more and more weighted, the policy converges slowly to the allocation which minimizes

only death and allocates more and more vaccine to the old people. We can see that as

we increase the weight of death in our objective, the predicted confirmed cases increase

almost linearly, but the decrease of total death becomes very flat quickly. So when making

allocation decisions, the decision-maker should properly balance the two objectives, and

sometimes the overemphasis of deaths will significantly increase the total confirmed cases,

which is not desired as we aim to eventually stop the virus from spreading.

To illustrate the performance of our static policy, we also run two heuristic policies as

benchmarks. In the benchmark test, we set the daily available doses to be 10,000 as the

results would not change qualitatively if the amount of daily available doses is di↵erent.
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Table 9 Daily vaccine allocation for minimizing combined objectives and the outcomes

death weight 0-17 18-44 45-64 65-74 75+ total confirmed total death

1 0 1445 3382 1786 3386 89339 5619

5 0 0 3407 2451 4142 90993 4915

10 0 0 2757 2687 4555 92027 4756

15 0 0 2277 2719 5004 93196 4659

20 0 0 2111 2884 5006 93523 4641

25 0 0 1947 2893 5159 94019 4620

30 0 0 1711 2907 5383 94779 4592

35 0 0 1586 2914 5500 95198 4579

40 0 0 1495 3004 5501 95431 4573

The first benchmark is a uniform allocation policy which gives 2,000 doses for each group

per day. Note that the two oldest groups actually have less population, so this benchmark

is indeed in favor of the older groups. The total number of confirmed cases under this

policy is 95,171, while the number of total deaths is 7051, which is far inferior to what

is achieved by the previous policies. The optimal static policy for death minimization has

an estimated 98,678 confirmed cases but only 4,541 deaths. The one for confirmed cases

minimization achieves 89,183 confirmed cases and 5,942 deaths. Another benchmark is

a policy that allocates vaccines to each age group proportionally to its population. This

policy has an estimated confirmed case of 100,215 and 9,432 deaths, which is even worse.

Increasing daily supply case In the following, we relax the assumption that the amount

of daily available vaccines does not change over time. It is likely that the supply is increasing

at the beginning and after some time periods does not change too much. To model this,

we assume the amount of daily available vaccines Ct has the following form:

Ct =

8
<

:
�t, tC/�

C, t >C/�.

(8)

In the simulation study, we set C = 10,000, and � takes value between 100 and 600. We

consider static policies that allocate a constant percentage of available doses each day to

each age group. Under di↵erent values of �, the allocation to minimize deaths is shown in

Table 10, while the allocation to minimize confirmed cases is in Table 11. We can observe
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from Table 10 that when the supply is limited at the beginning, i.e., � is small, the majority

of supplies are allocated to the oldest group. When the supply at the beginning increase,

more vaccines are allocated to the group 64-74, but no vaccine is allocated to 0-64 aged

individuals. This is almost consistent with the pattern of the optimal static policy when

the daily supply is constant. When the objective is minimizing confirmed cases, we observe

from Table 11 that groups 18-44 and 45-64 get more percentages of the supply, and their

shares do not change too much when � varies. This illustrates that when the steady supply

C is moderately limited (i.e., 10000 in our case), the optimal static policy allocates more

to younger groups regardless of the beginning limited supplies.

Table 10 Percentage allocation of minimizing deaths

� 0-17 18-44 45-64 65-74 75+ death confirmed

100 0.00% 0.00% 0.00% 6.17% 93.83% 10101 131321

200 0.00% 0.00% 0.00% 17.42% 82.58% 8997 125761

300 0.00% 0.00% 0.00% 19.31% 80.69% 8173 121689

400 0.00% 0.00% 0.00% 26.39% 73.61% 7536 117932

500 0.00% 0.00% 0.00% 28.93% 71.07% 7039 115186

600 0.00% 0.00% 0.00% 29.61% 70.39% 6648 113128

Table 11 Percentage allocation of minimizing total confirmed cases

� 0-17 18-44 45-64 65-74 75+ death confirmed

100 0.00% 31.53% 27.50% 15.36% 25.62% 10946 129580

200 0.00% 37.00% 29.80% 12.42% 20.79% 10390 121859

300 0.00% 36.21% 32.63% 12.07% 19.11% 9876 115438

400 0.00% 31.87% 33.50% 13.56% 21.12% 9238 110503

500 0.00% 28.74% 34.49% 13.95% 22.87% 8712 106860

600 0.00% 27.24% 35.58% 15.24% 21.99% 8402 104181

We mention that under the assumption that superfluous vaccines allocated to a group

are wasted, the optimal static policy will cause a huge waste even when the supply is

limited. For example, when the daily supply is a constant 2500, the total vaccines allocated
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to group 75+ is 84⇥2500 = 210000, which is more than twice of its population 101120. This

suggests considering dynamic allocation policies which are examined in the next section.

5.2. Dynamic Allocation

We consider dynamic allocation policies in this section. Since our age-structured SAPHIRE

model has 35 age-compartment pairs and the population in each pair may range to sev-

eral thousand (some ranges to hundreds of thousands, e.g., susceptible compartment), it is

challenging to compute the optimal dynamic allocation using dynamic programming. One

may want to use approximate dynamic programming to obtain good heuristics. However,

as illustrated in Long et al. (2018) with a space-structured epidemic model for the 2014

Ebola outbreak, where the authors evaluate allocation policies of Ebola treatment beds to

di↵erent regions (not vaccine allocation to di↵erent age groups considered in this paper),

the heuristic obtained from approximate dynamic programming performs worse than sim-

ple heuristics such as myopic policy (to be discussed below for our model). Hence, we only

provide evaluations of several dynamic allocation heuristics.

• (Old-First Policy) This policy allocates available daily vaccines to age group 5 first.

If there are any remaining vaccines, it allocates to age group 4, and so on.

• (Infection-First Policy) This policy allocates available daily vaccines proportionally

to the infection ratio of each group (i.e., Ai+Ei+Pi+Ii
Ni

).

• (Myopic Policy) In each time t, the myopic policy determines the amount of vaccines

vi allocated to age group i by minimizing the total new infections of all groups in time

t+1, i.e.,

min
5X

i=1

(Si � vi)�
5X

j=1

⌧ji(Ij +↵(Pj +Aj))

Nj

s.t.
5X

i=1

vi Ct, 0 vi  Si, i= 1, ...,5.

(9)

Since this is a linear program with a capacity constraint and a box constraint, the

myopic policy will first allocate vaccines to the group with the largest coe�cient. If

the number of susceptible individuals in this group is less than Ct, then the myopic

policy allocates the remaining doses to the group with the second-largest coe�cient,

and so on. The coe�cient of vi in the objective can be regarded as the marginal e↵ect

of a unit vaccine allocated to group i.
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• (Death-Weighted Myopic Policy) In each time t, the death-weighted myopic policy

determines the number of vaccines vi allocated to age group i by minimizing the total

weighted infections of all groups in time t+1,

5X

i=1

wi(Si � vi)�
5X

j=1

⌧ji(Ij +↵(Pj +Aj))

Nj
,

where wi is the death rate of group i.

• (Two-Day Myopic Policy) In each time t = 1,3,5, ..., this policy determines

vi(t), vi(t+ 1), i = 1, ...,5 to minimize the new infections of all groups in time t+ 2,

i.e.,

min
5X

i=1

(Ei(t+2)�Ei(t)+
Ei(t+1)

De
)

s.t. (1)� (7),
5X

i=1

vi(t)Ct,

5X

i=1

vi(t+1)Ct+1,

0 vi(t) Si(t), 0 vi(t+1) Si(t+1), i= 1, ...,5.

Then the allocations vi(t) and vi(t+1) are implemented in time t and t+1, respectively.

• (Seven-Day Myopic Policy) In each time t= 1,8,15, ..., the policy determines vi(t+

j), i= 1, ...,5, j = 0, ...,6 to minimize the new infections of all groups in time t+7. Then

the allocations vi(t+ j), i= 1, ...,5, j = 0, ...,6 are implemented in time t, t+1, ..., t+6.

Constant daily supply case We set the daily supply Ct to be a constant 10,000. For

the two-day myopic policy and seven-day myopic policy, as we mentioned in Section 4, the

disease dynamics (1)-(7) is nonlinear. Hence, their corresponding optimization problems

are nonconvex problems, which potentially have many local optimal solutions. To obtain

good local optimal solutions, we solve the optimization problems 100 times at the beginning

of every two days, or seven days and pick the one that gives the minimal objective value.

The outcomes of the above heuristics are listed in Table 12.

Here, we do not present the outcome of the death-weighted myopic policy as it yields

the same allocation with the old-first policy in this numerical study. Table 12 shows that

the two-day myopic policy performs the best in terms of both the total confirmed cases

and the total deaths. The myopic policy and the seven-day myopic policy also perform
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Table 12 Outcomes of di↵erent dynamic heuristics

confirmed death

0-17 18-44 45-64 65-74 75+ total 0-17 18-44 45-64 65-74 75+ total

old first 3638 42787 35937 5709 1898 89969 0 359 1792 954 676 3781

myopic 2107 35589 21827 6185 1831 67540 0 296 1085 1008 639 3028

infection-first 2285 31254 29341 5576 4315 72770 0 263 1450 923 1482 4118

two-day myopic 2121 35382 21735 6696 883 66818 0 295 1081 1090 332 2798

seven-day myopic 2304 33098 26681 4364 1581 68028 0 276 1320 728 568 2892

well. The myopic policy has slightly more deaths than the seven-day myopic policy, but the

later has slightly more confirmed cases. This demonstrates that myopic policies with longer

planning days do not perform better. The old-first policy has the largest total confirmed

cases and the infection-first policy has the largest total deaths. This is because the old-

first policy postpones younger groups that have the most infections, and the infection-first

policy only considers the infection ratio Ai+Ei+Pi+Ii
Ni

. Although the old-first policy itself

seems to be beneficial to decrease deaths, it actually causes more deaths compared to the

myopic policy and the two-day myopic policy which do not explicitly minimize deaths in

their optimization problems. This illustrates that the decreasing of confirmed cases leads

to fewer deaths as well and a good allocation can decrease both deaths and confirmed

cases.

In the following, we compare the allocation of di↵erent dynamic policies. Since the old-

first and the myopic policy only allocate the daily supply to one group (except when the

remaining susceptible individuals of the group cannot consume all the supply), we can

visualize them as in Figure 6. In the figure, the di↵erent color blocks represent time periods

of the allocation to di↵erent groups, and the vertical axis represents the time. The first row

corresponds to the old-first policy, and the second row corresponds to the myopic policy.

We do not specify the mixing of allocations on the boundary of di↵erent color blocks. The

coe�cients of vi for di↵erent age groups under the myopic policy is shown in Figure 7.

Note that even though the group 75+ has the largest coe�cient from day 10 (starts to

allocate to group 65-74) to 35, the vaccines will not be given to group 75+ after day 10 as

all its susceptible individuals are vaccinated. The allocation of the two-day myopic policy

is shown in Figure 8a.
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We can observe that the execution of the myopic policy follows a similar pattern as the

old-first policy at the beginning in that they both start from the oldest age group and

gradually move to younger groups. There are some di↵erences between these two policies

that explain the superiority of the myopic policy. First, the myopic policy spends less time

in the 65-74 and 45-64 age groups. We can observe that the myopic policy does have slightly

more confirmed and deaths for the 65-74 group. Although the myopic policy spends less

time in these groups, it moves to other groups (0-17, 18-44) with larger vaccine marginal

e↵ect (see Figure 7), and helps to control the disease transmission in all groups. Second, the

old-first policy still allocates vaccines to group 45-64 after day 34 even though the vaccine

marginal e↵ect of this group is smaller than group 0-17, while the myopic policy skips the

18-44 age group at day 34 and goes directly to the 0-17 age group. At the end of the horizon,

the myopic policy fluctuates among the groups 65-74, 18-44 ,and 45-64 as their vaccine

marginal e↵ects are nearly the same and short periods of allocation will change the order

of vaccine marginal e↵ects of di↵erent groups. At this stage, the allocation is insensitive

to di↵erent groups and a change of the myopic policy will not hurt the performance.

The two-day myopic policy has a mixing allocation as shown in Figure 8a. The majority

of the supply is first given to the group 75+ and moves to the group 65-74 roughly on

day 10. Around day 15 the majority of the supply is given to 45-64 and then moves to the

group 0-17 around day 34. Then the policy gives most of the vaccines to the group 18-44

after day 52. Comparing with the allocation of the myopic policy (Figure 6), the two-day

myopic policy roughly follows the pattern of the myopic policy but has more mixing on

the exchange time boundary and the end of the horizon, which may be the reason for its

slightly better outcomes.

The seven-day myopic policy is shown in Figure 8b. As we can see from this figure, the

daily allocation of this policy still follows a similar pattern as the two-day myopic policy,

but with a higher level of mixing in the allocation.

Increasing daily supply case In addition to the case where the daily supply is constant

throughout the time horizon, we also consider the setting that the daily supply is gradually

increasing over time. Again, the daily supply follows equation (8), C = 10,000, and � take

values 100,200, ...,600. The outcomes of the two-day myopic policy, the old-first policy,

and the infection-first policy are shown in Table 13. We do not put the outcome of the
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Figure 6 Allocation for old-first policy and myopic policy

Figure 7 Coe�cients of vi for di↵erent age groups under myopic policy

Figure 8 Daily allocation under di↵erent myopic policies

(a) Two-day myopic policy (b) seven-day myopic policy

myopic policy here as it is very close to that of the two-day myopic policy. The outcomes

of static policies are put here for comparison convenience.
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Table 13 Performance of dynamic policies under increasing vaccine supply

two-day myopic policy old-first policy infection-first static: confirm static: death

� confirmed death confirmed death confirmed death confirmed death confirmed death

100 123531 9208 123625 9087 125350 10324 129580 10946 131321 10101

200 111794 7612 111804 7488 114662 9128 121859 10390 125761 8997

300 102456 6515 101729 6377 105963 8143 115438 9876 121689 8173

400 95900 5671 96172 5494 99628 7367 110503 9238 117932 7536

500 91361 5189 93548 5269 95176 6800 106860 8712 115186 7039

600 88031 4750 91677 5148 91992 6396 104181 8402 113128 6648

From Table 13 we can observe that dynamic policies outperform static policies. Unlike

the case where daily supply is constant, the performance of the old-first policy outperforms

the infection-first policy and is close to that of the two-day myopic policy. Comparable

outcomes of the old-first policy and the two-day myopic policy may due to their similar

allocations during the beginning of the planning horizon. However, their performances are

all worse than those under constant daily supply. This demonstrates that one may not

achieve a significantly better performance when the starting inventory is extremely limited.

The dynamic allocation of the two-day myopic policy for � = 100 is shown in Figure 9.

We can see that the allocation follows a similar pattern to the case when vaccine supply

is constant over time. However, it spends much more time on the oldest group since the

initial available vaccines are more limited. Similar observation can be found under other

values of �.

5.3. Impact of fairness

So far, we only look at the e�ciency of allocation policies. However, as the ACIP COVID-

19 vaccines work group points out, equity in vaccine allocation and distribution is one of

the primary goals (Dooling 2020). We thus discuss fairness in this subsection.

In this study, we consider a policy that is a combination of the pro rata policy and the

myopic policy to account for the trade-o↵ between equity and e�ciency as the pro rata

policy is regarded as the fairest policy (implemented by CDC for the H1N1 vaccine alloca-

tion to states (Centers for Disease Control and Prevention 2010)) and the myopic policy

is one of the most e�cient policies discussed in this paper. Let �2 [0,1] be the fraction of

daily vaccine doses reserved for e�cient allocation. Denote v
P
i (t) the allocation quantity
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Figure 9 Two-day myopic allocation when � = 100

of the pro rata policy with daily supply (1��)Ct and v
M
i (t) the allocation quantity of the

myopic policy with daily supply �Ct. Consider the allocation policy ⇡
�
i (t) = v

M
i (t)+ v

P
i (t).

Obviously, this policy degenerates to the myopic policy when � = 1, and it degenerates

to the pro rata policy when �= 0. Figure 10a and Figure 10b shows the number of total

confirmed cases and deaths under di↵erent fraction of vaccine doses using myopic policy.

The vertical axis reports the total confirmed cases or total deaths, and the horizontal axis

reports the value of �. It is clear that the two curves are deceasing in � as more fraction

of myopic allocation means more e�ciency.

Similarly to Kaplan and Merson (2002) and Teytelman and Larson (2013), we find

decreasing marginal return of confirmed cases and deaths as we increase the amount of

reserved capacity for the myopic policy. For example, Figure 10a depicts the total confirmed

cases as a function of capacity reserved for the myopic policy. When no capacity is reserved

for the myopic policy, the total confirmed cases is 92,017, while when all capacity is reserved

for the myopic policy, the total confirmed cases is 66,815 (roughly 25,000 cases averted).

Surprisingly, reserving only 30% of the capacity for the myopic policy reduces the number

of confirmed cases from 92,017 to 79,382, a 50% reduction (roughly 12,600 cases) in the

averted cases associated with pure myopic policy.

The impact is even stronger when measuring the number of deaths (see Figure 10b).

Specifically, in this case allocating only 20% of the capacity to the myopic policy achieves

a 2800
6000 ⇡ 47% reduction in averted deaths associated with pure myopic policy.
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Note that here we measure the fairness by the fraction of the daily capacity reserved for

the pro rata policy. This is not the only measure of fairness. In fact, some other fairness

measures (e.g., Gini index) are employed to evaluate vaccine allocation policies in the

literature (see Yi and Marathe 2015 and Enayati and Özaltın 2020). See Appendix EC.1

for the impact of fairness measured by Gini index on myopic policies.

Figure 10 Confirmed cases and deaths under di↵erent fraction of myopic allocation

(a) Confirmed cases (b) Deaths

6. Conclusion

This paper considers vaccine allocation policies of COVID-19 to di↵erent age groups under

limited supply. We use an age-structured SAPHIRE model and estimate relevant parame-

ters with the epidemic data from NYC. Base on this model and the estimated parameters,

we evaluate the performance of the optimal static policies and several dynamic allocation

heuristics under di↵erent settings of the daily vaccine supply. Our numerical study shows

that generally, the optimal static policy allocates most of the vaccines to older groups when

the objective is minimizing deaths, and if the objective is minimizing confirmed cases,

then younger groups will get more. This suggests the decision-maker needs to balance very

carefully between di↵erent objectives in order to derive policies that perform much bet-

ter than ad-hoc allocation policies. The dynamic allocation heuristics in general perform

better than the static ones. Among the dynamic policies, the best are myopic policies

(including two-day, seven-day), and they perform much better than the other heuristics.

We also discuss the trade-o↵ between equity and e�ciency. We show that high e�ciency

can be achieved by sacrificing a small portion of equity.
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Our paper though has the following limitations. One is on the assumption placed on static

policies, i.e., once the people in one group have all been vaccinated, the doses allocated

to that group cannot be transferred to other groups and are wasted. This is not the case

in reality, and it would be interesting to see how the static policy performs when the

transfer of vaccines to other groups is allowed. Alternatively, a more complicated policy,

for instance, piecewise static policies can be used to reduce the waste of vaccines under

this assumption. Another limitation is that we do not solve the optimal dynamic policy.

This is due to the nonlinearity of the disease dynamics leading to a highly nonconvex

optimization problem, which is a subject for future research. Finally, our numerical study

only uses data from NYC. It would be interesting to extend our study to incorporate

spatial structures. Nevertheless, we believe the insights of allocation policies drawn from

it could provide a valuable reference to decision-makers on the allocation of the upcoming

COVID-19 vaccines.
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Electronic companion

EC.1. Impact of Fairness Measured by Gini Index

We employ the concept of Gini index to measure the degree of fairness. Gini index (or Gini

coe�cient) is a measure of statistical dispersion which is often used to reflect the degree of

income inequality. It is also used in Enayati and Özaltın (2020) to measure the inequality

of influenza vaccine allocation. Given a nonnegative vector x= (x1, ..., xm), the Gini index

of x is defined as

G(x) =

Pm
i=1

Pm
j=1 |xi �xj|

2m
Pm

j=1 xj
. (EC.1)

Here, xi can represent, for example, the faction of total capacities allocated to group i. It is

clear that a uniform allocation (i.e., x1 = ...= xm) which means perfect equality has a Gini

index of zero. An allocation with a Gini index of one means maximal inequality. Smaller

Gini index means more fairness. In the following, we seek to find e�cient allocation policies

with small Gini index. To achieve this, we impose an additional constraint to the LP (9)

that requires the Gini index of the normalized allocation ( v1
N1

, ...,
v5
N5

) to be no more than

✏, where ✏ is a tolerance of inequality, as follows.

min
5X

i=1

(Si � vi)�
5X

j=1

⌧ji(Ij +↵(Pj +Aj))

Nj

s.t.
5X

i=1

vi Ct,

G(
v1

N1
, ...,

v5

N5
) ✏,

0 vi  Si, i= 1, ...,5.

(EC.2)

Figure EC.1 and Figure EC.2 show the total number of confirmed cases and deaths achieved

by the myopic policy under di↵erent level of inequality tolerance ✏, respectively. We observe

that the two curves are almost linear, which means equal marginal return of the confirmed

cases and deaths when more inequality is allowed.

Figure EC.3 presents the fraction of total capacities allocated to each group and Figure

EC.4 presents the vaccine coverage of each group. We can see that when the degree of

fairness increases (i.e., ✏ decreases), the group 18-44 gets more doses while the older groups

65-74, 75+ get fewer doses. This is because the group 18-44 has a very large population

(38% of the total population). In terms of the vaccine coverage, when the degree of fairness
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increases, all the groups converge to the vaccine coverage of 53%. In particular, the vaccine

coverage for the older groups are decreasing, the vaccine coverage of the group 18-44 is

increasing, and the vaccine coverage of other groups dose not change too much. We caution

the reader that it is easy to tell which allocation is fairer by comparing the Gini index.

However, the numerical value of Gini index is less interpretable.

Figure EC.1 Confirmed cases under the myopic policy with the Gini index constraint

Figure EC.2 Deaths under the myopic policy with the Gini index constraint

EC.2. Details of Parameter Estimation

In this appendix, we provide details of the parameter estimation method.

The input to our SAPHIRE model is simply the parameters and the observed initial

conditions. Then the model can compute the daily number of each groups from previous
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Figure EC.3 Fraction of total capacities allocated to each group

Figure EC.4 Vaccine coverage of each group

days’ data with the equations defined in Section 3. The initial condition comes from the

observation on Mar 17, 2020. We set the initial susceptible population to be the total

population, compute the initial number of ascertained people from each group by the total

infected number times the overall ratio of di↵erent age groups, and set the initial removed

population to be 0. Note that the number of some disease group is not observable, for

example, the unascertained infected people. However, we argue that as early as Mar 17,

there is not too many people in this group. With our final set of parameters, if we multiply

or divide the initial number in these unobserved compartments by 2, the change in our

estimated total number of infected cases would be around 1.5%. To further deal with this,

we set the first ten days in our model to be the burn-in period, and we will only take

predictions of our model from Mar 27 to June 8.
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As we have mentioned before, to estimate the parameters, our loss function to be mini-

mized is the squared error of the prediction of confirmed cases and deaths in each groups.

Formally, let x(t) be the state vector at time t satisfying ODEs dx(t)
dt = ft(x(t),✓) and

x
o(t) be the observable state subvector. Let y(t) be the observable data in time t. The

loss function is written in (EC.3). This is a common measure used in the literature, see,

for example, Cantó et al. (2017). Due to the highly non-convex nature of the ODEs that

define the epidemic dynamics, the loss function possess a great number of local optimal

solutions, many of which have similar level of mean squared error in the prediction. These

local optimal solutions can be obtained from applying optimization algorithm to the loss

function from di↵erent starting points.

min
✓2⇥

TX

t=0

||y(t)�x
o(t)||2 (EC.3)

s.t.
dx(t)

dt
= ft(x(t),✓), x(0) = x, (EC.4)

A critical part of our estimation is to select the local optimal solution that best character-

izes the nature of transmission of the virus. When selecting among the multiple estimation

of contact matrix ⌧ between age groups, and the ascertainment rate r of di↵erent age

groups, we consider the following constraints on the estimation.

First, the contact between age groups should be balanced and bi-directional. In other

words, when two person makes contact, it is possible to transfer virus from the first person

to the second person, or the reverse. In terms of contact between age groups, the following

equation must hold for all elements in ⌧

⌧ij ⇥ population in group i= ⌧ji ⇥ population in group j

Second, there are some studies in finding the contact rate between people using socioe-

conomic data, for example, Fumanelli et al. (2012) uses the data of school, workplace and

community to estimate the contact rate between age groups in the UK. Refer to Figure 2

of the paper for a heatmap of the estimated contact level between age groups. Though as

a metropolitan area, people in New York City during the lock down period may not have

exactly the same contact level as shown in this paper, but some insights should be similar.

For example, the diagonal elements of the matrix ⌧ should be the largest in a row, and the
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more o↵-diagonal an elements is in a row, the smaller it is. Formally, we incorporate the

following constraint, with a small tolerance.

⌧i1  ⌧i2  · · · ⌧ii � · · ·� ⌧i5

Third, as data have shown, the hospitalization rate and fatality rate of the older group

is significantly higher than the younger group, we expect the ascertainment rate r for

the groups follow the same fashion. In this sense, we incorporate the constraint that the

ascertainment rate should be increasing in age. Formally,

r1  r2  r3  r4  r5.

Based on the above criteria, we find the local minimum solution that satisfy the above

constraints, that yields the smallest objective value. The results are shown in the main

text.
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