Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Gastroenterology Procedures Generate Aerosols: an Air Quality Turnover Solution to Mitigate the Risk

Marc Garbey, Guillaume Joerger, Shannon Furr
doi: https://doi.org/10.1101/2020.08.21.20178251
Marc Garbey
1ORintelligence, Houston, TX, USA
2LaSIE, UMR CNRS 7356, University of la Rochelle, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: garbey@orintel.health
Guillaume Joerger
1ORintelligence, Houston, TX, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shannon Furr
1ORintelligence, Houston, TX, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

The growing fear of virus transmission during the 2019 coronavirus disease (COVID-19) pandemic has called for many scientists to look into the various vehicle of infection, including the potential to travel through aerosols. Few have looked into the issue that gastrointestinal (GI) procedures may produce an abundance of aerosols. The current process of risk management for clinics is to follow a clinic-specific HVAC formula, which is typically calculated once-a-year and assume perfect mixing of the air within the space, to determine how many minutes each procedural room refreshes 99% of its air between procedures when doors are closed. This formula is not designed to fit the complex dynamic of small airborne particle transport and deposition that can potentially carry the virus in clinical conditions. It results in reduced procedure throughput as well as an excess of idle time in clinics that process a large number of short procedures such as outpatient GI centers.

We present and tested a new cyber-physical system that continuously monitors airborne particle counts in procedural rooms and also at the same time it automatically monitors the procedural rooms’ state and flexible endoscope status without interfering with the clinic’s workflow. We use our data gathered from over 1500 GI cases in one clinical suite to understand the correlation between air quality and standard procedure types as well as identify the risks involved with any HVAC system in a clinical suite environment. Thanks to this system, we demonstrate that standard GI procedures generate large quantities of aerosols, which can potentially promote viral airborne transmission among patients and healthcare staff. We provide a solution for the clinic to improve procedure turnover times and throughput, as well as to mitigate the risk of airborne transmission of the virus.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

No external funding was received.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

No IRB was needed for this research.

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

All data are available in the paper.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted August 24, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Gastroenterology Procedures Generate Aerosols: an Air Quality Turnover Solution to Mitigate the Risk
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Gastroenterology Procedures Generate Aerosols: an Air Quality Turnover Solution to Mitigate the Risk
Marc Garbey, Guillaume Joerger, Shannon Furr
medRxiv 2020.08.21.20178251; doi: https://doi.org/10.1101/2020.08.21.20178251
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Gastroenterology Procedures Generate Aerosols: an Air Quality Turnover Solution to Mitigate the Risk
Marc Garbey, Guillaume Joerger, Shannon Furr
medRxiv 2020.08.21.20178251; doi: https://doi.org/10.1101/2020.08.21.20178251

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Systems and Quality Improvement
Subject Areas
All Articles
  • Addiction Medicine (238)
  • Allergy and Immunology (520)
  • Anesthesia (124)
  • Cardiovascular Medicine (1417)
  • Dentistry and Oral Medicine (217)
  • Dermatology (158)
  • Emergency Medicine (291)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (582)
  • Epidemiology (10280)
  • Forensic Medicine (6)
  • Gastroenterology (527)
  • Genetic and Genomic Medicine (2621)
  • Geriatric Medicine (254)
  • Health Economics (496)
  • Health Informatics (1728)
  • Health Policy (788)
  • Health Systems and Quality Improvement (671)
  • Hematology (266)
  • HIV/AIDS (564)
  • Infectious Diseases (except HIV/AIDS) (12078)
  • Intensive Care and Critical Care Medicine (647)
  • Medical Education (273)
  • Medical Ethics (83)
  • Nephrology (288)
  • Neurology (2451)
  • Nursing (144)
  • Nutrition (377)
  • Obstetrics and Gynecology (489)
  • Occupational and Environmental Health (566)
  • Oncology (1318)
  • Ophthalmology (400)
  • Orthopedics (145)
  • Otolaryngology (235)
  • Pain Medicine (168)
  • Palliative Medicine (51)
  • Pathology (342)
  • Pediatrics (776)
  • Pharmacology and Therapeutics (329)
  • Primary Care Research (296)
  • Psychiatry and Clinical Psychology (2393)
  • Public and Global Health (4996)
  • Radiology and Imaging (892)
  • Rehabilitation Medicine and Physical Therapy (523)
  • Respiratory Medicine (681)
  • Rheumatology (309)
  • Sexual and Reproductive Health (255)
  • Sports Medicine (244)
  • Surgery (297)
  • Toxicology (45)
  • Transplantation (140)
  • Urology (108)