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Abstract 19 

Chest LDCT provides an effective approach for lung cancer screening, yet has 20 

been found to generate a large number of false positives during practice due to 21 

excessive diagnosis of pulmonary lesions of indeterminate clinical significance. In 22 

this study, we performed comprehensive genetic and epigenetic profiling of 23 

cfDNA from lung cancer patients and individuals bearing benign lung lesions, 24 

using ultra-deep targeted sequencing and targeted bisulfite sequencing. We found 25 

that cfDNA mutation profile alone has relatively limited power in distinguishing 26 

malignant from benign plasma, while cfDNA methylation profiling showed a 27 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 23, 2020. ; https://doi.org/10.1101/2020.08.20.20179044doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:wangyuying@bgi.com
mailto:yangfan@pkuph.edu.cn
file:///D:/BGI/早筛/肺癌文章/北大肺癌文章20200801/wangjun@pkuph.edu.cn
https://doi.org/10.1101/2020.08.20.20179044


better performance for classification of the two groups and combination of genetic 28 

and epigenetic features of cfDNA along with serum protein marker further 29 

improved the classification accuracy. We also identified novel methylation-based 30 

prognostic markers and showed that an integrated model that combined cfDNA 31 

mutational status and methylation-based prognostic markers improved prediction 32 

for lung cancer survival. Our results highlight the potential of the multi-analyte 33 

assay for non-invasive lung cancer diagnosis and prognosis. 34 

  35 

Introduction 36 

Lung cancer (LC), with the highest incidence and mortality rates among cancers 37 

worldwide, is the leading cause of death in many countries including China [1]. 38 

The stage at which lung cancer is diagnosed has a significant impact on the 39 

prognosis of this disease. A study showed that the 5-year overall survival rate was 40 

57.4% for localized lung and bronchus cancers and merely 5.2%  for distant ones 41 

[2]. However, timely detection of lung cancer remains difficult since patients are 42 

often asymptomatic at an early stage of the disease. 43 

  44 

Low-dose computed tomography (LDCT), as a replacement of chest radiography, 45 

is the most extensively recommended lung cancer screening method currently [3]. 46 

Its effectiveness has been proved by the National Lung Screening Trial (NLST) 47 

which demonstrated a relative reduction of 20.0% in lung cancer mortality with 48 

this approach [4]. However, LDCT as a screening method poses radiation risk. The 49 

cumulative radiation exposure of a participant following the current lung cancer 50 

screening protocols over 30 years could reach 420 mSv, which exceed those 51 

among nuclear power workers as well as atomic bomb survivors [5]. Additionally, 52 

the false-positive rate of LDCT can be up to 50%, while the positive predictive 53 

value could be as low as 2.4% [6]. This is due to the difficulty in distinguishing 54 
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between malignant and benign lung nodules by CT scans [7]. The resultant 55 

overdiagnosis and overtreatment could potentially lead to adverse medical events 56 

[8]. Therefore, new screening technologies for overcoming these drawbacks are 57 

required. 58 

  59 

Derived from tumor cells, circulating tumor DNA (ctDNA) in plasma of cancer 60 

patients provides valuable information about cancer and also holds great promise 61 

for non-invasive early cancer detection [9-13]. However, since ctDNA is diluted by 62 

circulating cell-free DNA (cfDNA) of noncancerous origins, its detection poses 63 

significant challenges especially during early stages of cancer when the tumor 64 

mass is small [14,15]. Notably, ctDNA contains both genetic and epigenetic 65 

information that may derive from the tumor, including but are not limited to 66 

mutation spectrum, copy number variation (CNV), changes in genomic 67 

methylation level, and fragmentation patterns [13,16-18]. Therefore, it is an 68 

attractive hypothesis that simultaneous analysis of multiple features may improve 69 

ctDNA detection. Nevertheless, previous studies on early cancer detection have 70 

mostly focused on a single feature of the ctDNA, such as cancer driver gene 71 

mutations or alterations in the methylome [14,19-21]. 72 

  73 

In this study, we have developed a set of experimental and computational tools to 74 

measure both genetic and epigenetic signals from plasma cfDNA of lung cancer 75 

(LC) patients as well as patients bearing benign lung lesions (BLN) using high-76 

throughput sequencing, aiming to explore the potential utility of blood-based 77 

biomarkers for lung cancer diagnosis and for prediction tumor recurrence risk.  78 

 79 

 Methods 80 

Patients enrolled and samples collected in this study 81 
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Between December 2013 and December 2018, 128 LC and 94 BLN patients were 82 

enrolled in this study at the Peking University People's Hospital, Beijing, China, 83 

with the informed consent form signed by every participant. This study was 84 

approved by the Ethics Committee of Peking University People’s Hospital 85 

(No.2017PHB106-01). The histopathological classification was based on the 2015 86 

World Health Organization classification [22]. 4-8 mL blood was collected from 87 

the participants before surgery into 10 mL K2EDTA tubes (BD, 366643) and 88 

stored at room temperature. Plasma separation was performed within 4 hours after 89 

collection by centrifugation at 1,600×g for 10 minutes and then at 16,000×g for 90 

another 10 minutes at room temperature. Separated plasma was stored at -80 °C 91 

until DNA extraction. 25 pairs of lung cancer tissues and adjacent normal tissues 92 

were collected during surgery at stored at -80 °C.   93 

  94 

DNA Extraction and Quality Control 95 

Plasma cfDNA extraction was conducted by MagPure Circulating DNA Maxi Kit 96 

(Magen, 12917PC-100) following the manufacturer’s instructions with some 97 

modifications. The concentration of cfDNA was measured using the Qubit™ 98 

dsDNA HS Assay Kit (Thermo Fisher Scientific, Q32854). The quality of cfDNA 99 

was analyzed by Agilent High Sensitivity DNA Kit (Agilent Technologies, 5067-100 

4626) and Agilent 2100 Bioanalyzer (Agilent Technologies). cfDNA samples with 101 

excessive high molecular weight nucleic acids were considered as contaminated by 102 

white blood cell genomic DNA (WBC gDNA) and were excluded from further 103 

analysis. gDNA was extracted from WBC, lung cancer tissues, and normal tissue 104 

adjacent to the tumor (NAT) using MagPure Buffy Coat DNA Midi KF Kit 105 

(Magen, D3537-02) per manufacturer’s instruction, and DNA concentration was 106 

measured by Qubit™ dsDNA HS Assay Kit. 107 

  108 
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Capture panel design for targeted ultra-deep Next Generation Sequencing 109 

(NGS) 110 

We used a 139-gene pan-cancer panel for targeted ultra-deep sequencing. Targeted 111 

genes and exons were selected based on mutation frequency in the The Cancer 112 

Genome Atlas (TCGA) database [23] and the COSMIC database of somatic 113 

mutations in cancer[24], prioritizing cancer driver genes [25]), and exons with 114 

TCGA or COSMIC hotspot mutations. 115 

  116 

Library preparation for targeted ultra-deep NGS 117 

To reduce noises that may derive from PCR and/or sequencing errors, we used a 118 

duplex unique molecular identifier (UMI) strategy in library preparation, adapted 119 

from a previous study [26]. Briefly, cfDNA was end-repaired and ligated to 120 

sequencing adapters, and index PCR was performed followed by purification by 121 

Agencourt AMPure XP beads (Beckman Coulter, A63882). WBC gDNA was 122 

processed in the same way except for it was fragmented by sonication before 123 

library preparation. 124 

  125 

Target capture reactions were performed using xGen® Lockdown® Reagents (IDT 126 

technologies) per manufacturer’s instruction. Captured Libraries were amplified in 127 

a 50 μL PCR mix composed of 25 μL 2× KAPA HiFi Hot Start Ready Mix, 5 μL 128 

PCR primer pair (10 μM) and 20 μL beads suspensions with the following cycling 129 

conditions: 45s at 98°C, followed by 13 cycles of 98°C for 15 s, 60°C for 30 s, and 130 

72°C for 30 s; final extension was performed at 72°C for 1min. Libraries were 131 

purified by Agencourt AMPure XP beads, quantified by Qubit™ dsDNA HS 132 

Assay Kit, and sequenced on MGISEQ-2000 (MGI Tech) using 2×100 paired-end 133 

sequencing. 134 
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  135 

Library preparation for targeted bisulfite sequencing 136 

To improve the quality of cfDNA whole-genome bisulfite sequencing (WGBS) 137 

libraries, we adopted a single-stranded DNA (ssDNA) library preparation strategy. 138 

Briefly, bisulfite conversion was performed on input DNA using EZ DNA 139 

Methylation-Gold™ Kit (Zymo Research, D5006) per manufacturer's instructions. 140 

Next, bisulfite-converted ssDNA was ligated to sequencing adaptors as described 141 

previously [27]. gDNA extracted from lung cancer or normal tissues was 142 

fragmented by sonication before library preparation. 143 

Targeted capture reactions of the WGBS libraries were performed using SeqCap 144 

Epi CpGiant Probes (Roche) following the manufacturer's instruction. Captured 145 

libraries were amplified and sequenced on MGISEQ-2000 using 2×100 paired-end 146 

sequencing. 147 

  148 

Variant analysis 149 

Targeted sequencing data from cfDNA libraries were processed as follows: UMI 150 

sequences were trimmed from fastq data using in-house scripts and were adapter 151 

trimmed and quality trimmed using SOAPnuke-2.0.3 [28]. Reads were aligned 152 

against the human reference genome (hg19) using BWA-MEM (version 0.7.17) 153 

[29]. Candidate mutations were identified from the aligned reads using a two-step 154 

procedure: Firstly, hotspot mutations (defined as point mutations, small insertions 155 

and deletions represented in COSMIC database 156 

(https://cancer.sanger.ac.uk/cosmic, version 85) with >= 20 cancer cases) were 157 

identified using the in-house script and filtered using an allele fraction cutoff of 158 

0.05% (except for indels, which were not filtered). Secondly, non-hotspot 159 

mutations were identified using freebayes (version 1.1.0) [30] and filtered using an 160 
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allele fraction cutoff of 0.05%. These two sets of variants were combined and 161 

filtered for potential germline variants (with allele fraction >=25%) [14]. Variants 162 

were further filtered for germline mutations using a custom germline database 163 

derived from the ExAC germline variants data [31] and 1000 Genome data [32], as 164 

well as a custom false-positive database. Remaining variants were then annotated 165 

using VEP (version 95.2-0) [33]. For cfDNA samples, variants were further 166 

filtered using the following set of criteria: variants were first filtered to exclude 167 

intronic and silent mutations. For the remaining hotspot variants, only those with at 168 

least 3 supporting UMI families and at least one supporting duplex UMI family 169 

were retained (except for indels). For the remaining non-hotspot variants, only 170 

ones with at least 8 supporting UMI families and at least one supporting duplex 171 

UMI family, or ones with at least 6 supporting UMI families and at least two 172 

duplex UMI families, were retained. Non-hotspot mutations with a SIFT prediction 173 

of "tolerated" and a PolyPhen prediction of "benign" were excluded. Finally, 174 

within the remaining non-hotspot variants, only those with a SIFT score <= 0.02 175 

and a PolyPhen score >= 0.95, or a PolyPhen score of 1, or a SIFT score of 0, were 176 

retained. For WBC samples, no further filtering was applied. To derive the final set 177 

of variants for plasma sample, cfDNA variants were filtered with variants 178 

identified from the matched WBC sample. 179 

 180 

Mutation scoring system 181 

Variants were classified and weighted according to the following arbitrarily 182 

defined tiered scoring system: COSMIC hotspots with more than 500 cancer cases 183 

were given a score of 8; TCGA hotspot variants [34] or COSMIC hotspots with 184 

more than 100 cancer cases and not in the former class were given a score of 4; 185 

COSMIC hotspots with more than 20 cancer cases and not in the former class were 186 

given a score of 2; the rest of variants were given a score of 1. 187 
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  188 

Methylation data analysis 189 

Targeted bisulfite sequencing data were processed as follows. First, low-quality 190 

reads and 3’ sequencing adapters were trimmed by fastp (version 0.19.7) [35]. 191 

Then, pair-end reads were aligned to the hg19 reference genome using 192 

BitMapperBS (version 1.0.0.8) [36]. Only reads mapped in proper pair to a unique 193 

genomic position and spanning an insert size between 30 bp and 500 bp were 194 

retained. Next, duplicates were marked with sambamba (v0.6.8) [37]. Finally, 195 

methylation rates were calculated as #C/(#C+#T) for individual CpG sites with at 196 

least 4x coverage using MethylDackel (https://github.com/dpryan79/MethylDackel, 197 

version 0.3.0). 198 

  199 

Identification of differentially methylated regions (DMRs) 200 

A Bayesian hierarchical model was used to detect the differential methylated loci 201 

between 25 lung cancer tissues and 25 matched normal tissues (p<0.001 and 202 

delta>0.2) [38]. To account for the spatial correlation of methylation ratio, 203 

smoothing was applied to combine the information from proximal CpG sites to 204 

identify differentially methylated regions (DMRs). DMRs were defined as the 205 

regions satisfying the following criteria: ≥50bp, containing ≥3 CpG sites within the 206 

region, and ≥80% CpG sites with significant p-values.  Only hypermethylated 207 

DMRs were used in the subsequent analysis. 208 

  209 

Predictive model construction 210 

Regional methylation ratio was calculated per DMR for each cfDNA sample 211 

sequenced by targeted bisulfite sequencing and processed as features by dividing 212 

the sum of methylated cytosine by the sum of depth in the DMR. Ten-fold cross-213 

validation was performed to validate random forest models for classifying plasma 214 
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cfDNA of lung cancer patients from that of patients bearing benign lung nodules 215 

using the python package scikit-learn [39].  216 

 217 

Feature selections were performed on the training data only, using a feature 218 

importance cutoff of 0.008. Random forest models were fitted using the selected 219 

DMRs with the parameters: number of trees=60, depth=5. The fitted models were 220 

then applied in the validation set from which the sensitivity, specificity, and area 221 

under the curve (AUC) were calculated. Multi-omics prediction models were 222 

trained and validated similarly, except that feature selections were applied to the 223 

DMR features only. 224 

 225 

Identification and validation of prognostic markers 226 

To identify methylation-based prognostic markers, samples were randomly divided 227 

into a training set and testing set using a 60/40 split. We applied the following 228 

procedure to select the potential methylation-related prognostic factors and to fit 229 

prognosis model in the training set: we first removed DMRs with a standard 230 

deviation<0.03 from the identified lung cancer DMRs as mentioned above since 231 

less variant features provided limited information; we then used the selected DMRs 232 

to fit a LASSO Cox proportional hazard model on OS. Through 10-fold cross-233 

validation, we chose the tuning parameter λ when the partial likelihood deviance 234 

reached the lowest, from which DMRs were further filtered and the coefficients of 235 

the each DMR were obtained. We calculated the methylation-based prognostic 236 

score (MPS) for each individual as the sum of the products of the DMR 237 

methylation level and its coefficient and combined the mutation score (wSUMAF) 238 

with the MPS as the multi-omics score. We then assessed the association of lung 239 

cancer prognosis with mutation score and multi-omics score separately in the 240 

training set and testing set. Kaplan–Meier curves were plotted for each analysis. 241 
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Finally, two separate multivariate Cox proportional hazard models were built on 242 

wSUMAF only and both wSUMAF and MPS with adjustment of age, stage, 243 

histological type and smoking status in the testing set. To avoid information loss 244 

through categorization, both wSUMAF and MPS were analyzed as continuous 245 

variables in the multivariate Cox regression. To compare the performance of two 246 

models, the incident cases / dynamic controls ROC curve was plotted [40]. The R 247 

package of glmnet, survival, survminer (https://CRAN.R-248 

project.org/package=survminer), risksetROC were used. The analyses procedure is 249 

summarized in the Supplementary Figure 19. 250 

 251 

Results 252 

Study design and patients 253 

In this study, we performed a comprehensive analysis of sequence alterations and 254 

methylation pattern of plasma cfDNA as well as levels of serum protein markers 255 

from lung cancer patients and patients bearing benign lung nodules, in order to 256 

explore the possibility of using these features to non-invasively distinguish 257 

between malignant and benign lung nodules (Figure 1A). Blood samples were 258 

collected from 128 lung cancer (LC) and 94 benign lung nodule (BLN) patients 259 

(Table 1). As expected, LC patients had significantly higher mean plasma cfDNA 260 

level (20.53 ± 1.04ng/ml) than BLN patients (13.78 ± 1.14 ng/ml, p=2.14E-05, 261 

student's t-test) (Supplementary Figure1), in accordance with the previous report 262 

[41]. 263 

  264 

Targeted ultra-deep NGS detected distinct mutational spectrum of plasma 265 

cfDNA and WBC gDNA 266 

To profile sequence alterations carried by cfDNA, we performed targeted ultra-267 

deep NGS on plasma cfDNA extracted from 111 LC patients and 78 BLN patients 268 
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(Supplementary Table 1) using a panel covering exons of 139 cancer driver genes 269 

selected based on TCGA and COSMIC databases (Supplementary Table 2, see 270 

Methods for panel design). We achieved an average raw target sequencing depth 271 

over 50,000× and an average deduped sequencing depth over 5,000× 272 

(Supplementary Figure 2). We designed a set of stringent thresholds to identify the 273 

most reliable variants, based on the number of supporting UMI families and duplex 274 

UMI families, the allele fractions, and function predictions (see Methods for 275 

details). Potential germline variants were also removed before downstream 276 

analysis. To test the limit of detection (LOD) and evaluate the accuracy of our 277 

method, we first performed spike-in experiments using a reference standard 278 

containing 8 single-nucleotide variants (SNVs) and cfDNA from two healthy 279 

individuals by the method previously reported [42]. Results indicated that our 280 

targeted ultra-deep NGS method could efficiently detect mutations with variant 281 

allele frequencies (VAFs) of 0.1% and 0.25%,  with a sensitivity of 91.7% (22/24) 282 

and 95.5% (21/22) respectively (Figure 1B and Supplementary Figure 3). The 283 

VAFs of identified sequence alterations using this method ranged from 0.03% to 284 

6.82% with a median of 0.16% for LC patients and from 0.05% to 2.00% with a 285 

median of 0.22% for BLN patients (Figure 1C). In total, 193 and 46 mutations 286 

were detected in 75 (out of 111, 68%) LC patients and 33 (out of 78, 42%) BLN 287 

plasma cfDNA, respectively (Supplementary Figure 4 and 5). As expected, cfDNA 288 

of LC patients appears to harbor more sequence alterations than that of BLN 289 

patients (Supplementary Figure 6). 290 

  291 

Recent studies suggest that some of the variants found in cfDNA may derive from 292 

the process of clonal hematopoiesis and confound the analysis [43]. To address this, 293 

genomic DNA (gDNA) of white blood cell (WBC) from cfDNA mutation-positive 294 

participants were also sequenced with ultra-deep targeted sequencing (see 295 
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Methods). Non-synonymous variants were detected in WBC of 73 (out of 75, 97%) 296 

LC patients and 33 (out of 33, 100%) BLN patients respectively (Supplementary 297 

Figure 7 and 8). The AFs of variants observed in WBC samples were mostly less 298 

than 1%, ranging from 0.04% to 7.10% (Figure 1D). Within these WBC-shared 299 

cfDNA variants, the most frequently mutated genes included TP53, CBL, APOB 300 

and CSMD3 for LC plasma, and CBL, CSMD3, and STAT3 for BLN plasma 301 

(Supplementary Figure 9). Of these, TP53 and CBL are regarded as canonical CH 302 

genes (other canonical CH genes such as DNMT3A, TET2 and ASXL1 were not 303 

included our targeted panel) [43]. Moreover, AFs of variants shared by plasma 304 

cfDNA and matched WBC samples are highly correlated (Figure 1E), suggesting 305 

that these mutations indeed originated from WBC and should be removed for 306 

downstream analysis. Notably, a number of these mutations were hotspot 307 

mutations of cancer driver genes (defined as variants with >=20 reported cases in 308 

the COSMIC database (Supplementary Figure 10). The percentages of cfDNA 309 

variants matching corresponding WBC sample were 20.7% (40 out of 193) for LC 310 

cfDNA and 39.1% (18 out of 46) for BLN cfDNA, suggesting that a significant 311 

portion of cfDNA variants derive from clonal hematopoiesis, especially in BLN 312 

plasma (p=8.89E-03, chi-squared test). 313 

  314 

After filtering for variants potentially derived from clonal hematopoiesis, 153 315 

variants remained in 67 (out of 111, 60.36%) cfDNA samples from LC patients 316 

(Figure 2B and Supplementary Table 3), with AFs ranging from 0.03% to 6.00% 317 

(median was 0.13%, Figure 2A-C and Supplementary Figure 11). The most 318 

frequent variants were missense mutations (n=102, 67%), followed by nonsense 319 

mutations (n=33, 22%). SNVs (n=137, 90%) were predominantly C>T transitions 320 

(n=95, 69%) (Figure 2C), which was a feature discovered recently in East Asian 321 

LC patients [44]. Mutation frequency analysis revealed that TP53 was the most 322 
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commonly mutated gene in LC plasma (mutated in 23% of LC cfDNA samples), 323 

consistent with TCGA findings [45-47]. Other frequently mutated genes included 324 

EGFR (8%), PTPN11 (8%), APC (7%), APOB (7%), KMT2C (5%), and KMT2D 325 

(5%) (Figure 2A and Supplementary Figure 12), hence identifying a spectrum 326 

mostly consistent with previous reports of lung cancer mutation spectrum 327 

(Supplementary Figure 13) [45,48-53]. As for LC subtypes, cfDNA samples from 328 

LUSC patients were more frequently muated than that from LUAD patients 329 

(Supplementary Figure 13 and Supplementary Table 4).  330 

 331 

After stringent QC filtering as well as filtering for WBC-matched variants , as 332 

many as 28 mutations remained in 23 (out of 78) BLN plasma cfDNA samples 333 

(Figure 2D and Supplementary Table 5), although the percentage of positive 334 

samples was much less compared to LC plasma (29.49% vs. 60.36%, p=2.87E-05, 335 

chi-squared test). These mutations had AFs ranging from 0.05% to 1.91% (Figure 336 

2A). The median AF (0.13%) was the same as that of LC plasma cfDNA, yet the 337 

highest AF was much less (1.91% vs. 6.00%). The most frequently mutated genes 338 

in BLN plasma were KRAS (5%), CSMD3 (4%), APC (3%), ATM (3%), KMT2D 339 

(3%), and TP53 (3%) (Figure 2D). Notably, 39.3% (11 out of 28) of these were 340 

COSMIC hotspot mutations (such as variants affecting the KRAS G12 residue) 341 

(Supplementary Table 5). These results suggest that BLN cfDNA harbored 342 

common cancer driver mutations, a phenomenon consistent with previous and 343 

recent reports that cancer driver mutations are prevalent among normal tissues 344 

[43,54,55]. The mutation spectrum of BLN plasma cfDNA is notably different 345 

from that of LC plasma: the most frequent mutations found in BLN plasma cfDNA 346 

were KRAS (5%) and CSMD3 (4%). EGFR variants were never detected in BLN 347 

plasma. KRAS variants, however, had almost identical frequency in both groups. 348 
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TP53 mutations were also observed in BLN plasma cfDNA albeit at a much lower 349 

frequency (3%).  350 

 351 

A predictive model based on somatic mutations to distinguish LC from BLN 352 

Next, we asked whether it would be possible to differentiate LC and BLN plasma 353 

based on their different cfDNA mutation signatures and AF distribution. To 354 

quantify the cfDNA mutational burden, we constructed a mutation score for each 355 

cfDNA sample as either a simple summation of the allele fractions of all variants 356 

identified therein (SUMAF) or a weighted sum of the allele fractions based on a set 357 

of pre-defined weights (weighted SUMAF, or wSUMAF), weighing more on 358 

TCGA hotspot cancer driver mutations and COSMIC hotspot mutations, and less 359 

on other variants (see Methods for details). We found both scoring methods 360 

produced modest classification accuracy for distinguishing LC from BLN plasma: 361 

the wSUMAF model generated an area under curve (AUC) value of 0.68, with a 362 

sensitivity of 59.5% and a specificity of 71.8% (Figure 2E and Supplementary 363 

Figure 14) and the SUMAF model had a similar performance.  364 

  365 

Classification of LC and BLN plasma based on cfDNA methylation data 366 

To identify lung cancer-specific epigenetic changes, such as abnormalities in 5-mC 367 

methylome, we performed whole-genome bisulfite sequencing (WGBS) on 25 368 

pairs of LC tissue and normal tissue adjacent to the tumor (NAT) among which 21 369 

pairs were from LUAD, 3 from LUSC and 1 from LCSC (Figure 3A) . 315 370 

differentially methylated regions (DMRs) were identified using a cutoff of delta β 371 

value greater than 0.2 and p-value less than 0.001 (see Methods), including 293 372 

hyper DMRs and 22 hypo DMRs (Figure 3B). There were a lot more hyper DMRs 373 

than hypo DMRs, consistent with the belief that genomic regulatory regions such 374 

as promoters of potential tumor suppressor genes undergo remarkable 375 
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hypermethylation in tumorigenesis. Gene ontology (GO) annotations revealed that 376 

the 293 hyper DMRs were significantly enriched for genes encoding DNA-binding 377 

domains and homeobox domains, as well as genes involved in the developmental 378 

and transcriptional regulation process (Figure 3C), consistent with the possibility 379 

that these genes may be involved in lung cancer development by regulating cell 380 

differentiation, and when silenced by promoter methylation, may cause cell 381 

transformation.  382 

  383 

Unsupervised hierarchical clustering using the regional methylation ratio of the 384 

identified DMRs perfectly separated LC tissues and NAT with the exception of a 385 

single LC sample, highlighting the pronounced epigenetic dysregulation of lung 386 

cancer cells. We did not observe notable differences between cancer stages (Figure 387 

3B), consistent with the notion that epigenomic change is an early driver of 388 

oncogenesis that persists through later stages of cancer progression. 389 

  390 

We next performed comprehensive analysis of 5-mC methylation profile of plasma 391 

cfDNA for 111 LC patients and 87 BLN patients using targeted bisulfite 392 

sequencing, covering 5.6 million CpG sites located within gene regions, as well as 393 

CpG islands, shelves, and shores (Supplementary Table 1). Based on the hyper 394 

DMRs we defined using tissue WGBS, we were able to build random forest 395 

models that classify LC from BLN plasma (see Methods). To estimate 396 

classification accuracy, we performed 10-fold cross-validation (CV), for which 397 

AUC was 0.75 (Supplementary Figure 15), a performance slightly better than the 398 

mutation-based model. In order to determine whether we could effectively 399 

distinguish lung cancer plasma from healthy plasma using fewer DMR markers, 400 

we also performed further feature selection. We found that by selecting DMRs 401 

with feature importance > 0.008 in each random forest model for each CV, we 402 
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could achieve a CV AUC of 0.72 (Figure 3D). A total of 76 DMRs were retained 403 

in the final CV model. Among cancer patients, the detection sensitivity of the final 404 

CV models was higher in LUSC patients than that in LUAD samples 405 

(Supplementary Table 6). 406 

 407 

Multi-omics analysis to differentiate LC from BLN plasma 408 

Next, we attempted to integrate multi-omics features to further improve the 409 

diagnostic power of our classification model. Indeed, on 91 LC and 71 BLN 410 

cfDNA samples that had been sequenced with both targeted deep sequencing and 411 

targeted bisulfite sequencing (Supplementary Table 1), we found that combination 412 

of methylation features (based on a total of 81 DMRs selected using the same 413 

feature selection criteria described earlier) and the SUMAF mutation score 414 

achieved an AUC of 0.75, generating a sensitivity of 78.0% and specificity of 60.5% 415 

(Figure 4C), compared to an AUC of 0.68 achieved by mutation score alone 416 

(Figure 4A), and an AUC of 0.72 achieved by methylation features alone in the 417 

same set of samples using the same CV procedures (Figure 4B). 418 

  419 

In addition, levels of 5 serum marker, CEA, CYFRA21-1, NSE, CA19-9, and 420 

CA125, were also measured in a subset of the blood samples (Supplementary 421 

Table 1). We found that among the five protein markers, only CEA level appeared 422 

to be significantly higher in LC patients than BLN patients (p= 0.0438), producing 423 

a modest AUC of 0.66 for classifying the two groups (Supplementary Figure 16 424 

and 17). Therefore, we tried to incorporate CEA into the predictive model in 425 

addition to the DMR features and mutation score in samples with complete 426 

measurements (74 LC and 60 BLN samples). The multi-omics predictive models 427 

based on SUMAF mutation score, top DMRs (a total of 81 regions) and serum 428 

CEA level achieved an AUC of 0.79, with 75.7% sensitivity and 68.3% specificity 429 
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(Figure 4E), which showed further improvement compared to the model without 430 

CEA on this set of samples (AUC = 0.75) (Figure 4D). Similar to classification 431 

models based solely on mutation or methylation, higher prediction accuracy was 432 

found for LUSC patients than LUAD patients in integrated bi-omics and multi-433 

omics models (Supplementary Table 6). 434 

 435 

cfDNA mutational burden and methylation level as prognostic factors for lung 436 

cancer 437 

We first tested whether mutational status (wSUMAF, <0 vs. >0) was associated 438 

with lung cancer overall survival (OS) among lung cancer patients. We found that 439 

among lung cancer patients, the high mutational burden was associated with a 440 

significantly worse OS (Figure 5A). Notably, among stage I lung cancer patients, a 441 

significant association was observed between mutation score and OS 442 

(Supplementary Figure 18). To further improve the performance of model 443 

prediction on lung cancer prognosis, we attempted to identify potential 444 

methylation-based prognostic biomarkers and incorporate these features into the 445 

model(Supplementary Figure 19). We divided the LC cases into training and 446 

testing set and applied a DMR selection procedure on the training set using the 447 

penalized COX regression, which identified 12 DMRs that were potentially 448 

associated with lung cancer prognosis and obtained corresponding coefficients 449 

(Supplementary Table 7, see Methods for details on the analysis procedure). Of 450 

these, DMRs of gene FOXG1/LINC01551, TMEM240, AKR7L, CBLN4, and 451 

GCK/MYL7 appeared to be associated with a worse lung cancer prognosis while 452 

DMRs of PRDM11, LOC440028/SBF2-AS1, GFI1, and ST3GAL1were associated 453 

with a better prognosis. We then calculated a methylation-based prognostic score 454 

(MPS) for each individual as the sum of the products of the DMR methylation 455 

level and corresponding coefficient. We thereafter experimented with combining 456 
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the mutation score with the MPS as the bi-omics prognosis score and tested its 457 

association with survival. Patients with a high mutational burden and a high MPS 458 

were categorized as the high prognosis score group, while other patients were 459 

categorized as the low prognosis score group. Compared to patients with a low 460 

prognosis score, patients with a high prognosis score had a significantly worse OS 461 

in the testing set (Figure 5B). Finally, to avoid information loss due to 462 

categorization, we modeled both mutation score and MPS continuously (see 463 

Methods for details) and built two separate multivariate Cox proportional hazard 464 

models on wSUMAF only, as well as on combined wSUMAF and MPS with 465 

adjustment of age, stage, histological type and smoking status. Higher AUCs were 466 

obtained using the bi-omics prognosis model than the mutation only model 467 

(Supplementary Figure 20). Taken together, these results suggest that integrated 468 

genomic features have the potential to be used as better prognostic markers for 469 

lung cancer.  470 

  471 

Discussion 472 

In this study, we applied targeted ultra-deep sequencing to plasma cfDNA of LC 473 

and BLN patients. Matched WBC DNA were sequenced in parallel, which 474 

revealed that non-synonymous variants were prevalent in WBC DNA for both the 475 

LC and BLN group. Further analyses showed that a notable portion of cfDNA 476 

variants was detected in matched WBC (20.7% for LC plasma, and 39.1% for BLN 477 

plasma) and their VAFs were well correlated (Figure 1E), suggesting that these 478 

variants most likely derived from WBCs. VAFs of the majority of WBC-matched 479 

somatic mutations detected in the cfDNA were less than 1%, hence would have 480 

been missed if WBC DNA has not been sequenced with ultra-deep sequencing. 481 

These results corroborate recent findings that WBCs, carrying variants 482 

accumulated through clonal hematopoiesis (CH), constitute an important source of 483 
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somatic mutations found in cfDNA [43]. Notably, some of the shared variants 484 

between cfDNA and matched WBC samples were cancer hotspot mutations 485 

(Supplementary Figure 10), suggesting that CH variants may indeed significantly 486 

confound cfDNA analysis if not analyzed in parallel. Interestingly, TP53 variants 487 

were never detected as shared variants between BLN plasma cfDNA and matched 488 

BLN WBC sample (Supplementary Figure 9). This may indicate that the 489 

accumulation of TP53 mutations through CH may be somehow related to the 490 

cancer risk of the individual.  491 

 492 

After removing WBC derived variants, we found that cfDNA mutations were 493 

prevalent in BLN plasma cfDNA (29.5% of samples analyzed contained at least 494 

one variant). This finding is consistent with recent studies showed that benign 495 

tumors may also harbor somatic mutations, including those in cancer driver genes 496 

[56,57]. However, because we did not obtain matched BLN tissue for these plasma 497 

samples, it remained to be determined whether the mutations found in BLN cfDNA 498 

could be attributed to mutations that may have arisen in the benign lesions of the 499 

lung. If this indeed is the case, then we would expect it to be challenging to 500 

classify malignant and benign disease solely based on cfDNA mutational status. 501 

Further study would be needed to clarify whether patients bearing benign lung 502 

lesions indeed have a higher mutational burden in their cfDNA than healthy 503 

individuals. 504 

 505 

Not surprisingly, predictive models built on mutation score alone had limited 506 

classification ability for distinguishing between LC and BLN plasma (AUC = 0.68). 507 

Some earlier studies suggested that mutational status can be used to diagnose LC 508 

from benign lung nodules with high specificity and modest sensitivity [58,59], but 509 
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these conclusions may have suffered from potential bias caused by limited sample 510 

sizes used in the study. Our results were obtained from a larger sample size (128 511 

LC and 94 BLN plasma) and showed that diagnostic model based on mutational 512 

status alone had sub-optimal classification accuracy and hints that a multi-analyte 513 

approach is more likely to improve the detection of cancer signal. 514 

By performing WGBS on lung cancer tissues and NATs, we identified more than 515 

300 lung cancer-specific DMRs, with the majority of them being hypermethylated 516 

DMRs, suggesting that hypermethylation of genome regulatory regions is an 517 

important event in lung cancer development. Indeed, these DMRs are enriched for 518 

genes involved in transcriptional regulation and are likely to cause profound 519 

downstream changes in gene expression and contribute to cell transformation; 520 

these genes are likely to be potential tumor suppressor genes, and many of which 521 

haven’t been implicated as such previously (such as SEC31B, ZNF274, and 522 

NXPH1). A small number of DMRs are hypomethylated, and therefore may encode 523 

potential cancer driver genes. To our knowledge, this is the first time many of 524 

these genes are implicated in epigenetic dysregulation of lung cancer. DAVID 525 

functional GO analysis of biological processes revealed that these DMR genes 526 

were enriched in skeletal system/embryonic organ development/morphogenesis 527 

(Supplementary Figure 21), indicating that the lung cancer cells may have obtained 528 

some characteristics of embryonic stem cells. Functions of these genes remain to 529 

be elucidated in further studies and may help us better understand the underlying 530 

molecular mechanisms of lung cancer development and progression.  531 

Our cfDNA methylation-based classification model for LC and BLN plasma 532 

achieved a slightly better cross-validation AUC (0.72) than the mutation-based 533 

model, suggesting that LC-specific methylation changes are potentially useful 534 

markers for diagnosing lung cancers versus benign lesions. Further multi-center 535 
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studies with larger sample sizes will be needed to validate the utility of selected 536 

markers and the robustness of our diagnostic model. We also noted that 537 

performance of our models are slightly inferior to an earlier study which used a 538 

panel of 9 methylation markers for differentiating early-stage lung cancers from 539 

benign pulmonary nodules (AUC of 0.82 (0.70-0.93) in the test set), even though 540 

we used more methylation markers in our model. The difference in model 541 

performance could be attributed to the different study populations and cfDNA 542 

analysis methods. The smaller cohort size in the previous study may have also 543 

caused over-fitting and/or over-estimation of the model performance. The 544 

discrepancy also suggests that we need to be cautious with the development and 545 

validation of such cfDNA-based diagnostic models, considering the intrinsic 546 

technical difficulties of detecting a minute amount of cancer-derived signals in 547 

circulation and relying on machine-learning approaches to build diagnostic model, 548 

a process that can be heavily affected by batch effect as well as variations in 549 

sample characteristics, especially with single-center clinical study. 550 

In our results, we found that a higher percentage of LUSC cfDNA samples were 551 

mutation positive than LUAD samples (Supplementary Table 4). We also observed 552 

higher sensitivity for detecting LUSCs than LUADs using methylation as well as 553 

multi-omics based classification models (Supplementary Table 6). These results 554 

are consistent with the notion that LUSCs are significantly more necrotic than 555 

LUADs and are more likely to shed ctDNA into circulation [60]. 556 

Previous studies have shown that detection of cancer driver mutations in cfDNA, 557 

when combined with serum protein markers, can be used to increase sensitivity 558 

without significantly sacrificing specificity for cancer detection [9,61]. In our study, 559 

the multi-omics model integrating mutation, methylation and serum protein marker 560 

further improved the performance of the classification model (AUC of 0.79), 561 
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compared to the mutation-based model or methylation-based model. To our 562 

knowledge, this is the first proof-of-concept study to demonstrate that genetic, 563 

epigenetic, and proteomic analytes could be combined to increase the performance 564 

of liquid biopsy-based diagnostic model for lung cancer. Further study with a 565 

larger size of clinical samples will be needed to validate the robustness of this 566 

approach. 567 

 568 

We also investigated the association of prognosis of lung cancer patients with 569 

cfDNA mutation and methylation status. Lung cancer patients with any mutation 570 

were observed to have an unfavorable outcome compared with those without, in 571 

line with previous studies [62-64]. We also identified a group of potential 572 

methylation-based lung cancer prognostic markers from the pool of lung cancer 573 

tissue-specific DMRs and constructed a methylation-based prognostic score (MPS). 574 

Previously, multiple methylation-based prognostic classifiers had been reported for 575 

lung cancer, however, the reported markers were mostly inconsistent [25,65-67]. 576 

The inconsistency could be explained by limited sample sizes, variations in study 577 

design, as well as different detection methods used. Further studies will be needed 578 

to validate the clinical utility of these markers including ones discovered in the 579 

current study. Finally, we found that combining continuous MPS with the mutation 580 

score could improve the prognostication model compared with the multivariate 581 

model based solely on mutation. One potential caveat to be noted here is that since 582 

the estimated coefficients of DMR markers for generating the MPS might not be 583 

accurate enough due to relatively limited sample size; therefore, additional study 584 

with larger sample size would be necessary to validate current findings. Overall, 585 

we provided proof-of-principle evidence that combination of multiple blood-586 

derived biomarkers has the potential to improve lung cancer prognostication.  587 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 23, 2020. ; https://doi.org/10.1101/2020.08.20.20179044doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.20.20179044


 588 

Availability of Data 589 

The data reported in this study are alsoavailable in the CNGB Nucleotide Sequence 590 

Archive (CNSA: https://db.cngb.org/cnsa; accession number CNP 0001236). 591 

 592 

Acknowledgements 593 

This study was supported by the National Natural Science Foundation of China 594 

(No.81602001), Peking University People's Hospital Research and Development 595 

Funds (RS2019-01), and Shenzhen Engineering Laboratory for Innovative 596 

Molecular Diagnostics (DRC-SZ[2016]884). 597 

 598 

References: 599 

1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global 600 
cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 601 
cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394-424. 602 
2. Howlader N, N. A., Krapcho M, Miller D, Brest A, Yu M, Ruhl J, Tatalovich Z, Mariotto A, 603 
Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). (April 2019). SEER Cancer Statistics Review, 604 
1975-2016. Retrieved from https://seer.cancer.gov/csr/1975_2016/ 605 
3. Henschke Ci Fau - Yankelevitz, D. F., Yankelevitz Df Fau - Libby, D. M., Libby Dm Fau - 606 
Pasmantier, M. W., Pasmantier Mw Fau - Smith, J. P., Smith Jp Fau - Miettinen, O. S., & 607 
Miettinen, O. S. (2006). Survival of patients with stage I lung cancer detected on CT screening. 608 
The New England journal of medicine(355), 1763-1771. 609 
4. National Lung Screening Trial Research, T., Aberle, D. R., Adams, A. M., Berg, C. D., Black, 610 
W. C., Clapp, J. D., . . . Sicks, J. D. (2011). Reduced lung-cancer mortality with low-dose 611 
computed tomographic screening. The New England journal of medicine, 365(5), 395-409. 612 
5. McCunney, R. J., & Li, J. (2014). Radiation Risks in Lung Cancer Screening Programs. 613 
CHEST, 145(3), 618-624. 614 
6. Pinsky, P. F. (2014). Assessing the benefits and harms of low-dose computed tomography 615 
screening for lung cancer. Lung cancer management, 3(6), 491-498. 616 
7. Li, Q., Li, F., Shiraishi, J., Katsuragawa, S., Sone, S., & Doi, K. (2003). Investigation of new 617 
psychophysical measures for evaluation of similar images on thoracic computed tomography for 618 
distinction between benign and malignant nodules. Medical Physics, 30(10), 2584-2593. 619 
8. Qian, F., Yang, W., Chen, Q., Zhang, X., & Han, B. J. J. o. T. D. (2018). Screening for early 620 
stage lung cancer and its correlation with lung nodule detection. 2018, S846-S859. 621 
9. Cohen, J. D., Li, L., Wang, Y., Thoburn, C., Afsari, B., Danilova, L., . . . Papadopoulos, N. 622 
(2018). Detection and localization of surgically resectable cancers with a multi-analyte blood test. 623 
Science, 359(6378), 926-930. 624 
10. Calapre, L., Warburton, L., Millward, M., Ziman, M., & Gray, E. S. (2017). Circulating tumour 625 
DNA (ctDNA) as a liquid biopsy for melanoma. Cancer Letters, 404, 62-69. 626 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 23, 2020. ; https://doi.org/10.1101/2020.08.20.20179044doi: medRxiv preprint 

https://seer.cancer.gov/csr/1975_2016/
https://doi.org/10.1101/2020.08.20.20179044


11. Ye, Q., Ling, S., Zheng, S., & Xu, X. (2019). Liquid biopsy in hepatocellular carcinoma: 627 
circulating tumor cells and circulating tumor DNA. Molecular Cancer, 18(1), 114. 628 
12. Lim, S. Y., Lee, J. H., Diefenbach, R. J., Kefford, R. F., & Rizos, H. (2018). Liquid 629 
biomarkers in melanoma: detection and discovery. Molecular Cancer, 17(1), 8. 630 
13. Di Meo, A., Bartlett, J., Cheng, Y., Pasic, M. D., & Yousef, G. M. (2017). Liquid biopsy: a 631 
step forward towards precision medicine in urologic malignancies. Molecular Cancer, 16(1), 80. 632 
14. Phallen, J., Sausen, M., Adleff, V., Leal, A., Hruban, C., White, J., . . . Velculescu, V. E. 633 
(2017). Direct detection of early-stage cancers using circulating tumor DNA. Science 634 
Translational Medicine, 9(403), eaan2415. 635 
15. Jamal-Hanjani, M., Wilson, G. A., McGranahan, N., Birkbak, N. J., Watkins, T. B., Veeriah, 636 
S., . . . Rosenthal, R. (2017). Tracking the Evolution of Non-Small-Cell Lung Cancer. New 637 
England Journal of Medicine. 638 
16. Otandault, A., Anker, P., Al Amir Dache, Z., Guillaumon, V., Meddeb, R., Pastor, B., . . . 639 
Thierry, A. R. (2019). Recent advances in circulating nucleic acids in oncology. Annals of 640 
Oncology. 641 
17. Mouliere, F., & Rosenfeld, N. (2015). Circulating tumor-derived DNA is shorter than somatic 642 
DNA in plasma. Proceedings of the National Academy of Sciences, 112(11), 3178. 643 
18. Murtaza, M., & Caldas, C. (2016). Nucleosome mapping in plasma DNA predicts cancer 644 
gene expression. Nature Genetics, 48, 1105. 645 
19. Liu, X., Liu, L., Ji, Y., Li, C., Wei, T., Yang, X., . . . Wang, X. (2019). Enrichment of short 646 
mutant cell-free DNA fragments enhanced detection of pancreatic cancer. EBioMedicine, 41, 647 
345-356. 648 
20. Shen, S. Y., Singhania, R., Fehringer, G., Chakravarthy, A., Roehrl, M. H. A., Chadwick, 649 
D., . . . De Carvalho, D. D. (2018). Sensitive tumour detection and classification using plasma 650 
cell-free DNA methylomes. Nature, 563(7732), 579-583. 651 
21. Xu, R.-h., Wei, W., Krawczyk, M., Wang, W., Luo, H., Flagg, K., . . . Zhang, K. (2017). 652 
Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular 653 
carcinoma. Nature Materials, 16, 1155. 654 
22. Travis, W. D., Brambilla, E., Burke, A. P., Marx, A., & Nicholson, A. G. (2015). Introduction 655 
to The 2015 World Health Organization Classification of Tumors of the Lung, Pleura, Thymus, 656 
and Heart. Journal of Thoracic Oncology, 10(9), 1240-1242. 657 
23. Kandoth, C., McLellan, M. D., Vandin, F., Ye, K., Niu, B., Lu, C., . . . Ding, L. (2013). 658 
Mutational landscape and significance across 12 major cancer types. Nature, 502(7471), 333-659 
339. 660 
24. Tate, J. G., Bamford, S., Jubb, H. C., Sondka, Z., Beare, D. M., Bindal, N., . . . Forbes, S. A. 661 
(2018). COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Research, 662 
47(D1), D941-D947. 663 
25. Bailey, M. H., Tokheim, C., Porta-Pardo, E., Sengupta, S., Bertrand, D., Weerasinghe, 664 
A., . . . Ding, L. (2018). Comprehensive Characterization of Cancer Driver Genes and Mutations. 665 
Cell, 173(2), 371-385.e318. 666 
26. Newman, A. M., Lovejoy, A. F., Klass, D. M., Kurtz, D. M., Chabon, J. J., Scherer, F., . . . 667 
Alizadeh, A. A. (2016). Integrated digital error suppression for improved detection of circulating 668 
tumor DNA. Nat Biotechnol, 34(5), 547-555. 669 
27. Gansauge, M.-T., Gerber, T., Glocke, I., Korlevic, P., Lippik, L., Nagel, S., . . . Meyer, M. 670 
(2017). Single-stranded DNA library preparation from highly degraded DNA using T4 DNA 671 
ligase. Nucleic acids research, 45(10), e79-e79. 672 
28. Chen, Y., Chen, Y., Shi, C., Huang, Z., Zhang, Y., Li, S., . . . Chen, Q. (2017). SOAPnuke: a 673 
MapReduce acceleration-supported software for integrated quality control and preprocessing of 674 
high-throughput sequencing data. GigaScience, 7(1). 675 
29. Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler 676 
transform. Bioinformatics, 25(14), 1754-1760. 677 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 23, 2020. ; https://doi.org/10.1101/2020.08.20.20179044doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.20.20179044


30. Garrison, E., & Marth, G. (2012). Haplotype-based variant detection from short-read 678 
sequencing. arXiv, 1207. 679 
31. McVean, G. A., Altshuler, D. M., Durbin, R. M., Abecasis, G. R., Bentley, D. R., Chakravarti, 680 
A., . . . University of, G. (2012). An integrated map of genetic variation from 1,092 human 681 
genomes. Nature, 491(7422), 56-65. 682 
32. Siva, N. (2008). 1000 Genomes project. Nature Biotechnology, 26(3), 256-256. 683 
33. McLaren, W., Gil, L., Hunt, S. E., Riat, H. S., Ritchie, G. R. S., Thormann, A., . . . 684 
Cunningham, F. (2016). The Ensembl Variant Effect Predictor. Genome Biology, 17(1), 122. 685 
34. Bailey, M. H., Tokheim, C., Porta-Pardo, E., Sengupta, S., Bertrand, D., Weerasinghe, 686 
A., . . . Ding, L. (2018). Comprehensive Characterization of Cancer Driver Genes and Mutations. 687 
Cell, 173(2), 371-385.e318. 688 
35. Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ 689 
preprocessor. Bioinformatics, 34(17), i884-i890. 690 
36. Cheng, H., & Xu, Y. (2018). BitMapperBS: a fast and accurate read aligner for whole-691 
genome bisulfite sequencing. bioRxiv, 442798. 692 
37. Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J., & Prins, P. (2015). Sambamba: fast 693 
processing of NGS alignment formats. Bioinformatics, 31(12), 2032-2034. 694 
38. Wu, H., Xu, T., Feng, H., Chen, L., Li, B., Yao, B., . . . Conneely, K. N. (2015). Detection of 695 
differentially methylated regions from whole-genome bisulfite sequencing data without replicates. 696 
Nucleic Acids Research, 43(21), e141-e141. 697 
39. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Dubourg, 698 
V. J. J. o. m. l. r. (2011). Scikit-learn: Machine learning in Python. 12(Oct), 2825-2830. 699 
40. Heagerty, P. J., & Zheng, Y. J. B. (2005). Survival model predictive accuracy and ROC 700 
curves. 61(1), 92-105. 701 
41. Szpechcinski, A., Rudzinski, P., Kupis, W., Langfort, R., Orlowski, T., & Chorostowska-702 
Wynimko, J. (2016). Plasma cell-free DNA levels and integrity in patients with chest radiological 703 
findings: NSCLC versus benign lung nodules. Cancer Letters, 374(2), 202-207. 704 
42. Liu, J., Chen, X., Wang, J., Zhou, S., Wang, C. L., Ye, M. Z., . . . Qian, Z. Y. (2019). 705 
Biological background of the genomic variations of cf-DNA in healthy individuals. Annals of 706 
Oncology, 30(3), 464-470. 707 
43. Razavi, P., Li, B. T., Brown, D. N., Jung, B., Hubbell, E., Shen, R., . . . Reis-Filho, J. S. 708 
(2019). High-intensity sequencing reveals the sources of plasma circulating cell-free DNA 709 
variants. Nature Medicine. 710 
44. Chen, Y.-J., Roumeliotis, T. I., Chang, Y.-H., Chen, C.-T., Han, C.-L., Lin, M.-H., . . . Chen, 711 
Y.-J. (2020). Proteogenomics of Non-smoking Lung Cancer in East Asia Delineates Molecular 712 
Signatures of Pathogenesis and Progression. Cell, 182(1), 226-244.e217. 713 
45. Cancer Genome Atlas Research, N. (2012). Comprehensive genomic characterization of 714 
squamous cell lung cancers. Nature, 489(7417), 519-525. 715 
46. The Cancer Genome Atlas Research, N., Collisson, E. A., Campbell, J. D., Brooks, A. N., 716 
Berger, A. H., Lee, W., . . . Tsao, M.-S. (2014). Comprehensive molecular profiling of lung 717 
adenocarcinoma. Nature, 511, 543. 718 
47. Campbell, J. D., Alexandrov, A., Kim, J., Wala, J., Berger, A. H., Pedamallu, C. S., . . . 719 
Meyerson, M. (2016). Distinct patterns of somatic genome alterations in lung adenocarcinomas 720 
and squamous cell carcinomas. Nature Genetics, 48, 607. 721 
48. Ohgaki, H., Kros, J. M., Okamoto, Y., Gaspert, A., Huang, H., & Kurrer, M. O. (2004). APC 722 
mutations are infrequent but present in human lung cancer. Cancer Letters, 207(2), 197-203. 723 
49. Bentires-Alj, M., Paez, J. G., David, F. S., Keilhack, H., Halmos, B., Naoki, K., . . . Neel, B. G. 724 
(2004). Activating Mutations of the Noonan Syndrome-Associated SHP2/PTPN11 Gene in 725 
Human Solid Tumors and Adult Acute Myelogenous Leukemia. Cancer Research, 64(24), 8816. 726 
50. Zhang, Y., Wang, D. C., Shi, L., Zhu, B., Min, Z., & Jin, J. (2017). Genome analyses identify 727 
the genetic modification of lung cancer subtypes. Seminars in Cancer Biology, 42, 20-30. 728 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 23, 2020. ; https://doi.org/10.1101/2020.08.20.20179044doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.20.20179044


51. Rao, R. C., & Dou, Y. (2015). Hijacked in cancer: the KMT2 (MLL) family of 729 
methyltransferases. Nature Reviews Cancer, 15, 334. 730 
52. Chen, K.-Z., Lou, F., Yang, F., Zhang, J.-B., Ye, H., Chen, W., . . . Wang, J. (2016). 731 
Circulating Tumor DNA Detection in Early-Stage Non-Small Cell Lung Cancer Patients by 732 
Targeted Sequencing. Scientific Reports, 6(1), 31985. 733 
53. Hoadley, K. A., Yau, C., Hinoue, T., Wolf, D. M., Lazar, A. J., Drill, E., . . . Laird, P. W. 734 
(2018). Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 735 
Types of Cancer. Cell, 173(2), 291-304.e296. 736 
54. Yizhak, K., Aguet, F., Kim, J., Hess, J. M., Kübler, K., Grimsby, J., . . . Getz, G. (2019). RNA 737 
sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. 738 
Science, 364(6444). 739 
55. Risques, R. A., & Kennedy, S. R. (2018). Aging and the rise of somatic cancer-associated 740 
mutations in normal tissues. PLoS genetics, 14(1), e1007108-e1007108. 741 
56. Makinen, N., Mehine, M., Tolvanen, J., Kaasinen, E., Li, Y., Lehtonen, H. J., . . . Aaltonen, L. 742 
A. (2011). MED12, the mediator complex subunit 12 gene, is mutated at high frequency in 743 
uterine leiomyomas. Science, 334(6053), 252-255. 744 
57. Lim, W. K., Ong, C. K., Tan, J., Thike, A. A., Ng, C. C., Rajasegaran, V., . . . Teh, B. T. 745 
(2014). Exome sequencing identifies highly recurrent MED12 somatic mutations in breast 746 
fibroadenoma. Nat Genet, 46(8), 877-880. 747 
58. Ye, M., Li, S., Huang, W., Wang, C., Liu, L., Liu, J., . . . Liang, W. (2018). Comprehensive 748 
targeted super-deep next generation sequencing enhances differential diagnosis of solitary 749 
pulmonary nodules. J Thorac Dis, 10(Suppl 7), S820-s829. 750 
59. Peng, M., Xie, Y., Li, X., Qian, Y., Tu, X., Yao, X., . . . Tian, G. (2019). Resectable lung 751 
lesions malignancy assessment and cancer detection by ultra-deep sequencing of targeted 752 
gene mutations in plasma cell-free DNA. Journal of Medical Genetics, 56(10), 647. 753 
60. Abbosh, C., Birkbak, N. J., Wilson, G. A., Jamal-Hanjani, M., Constantin, T., Salari, R., . . . 754 
The, T. c. (2017). Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. 755 
Nature, 545(7655), 446-451. 756 
61. Cohen, J. D., Li, L., Wang, Y., Thoburn, C., Afsari, B., Danilova, L., . . . Papadopoulos, N. 757 
(2018). Detection and localization of surgically resectable cancers with a multi-analyte blood test. 758 
Science, 359(6378), 926. 759 
62. Isaksson, S., George, A. M., Jonsson, M., Cirenajwis, H., Jonsson, P., Bendahl, P. O., . . . 760 
Planck, M. (2019). Pre-operative plasma cell-free circulating tumor DNA and serum protein 761 
tumor markers as predictors of lung adenocarcinoma recurrence. Acta Oncol, 58(8), 1079-1086. 762 
63. Kang, J., Luo, Y., Wang, D., Men, Y., Wang, J., Che, Y.-Q., & Hui, Z. (2019). Tumor 763 
Mutation Load: A Novel Independent Prognostic Factor in Stage IIIA-N2 Non-Small-Cell Lung 764 
Cancer. Disease Markers, 2019, 3837687. 765 
64. Corradetti, M. N., Torok, J. A., Hatch, A. J., Xanthopoulos, E. P., Lafata, K., Jacobs, C., . . . 766 
Nixon, A. B. (2019). Dynamic Changes in Circulating Tumor DNA During Chemoradiation for 767 
Locally Advanced Lung Cancer. Adv Radiat Oncol, 4(4), 748-752. 768 
65. Sandoval, J., Mendez-Gonzalez, J., Nadal, E., Chen, G., Carmona, F. J., Sayols, S., . . . 769 
Esteller, M. (2013). A prognostic DNA methylation signature for stage I non-small-cell lung 770 
cancer. J Clin Oncol, 31(32), 4140-4147. 771 
66. Li, Y., Gu, J., Xu, F., Zhu, Q., Ge, D., & Lu, C. (2019). Novel methylation-driven genes 772 
identified as prognostic indicators for lung squamous cell carcinoma. Am J Transl Res, 11(4), 773 
1997-2012. 774 
67. Wang, Y., Deng, H., Xin, S., Zhang, K., Shi, R., & Bao, X. (2019). Prognostic and Predictive 775 
Value of Three DNA Methylation Signatures in Lung Adenocarcinoma. Front Genet, 10, 349. 776 

 777 

  778 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 23, 2020. ; https://doi.org/10.1101/2020.08.20.20179044doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.20.20179044


 779 

  LC (N=128) BLN (N=94) 

  Number Percentage Number Percentage 

Gender 
Female 53 41% 48 51% 

Male 75 59% 46 49% 

Age 
Median±SD 

(Range) 
63.00±11.58 (30-86) 55.00±10.49 (18-79) 

Histology 

LUAD 97 76%   

LUSC 23 18%   

LCC 3 2%   

SCLC 5 4%   

Stage 

0 2 2%   

IA 54 42%   

IB 29 23%   

II 17 13%   

III 19 15%   

IV 7 5%   

Smoking 

History 

Smokers 20 16% 23 24% 

Non-smokers 33 26% 70 74% 

Unknown 75 59% 1 1% 

 780 

Table 1: Clinicopathological characteristics of the patients enrolled in this 781 

study. LUAD: lung adenocarcinoma. LUSC: lung squamous cell carcinoma. LCC: 782 

large cell carcinoma. SCLC: small cell lung carcinoma. 783 
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Figure Legends 785 

Figure 1: Study design and variants detected by targeted ultra-deep 786 

sequencing in cfDNA and WBC gDNA. (A) Schematic view of the study design. 787 

See Methods for additional details. (B) Spike-in experiments using Multiplex I 788 

cfDNA Reference Standard Set which contains 8 SNVs to test the LOD of our 789 

targeted ultra-deep sequencing method. The sensitivity was calculated as the 790 

number of detected SNVs divided by the number of total spiked-in SNVs in all the 791 

replicates for each condition. (C) Allele fractions (x-axis, log scale) of mutations 792 

detected in plasma cfDNA of BLN patients (blue) and LC patients (red). (D) AF 793 

(x-axis, log scale) distribution of WBC gDNA variants from BLN and LC patients. 794 

(E) Pearson correlation of AF in cfDNA (x-axis, log scale) and AF in WBC gDNA 795 

(y-axis, log scale). Each point represents one variant detected in matched cfDNA 796 

and WBC gDNA samples from the same patient. 797 

Figure 2: Predictive model based on variants detected in plasma cfDNA after 798 

filtering with matched WBC sample for shared variants. (A) AFs (x-axis, log 799 

scale) of cfDNA variants of LC patients (red) and BLN patients (blue). (B) 800 

Oncoplot showing the 153 mutations detected in 67 out of 111 (60.36%) LC 801 

samples. 45 LC samples without any mutation detected were not shown. Each 802 

column represents a sample and each row a different gene. The upper barplot 803 

represents the frequency of mutations for each sample, and the right barplot 804 

represents the frequency of mutations for each gene. Samples are ordered by the 805 

most mutated genes. (C) Summary plot of the 153 mutations detected in LC 806 

samples. Upper panel from left to right: Variant classification, Variant Type, and 807 

SNV Class. Lower panel from left to right: Variants per sample and Variant 808 

classification summary. (D) Oncoplot of the 28 mutations detected in 23 out of 78 809 

(29.49%) BLN samples. 55 BLN samples without any mutation detected were not 810 

shown. (E) Predictive models to distinguish LC from BLN based on mutations 811 

detected. SUMAF (green): sum of AF model. Weighted_SUMAF (red): sum of 812 

weighted AF model (see Methods). The AUC of SUMAF model is 0.67 with 55.9% 813 

sensitivity and 76.9% specificity. The AUC of weighted_SUMAF model is 0.68 814 

with 59.5% sensitivity and 71.8% specificity. 815 
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Figure 3: Diagnostic model for Distinguishing LC from BLN plasma by 816 

analyzing cfDNA methylation levels. (A) Differentially methylated regions 817 

(DMRs) discovered by WGBS of LC tumor and 818 

normal tissue adjacent to the tumour (NAT). Red points: Hypermethylated DMRs 819 

in LC tissues. Blue points: hypomethylated DMRs in LC tissues. From outer to 820 

inner circle, the first circle is overview of DMRs, the second circle is the area 821 

statistics of hypermethylation regions (methy.diff>0.2), and the third circle is the 822 

area statistics of hypomethylation regions (methy.diff<-0.2). (B) Heatmap of the 823 

DMRs with hierarchical clustering. Block color represents the methylation β value 824 

and black represents N.A. (C) Functional annotation of the genes associated with 825 

the 293 hypermethylated DMRs by gene ontology (GO) terms using DAVID. (D) 826 

Predictive models to distinguish LC from BLN based on cfDNA methylation level 827 

with selected features (feature importance ≥ 0.008). A total of 76 DMRs were 828 

retained in the final model. The AUC is 0.72 with 80.5% sensitivity and 57.5% 829 

specificity. 830 

Figure 4: Multiomics predictive models to distinguish LC from BLN plasma. 831 

Bi-omics samples: cfDNA samples from 91 LC and 71 BLN patients with 832 

complete mutation and methylation data. Tri-omics samples: cfDNA samples from 833 

74 LC and 60 BLN patients with complete measurement of mutation score, 834 

methylation levels of selected DMR and serum CEA levels. (A) Classification 835 

models built based on mutation status alone in bi-omics samples; (B) Models built 836 

based on selected DMRs alone in bi-omics samples; (C) Models built based on 837 

mutation score and selected DMR in bi-omics samples; (D) Models built based on 838 

mutation score and selected DMR in tri-omics samples; (E) Models based on 839 

combined mutation score, selected DMR, and serum CEA levels in tri-omics 840 

samples.  841 

Figure 5: Kaplan-Meier plot on omics-based lung cancer prognostic model in 842 

relation to OS. (A) Mutation scores in the whole dataset; (B) Multi-omics scores in 843 

the testing set. 844 
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