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ABSTRACT 

Importance: Complications after percutaneous coronary intervention (PCI) are common and 

costly. Risk models for predicting the likelihood of acute kidney injury (AKI), bleeding, stroke 

and death are limited by accuracy and inability to use non-linear relationships among 

predictors. Additionally, if non-linear relationships among predictors can be leveraged, then the 

prediction of any adverse event (i.e. “the patient who will not do well with PCI”) is perhaps of 

greater interest to clinicians than prediction of adverse events in isolation. 

Objective: To develop and validate a set of artificial neural networks (ANN) models to predict 

five adverse outcomes after PCI – AKI, bleeding, stroke, death and one or more of these four 

(‘any adverse outcome’). 

Design: Cross-sectional study, using institutional NCDR CathPCI data. 

Setting and participants: 28,005 patients undergoing PCI at five hospitals in the Barnes-Jewish 

Hospital system. 

Main Outcome(s): AKI, bleeding, stroke, death, and one or more of these four (‘any adverse 

outcome’). We divided 28,005 PCI patients into a training cohort of 21,004 (75%) and a test 

cohort of 7,001 (25%). We used an artificial neural network (ANN) multilayer perceptron (MLP) 

model to predict each outcome based on a set of 278 encoded and preprocessed variables. 

Model accuracy was tested using area under the receiver-operating-characteristic curve (AUC). 

Performance and validation of the MLP model was compared with existing regression models 

using integrated discrimination improvement (IDI) and continuous net reclassification index 

(NRI). 
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Results: The prevalence of AKI, bleeding, stroke and death in the study cohort was 4.6%, 3.6%, 

0.3% and 1.1%, respectively. The fully trained MLP model achieved convergence quickly (<10 

epochs) and could predict accurately predict AKI (77.9%), bleeding (86.5%), death (90.3%) and 

any adverse outcome (80.6%) in the independent test set. However, prediction of stroke was 

not satisfactory (69.9%). Compared to the currently used models for AKI, bleeding and death 

prediction, our models showed a significantly higher AUC (range 1.6% – 5.6%), IDI (range 4.9% – 

7.2%) and NRI (range 0.07 – 0.61). 

Conclusions and Relevance: By using neural network-based models, we accurately predict 

major adverse events after PCI. Larger studies for replicability and longitudinal studies for 

evidence of impact are needed to establish these artificial intelligence methods in current PCI 

practice.  
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INTRODUCTION 

Percutaneous coronary intervention (PCI) is common in the United States, performed in 

~600,000 PCI procedures annually.(1) With an increasing pressure on hospitals to improve the 

quality and value of their services, reducing the costs of elective PCI, is an important 

opportunity to explore. In fact, alternative payment models such as the Centers for Medicare 

and Medicaid Services (CMS) episode payment models (EPMs), commonly known as “bundled 

payments”, are accelerating hospitals to prepare for the shift in reimbursement from ’payment 

for volume’ to ’payment for value’.(2)   

In this context, risk prediction models for adverse outcomes in patients undergoing PCI 

have an important role to play in the practice of ‘value-driven PCI’. Complications after PCI such 

as bleeding, or acute kidney injury (AKI) or stroke or death, after PCI are not considered reliably 

predictable. Although validated risk-prediction models based on regression methods, can 

quantify a patient’s risk of these adverse events,(3-6) they have not been considered highly 

accurate. Furthermore, adverse events rarely occur in isolation. The link between bleeding and 

AKI after PCI is well known.(7) Similarly, the association between bleeding and mortality, and 

AKI and mortality are also well established.(8,9) Ultimately, as clinicians taking care of patients, 

the goal of prediction models is not to identify events in isolation, but to accurately predict the 

entire spectrum of adverse events that are of importance to patients and providers alike.  

Conceptually, another challenge that underlies these predictions is the existence of non-

linear relationships among traditional risk factors and outcomes, and the impact of these 

nonlinear associations on mortality, the ultimate adverse event.(10) Traditional regression 

modelling is unable to handle these complex relationships. Artificial intelligence (AI) methods, 
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such as artificial neural networks (ANN), are particularly suited to tackle the challenges of 

scalability and high dimensionality of data with complex relationships among predictors and 

show promise in the field of PCI outcomes predictions. Our main motivation was to develop an 

ANN-based system of models that can simultaneously predict the risk of major complications in 

PCI patients using the same set of pre-procedural and procedural characteristics as predictors. 

Using a large dataset of PCI patients enrolled at a multi-hospital system, we developed and 

validated ANN-based risk-stratification system to be used as an aid to decision making during 

PCI.  

 

METHODS 

Study Population 

This study used NCDR CathPCI Registry data (1) for the Barnes-Jewish Corporation (BJC) 

HealthCare hospitals spanning a period from 1 July 2009 to 30 April 2018. The BJC HealthCare 

hospitals include the following seven hospitals – Alton Memorial Hospital, Alton, IL; Barnes 

Jewish Hospital, St Louis, MO; Barnes Jewish St. Peters Hospital, St. Peters, MO; Boone Hospital 

Center, Columbia, MO; Christian Hospital, St Louis, MO; Missouri Baptist Medical Center, St. 

Louis, MO; and Progress West HealthCare, O’Fallon, MO. During this period a total of 30,520 

PCIs conducted at these hospitals from which we included 28,005 (91.8%) in this study. This 

study was approved by Washington University's institutional review board, and no informed 

consent was required. 

Predictors and Outcomes 
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This study included five outcomes and 100 predictors. The predictors represented 

following categories of information: baseline clinical variables (n = 31), admission related 

variables (n = 9), stress studies (n = 4), cardiac catheterization findings and imaging studies (n = 

16), medications (n = 6), laboratory investigations (n = 5), PCI-characteristics at the start of PCI 

(n = 10) and PCI procedure-related variables (n = 19). The NCDR Cath registry evaluates 

characteristics, treatments, and outcomes of patients undergoing PCI and/or diagnostic 

catheterization.(1) Full definitions for all predefined variables are available at the American 

College of Cardiology's NCDR website (http://cvquality.acc.org/en/NCDR-

Home/Registries/Hospital-Registries.aspx). Details of the variables included in the study are 

also provided in Table 1. Our machine-learning algorithm attempted to predict from these 

predictors one of the following five outcomes during index hospitalizations – AKI, bleeding, 

stroke, death and a composite outcome that represented the occurrence of any one of these 

four outcomes. Our aim was to simultaneously predict a spectrum of four most common and 

severe PCI-related adverse outcomes using a multiclass prediction. However, since some of the 

combinations of these four outcomes were very rare (Supplementary Table 1), we did not have 

adequate representation of such classes. Alternatively, we proceeded with development of 

different models (using the same set of inputs) to predict each of the four outcomes separately 

and to predict a fifth composite outcome that represented a combination of the four outcomes 

(hereinafter referred to as “any adverse outcome”). 

Definitions of these outcomes were the same as that used in the NCDR CathPCI registry 

as follows: AKI: Acute Kidney Injury Network (AKIN) stage 1 or greater or a new requirement for 

dialysis following PCI (11) ; Bleeding: any ONE of the following: 1. Bleeding event w/in 72 hours 
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; OR 2. Hemorrhagic stroke; OR 3. Tamponade ; OR 4. Post-PCI transfusion for patients with a 

pre-procedure hemoglobin >8 g/dL and pre-procedure hemoglobin not missing; OR 5. Absolute 

hemoglobin decrease from pre-PCI to post-PCI of ≥3 g/dl AND pre-procedure hemoglobin ≤16 

g/dL AND pre-procedure hemoglobin not missing (12); Stroke: transient ischemic attack, 

hemorrhagic stroke OR ischemic stroke; Death: death during index hospitalization. 

Machine-learning modeling approach 

We used a feed-forward, artificial neural network framework designed as a multi-layer 

perceptron (MLP) for all predictive modeling in this study. The detailed approach to data 

preparation, preprocessing, model specification, training and validation are depicted in Figure 

1. The first step in data preparation included the splitting of a randomly shuffled dataset into a 

derivation set (n = 21,004 – 75% of the entire dataset) and a validation dataset (n = 7,001 – 25% 

of the entire dataset). This split was conducted only once and all training for machine-learning 

algorithms used data from the derivation set while all models were validated on data from the 

validation set.  

 The second step included data preprocessing using variable encoding. We aimed to 

maximize the information contained within a variable and therefore did not discard any records 

with missing values. Rather, we coded all missing values for all variables as -1 to include missing 

information as a separate category. Categorical variables (whether nominal or ordinal) were 

coded using a one-hot (13) encoding approach such that a vector (instead of a single scalar 

value) was used to denote the categorical value for each patient. The one-hot vector was 

encoded as 1 (for the category observed) or 0 (otherwise).(13) Continuous variables were 
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standard-normalized as 
��� � ���

�� , where xi is the i
th

 observation, �� is the mean and σ is the 

standard-deviation. 

 

Our third step in the analytical pipeline included a generation of two datasets that were 

used as inputs to two different learning models for each outcome. From a clinical standpoint, 

the estimation of pre-PCI probability of an outcome is important and valuable for the PCI 

operator to make decisions about the PCI procedure. Therefore, we constructed Model 1 that 

incorporated all the baseline and pre-PCI variables (205 encoded variables) while Model 2 was 

constructed to include variables directly related to the PCI procedure (73 encoded variables). 

Predictions from these two models were then finally combined into a single prediction using 

logistic regression. 

Model architecture, specification and tuning 

All the models contained an input layer (the encoded dataset, hereafter referred to as 

the training set), a variable number of hidden layers and an output layer (represented by the 

dichotomous outcome in question). As shown in Figure 1, the MLP model included estimations 

of the weights (indicated by gray arrows) and biases (indicated by magenta dashed line that is 

common to all neurons within a single hidden layer) using the standard back-propagation 

gradient estimation algorithm. All neurons in the hidden function used the sigmoid activation 

function. Final output of the MLP was the predicted probability for the adverse outcome in 

each patient. The number of hidden layers, the number of neurons within each hidden layer, 

the learning rate and the number of training epochs required for convergence were treated as 

hyperparameters and tuned using a grid search that provided optimum model performance. 
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The cost function used to optimize the model was cross-categorical entropy. Avoidance of 

overfitting was ensured using the following approach. For each training epoch, the estimated 

best fitting model was independently applied to the test set (the encoded dataset obtained 

from the validation set) to trace the classification accuracy. Model training continued as long as 

there was improvement in the classification accuracy for both the training and the 

independently assessed test set. If the model only showed accuracy improvement in the 

training set but showed a decreased accuracy for the test set, then a potential overfitting was 

interpreted, and model training was stopped. 

Statistical analysis 

Descriptive statistics included mean and standard deviation for continuous variables and 

percentages for categorical variables. Significant difference in the distribution of the study 

variables across the Derivation and Validation sets was tested using Student’s t test (for 

continuous variables) or chi-square test (for categorical variables). Correction for multiple 

testing was done using the Bonferroni method. Importance of each variable used in the final 

MLP model was estimated using Olden’s algorithm.(14)  Calibration plots were used to examine 

the overall predictive performance of the MLP by plotting the observed and expected risk 

deciles and fitting a lowess smoother to the data. Accuracy of classification was assessed by 

plotting a receiver-operating characteristic (ROC) and estimating the area under the ROC curve 

(AUC). Improvement in discrimination and reclassification was assessed using the Integrated 

Discrimination Improvement (IDI) and the net reclassification index (NRI). Statistical significance 

was tested at a type I error rate of 0.05. 
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 All analyses were carried out using R (CRAN) or Stata (Stata Corp, College Station, 

Texas). Following programs were used for specific aspects of analyses: one-hot encoding (R 

package onehot (13)), normalization of continuous variables and MLP implementation (R 

package RSNNS (15)), variable importance estimation (R package NeuralNetTools (16)), 

calibration plots (pmcalplot (17) package in Stata), AUC comparison (roccomp command in 

Stata that uses the DeLong test to compare AUCs (18)), and IDI and NRI estimation (idi and nri 

packages, Michael Lunt, University of Manchester, Manchester, United Kingdom).  

 

RESULTS 

Study population 

This study was based on 28,005 PCIs on 26,784 patients, most of whom (n=25,589 , 

95.5%) underwent one PCI, 1,169 (4.4%) had two PCIs and 26 (0.1%) had three PCIs during the 

study period. The average age of the patients was 65.6 years. Obesity (body mass index >30 

kg/m
2
, 46.6%), diabetes mellitus (40.4%), dyslipidemia (84.5%), and hypertension (83.8%) 

chronic renal (26.4%) and chronic lung (17.6%) disease were the commonest comorbidities. The 

average pre-PCI left ventricular ejection fraction was 52.1%, and a large proportion (varying 

between 21%-47%) patients had a significant history of heart failure, coronary artery disease, 

myocardial infarction, peripheral artery disease, or previous cardiac interventions (PCI and/or 

coronary artery bypass graft(CABG)). This full dataset was randomly split into a derivation set (n 

= 21,004) and a validation set (n= 7,001) which were statistically comparable with respect to 

the 100 predictor variables included in the study (Table 1). 

Classification using multi-layer perceptron models 
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Using hyperparameter grid search, we found that an MLP with two hidden layers 

provided optimum classification performance for Model 1 with respect to all the outcomes. The 

optimum number of neurons in the first and second hidden layers was 70 and 27, respectively. 

The results of model performance are described in Table 2, Figure 1 and Supplementary Figure 

1. 

Prediction of outcomes using pre-PCI variables 

 As shown in Table 2, Model 1 (pre-PCI probability of outcome) predicted AKI with an 

accuracy of 82% and 77% accuracy in the training and test sets, respectively. Similarly, high 

predictive accuracy was observed for bleeding (85% and 85%, respectively), death (92% and 

91%, respectively) and any adverse outcome (83% and 80%, respectively). However, Model 1 

had a suboptimal performance to predict stroke (73% and 72%, respectively). Concomitantly, 

the learning was quick for AKI, bleeding, death and any adverse outcome (optimum number of 

training epochs needed were only 8-9) as compared to that for stroke (65 epochs). The full 

model optimization and the mean squared error of prediction for all outcomes is shown in 

Supplementary Figure 1. 

Prediction of outcomes using PCI variables 

 The predictive performance of Model 2 (PCI-related probability of outcome) was, in 

general, less impressive than that of Model 1. This model provided optimum performance with 

one hidden layer containing 13 neurons. As shown in Table 2, the best predictions from Model  

2 were for death (84% in training set, 81% in test set), bleeding (77% and 73%, respectively), 

any adverse outcome (71% and 68%, respectively) and AKI (66% and 63%, respectively). 
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Learning took between 9 and 18 epochs for these outcomes. Consistently, the prediction of 

stroke was both poorer (57% and 47%, respectively) and slower (49 epochs). 

Prediction of outcomes using pre-PCI and PCI variables 

The accuracy of the final model that combined predictions from both Model 1 and 

Model 2 is described in Table 2 and depicted in Figure 2 (in the test set only). In general, the 

predictive performance of the final model was marginally superior to that of Model 1 for all 

outcomes. In the training and test sets the predictive performance of the final model was best 

for death (92% and 90%, respectively), bleeding (88% and 86%, respectively), any adverse 

outcome (84% and 81%, respectively) and AKI (82% and 78%, respectively). Stroke could be 

predicted with accuracy of 73% and 70% in these datasets, respectively. Considering that the 

final predictive accuracy was primarily obtained from the pre-PCI probability (Model 1), we 

examined if specific subsets of patients with high or low likelihood of the event can be 

identified based on the probability estimates from Models 1 and 2. For this, we generated 

deciles of the predictions from Model 1 and 2, separately and estimated the likelihood ratio of 

the outcome for combinations of these deciles. The results are shown in Supplementary Figure 

2. We found that higher deciles of the pre-PCI probability were associated with very high LRs for 

all outcomes. The association of the PCI-related probability (Model 2) deciles was, however, not 

linear for all outcomes. For instance, the LR for AKI was high (11.63) for patients in the highest 

decile of pre-PCI probability but in the lowest decile for PCI-related probability. Likewise, the LR 

for any adverse outcome was high (11.68) for patients in the 9th decile for pre-PCI probability 

but the lowest decile for PCI-related probability. Also, the LR for death was highest (62.1) for 

patients in the highest decile for pre-PCI probability but 6
th

 decile for PCI-related probability. 
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These results indicated that the likelihood of study outcomes was primarily predicted by the 

pre-PCI probability and had complex, non-linear associations with the PCI-related probability of 

the event. 

Predictive importance of input variables 

In Supplementary Table 2, we list the top 20 important variables  from Model 1 and top 

10 important variables from Model 2 for each outcome. In general, the importance metrics for 

the variables included in Model 2 were lower than for those in Model 1 corroborating the 

observations that pre-PCI probability was a stronger predictor (than PCI-related probability) of 

the study outcomes. Of note, even though same set of inputs were provided to the MLP for 

each outcome, the set of important predictors varied by outcome. For AKI, not being on 

dialysis, having CKD, undergoing emergent PCI as an inpatient and the pre-PCI troponin T were 

the top five pre-PCI predictors. For bleeding, the top five pre-PCI predictors were history of 

other major surgery, anemia, cardiogenic shock and emergent or salvage PCI. For death, the top 

five pre-PCI predictors were pre-PCI cardiogenic shock (within 24 hours or 2 weeks), cardiac 

arrest, heart failure within two weeks and stenosis in the circumflex artery. For stroke, the 

importance metrics were not impressive but the top five pre-PCI variables included history of 

heart failure, stenosed ramus or proximal LAD in the absence of dyslipidemia and chronic lung 

disease. For any adverse outcome, the top five pre-PCI variables were a conglomerate of the 

above-mentioned variables for each outcome and included cardiogenic shock, history of major 

surgery, anemia, currently not on dialysis and an emergent PCI. Interestingly, across the 

outcomes, the important PCI-related variables primarily included insertion of intra-aortic 

balloon pump (IABP) or other mechanical ventricular support (MVS) before, during or after the 
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PCI. Notably, nonuse of bleeding avoidance strategies (trans radial access, bivalirudin use and 

vascular closure device) was an important predictor of bleeding. 

Validation of the MLP classifier in the test set 

The ROC curves for prediction of each outcome in the independent test set are shown in 

Figure 2 and the AUC for these curves is shown separately for each model in Table 2 (column 

titled “Accuracy in Test Set”). As mentioned above and shown in these ROC curves, the 

predictive performance in the test set was excellent for all outcomes except for stroke. The 

learning difficulty posed by the outcome of stroke was also exemplified further when we 

examined the calibration of the predicted probabilities from the final model (calibration plots in 

Figure 2). While all other outcomes had calibration slopes close to unity, the outcome of stroke 

had a low value for slope and a low range of predicted probabilities as indicated by a truncated 

calibration plot. The calibration slopes for death and bleeding were closest to unity, followed by 

any adverse outcome and AKI. 

 The predictive performance of the final model in the test set was typified by the 

appropriate risk stratification across tertiles of  predicted probabilities for each study outcome. 

For example, the observed event rate of AKI in the low-, middle- and upper tertile of the 

predicted probability was 1%, 2.7% and  10.8%, respectively. Similar stratification was observed 

for the outcomes of bleeding (0.4%, 1.5% and 11%, respectively), death (0%, 0.3% and 3.5%, 

respectively), any adverse outcome (1.4%, 4.2% and 18.9%, respectively) and stroke (0.04%, 

0.4% and 0.5%). Together, these results indicated, excellent accuracy, calibration and 

stratification provided by the final model for all outcomes other than stroke. 

Improvement in PCI risk-stratification by MLP model 
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Currently, the NCDR CathPCI models based on regression methods are used to 

encourage informed PCI decisions by providing pre-PCI estimates of predicted probability for 

death (19), bleeding (12) and AKI (20). We therefore compared the predicted probabilities 

obtained from the MLP models with these existing models to investigate whether the proposed 

method improves the predictive performance. The results of these analyses are shown in Table 

3. We observed that for all three outcomes, the MLP based models provided significantly 

improved predictive accuracy (1.6%, 5.3% and 5.6% for death, bleeding and AKI, respectively), 

discrimination (6.0%, 7.2% and 4.9%, respectively) and reclassification (continuous NRI 0.61, 

0.18, 0.07, respectively). Together, these results demonstrate the improved predictive 

performance using the perceptron-based models over the existing methods. 

 

DISCUSSION 

We have developed a system of models using the ANN framework and MLP structure to 

simultaneously predict three PCI-related adverse outcomes – bleeding, AKI and death. A 

comparison of our predictive models with the current standard-of-care predicting models 

showed a significant improvement in accuracy, discrimination and reclassification. Recently, 

Huang et al (21) published an elegant model to predict AKI after PCI using the large NCDR 

CathPCI dataset emanating from 1,694 US hospitals. They employed a generalized additive 

model to account for the potential nonlinear relationships. Depending on the definition of AKI 

(degree of rise in serum creatinine post-PCI) their model accuracy ranged from 77.7% to 84.9% 

with the more severe forms of AKI (serum creatinine absolute rise >1.0 mg/dl over baseline) 

predicted more accurately. Our definition of AKI corresponded to a mild increase in serum 
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creatinine (absolute rise >0.3 mg/dl). The predictive accuracy of our model for AKI (77.9%) was 

therefore comparable with that of the model developed by Huang et al.(21) In a similar fashion, 

risk models for predicting bleeding after PCI have traditionally reported predictive accuracy in 

the range of 65% to 79%.(22-24) A meta-analysis of 6 published studies that included separate 

validation datasets found that the aggregate predictive accuracy of risk models for PCI-related 

bleeding was 68% (95% CI 65% – 72%).(25) Thus, the current models for prediction of bleeding 

demonstrate only moderate level of accuracy. In contrast, our ANN-based model predicted 

bleeding with 86.5% accuracy – a substantial improvement over current models. The best 

predictive performance of our model, however, was for the outcome of all-cause mortality 

during hospitalization (predictive accuracy 90.3%) and was comparable with that of the 

currently used models (3) for mortality prediction. Together, our system of ANN models offered 

an improved and accurate prediction of three, PCI-related outcomes during index 

hospitalization – AKI, bleeding and death. 

 We and others have demonstrated the importance of contrast use limitation as a 

predictor of post-PCI AKI. Out second stage model for AKI did not include contrast use in the 

top 10 contributors to AKI prediction, neither did the S2 model greatly increase the 

performance of the stage 1 model (data shown in Table 2 and Supplementary Table 2). This 

result implies that in the dataset studied, the likelihood of contrast induced AKI may have been 

limited. In general, for all outcomes the stage 2 models in our dataset made only a small 

contribution to the final predictive accuracy. Training the models on larger datasets with richer 

procedural characteristics can therefore be expected to further augment the predictive 

performance of all the models. 
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 Our model did not provide a satisfactory prediction of stroke after PCI.  In this context, it 

is noteworthy that while efforts are underway to understand the determinants of stroke after 

PCI, currently there are no risk prediction models for this outcome. Hence comparison of the 

predictive performance of our model for stroke with other models is not possible. It is 

understood that trans radial intervention(26), receipt of ventilation, circulatory support, 

thrombolysis and acute coronary syndrome are predictors of ischemic or hemorrhagic stroke 

after PCI.(27) The list of important variables in our model (Supplementary Table 2) only partially 

concurred with this list. The inability of our model to predict stroke after PCI can be explained in 

part on the basis of following three reasons. First, the outcome of stroke in our study 

represented a composite outcome that included TIA, ischemic stroke and hemorrhagic stroke. 

As shown by Myint et al,(27) determinant of differ types of stroke after PCI may be different. 

Second, the prevalence of stroke in our dataset was low (0.27%) representing a scenario of 

potential imbalanced machine learning. A possible lack of adequate number of training sample 

in the stroke class could have limited the predictive ability of our model. Third, stroke maybe an 

inherently harder outcome to predict as compared to AKI, bleeding and death. Larger datasets 

with adequate number of training examples are needed before our approach can be used for 

prediction of stroke after PCI. 

 Our study used observational data and thus all the limitations implicit in such a dataset 

can be expected to be operational in our study as well. In addition, following limitations need to 

be considered. First, while all the models are temporally valid, the models can be made further 

clinically applicable by predicting time to events. Second, our model predicted the “any adverse 

outcome” as a composite outcome measure with good accuracy but a more specific model can 
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be envisioned that can exploit larger datasets to predict specific combinations of PCI-related 

outcomes. Third, in line with the model by Huang et al,(21) it could be clinically more useful to 

test the model performance for varying levels of absolute rise in serum creatinine. However, in 

our dataset the prevalence of high absolute serum creatinine rise (>1mg/dl) was below 1% and 

thus difficult to predict. Larger datasets with adequate representation of AKI severity classes 

can be used in future studies to further refine the AKI component of our system of models. 

 In conclusion, we have developed a system of ANN-based predictive models that 

accurately predict three PCI-related outcomes – AKI, bleeding and death. In the era of 

personalized medicine, expensive interventions and bundled payments, this work has 

important implications. The direct impact of these improved ANN-based prediction of PCI-

related outcomes needs to be investigated and determined in future studies. 
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Table 1. Baseline characteristics, PCI-related data and observed outcomes in the study population. 

Characteristic Categories Code Training Set Test Set p 

Mean / N SD / % Mean / N SD / % 

Clinical characteristics               

Age (y) --- None 65.6 12.05 65.48 12.28 0.463 

Female gender Yes 1 7041 33.52 2249 32.12 0.0314 

White Race Yes 1 18414 87.67 6140 87.7 0.9425 

Body Mass Index (Kg/m
2
)   None 30.47 6.69 30.49 6.63 0.8049 

Current smoker   1 5407 25.74 1818 25.97 0.7094 

Diabetes   1 8510 40.52 2802 40.02 0.4664 

Hypertension   1 17619 83.88 5853 83.6 0.5795 

Dyslipidemia   1 17762 84.57 5896 84.22 0.4808 

Diabetes therapy 1 307 1.46 105 1.5 0.349 

  Diet 2 562 2.68 211 3.01   

  Oral 3 3884 18.49 1305 18.64   

  Insulin 4 3731 17.76 1173 16.75   

  Other 5 22 0.1 8 0.11   

Chronic lung disease   1 3702 17.63 1240 17.71 0.8693 

Chronic kidney disease   1 5365 26.61 1742 25.88 0.2392 

Current dialysis   1 643 3.06 220 3.14 0.7353 

Anemia   1 1389 6.61 469 6.7 0.8022 

Family history of CAD   1 5508 26.23 1825 26.07 0.7941 

Past history of myocardial 

infarction   1 7004 33.35 2327 33.24 0.8682 

Past history of heart failure   1 4434 21.11 1523 21.75 0.2543 

Past history of peripheral arterial 

disease   1 3235 15.4 1021 14.58 0.0986 

Past history of valve surgery   1 487 2.32 164 2.34 0.9076 

Past history of PCI   1 10004 47.63 3289 46.98 0.3456 

Past history of CABG   1 4511 21.48 1508 21.54 0.9116 
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Past history of cerebrovascular 

disease   1 3365 16.02 1102 15.74 0.5793 

Past history of heart failure 

within 2 weeks   1 4724 22.49 1550 22.14 0.5415 

Cardiogenic shock within past 24 

hours   1 402 1.91 139 1.99 0.7066 

Cardiac arrest within past 24 

hours   1 304 1.45 104 1.49 0.8175 

NYHA class within past 2 weeks I 1 326 6.91 105 6.77 0.8959 

  II 2 1034 21.9 342 22.06 0.8959 

  III 3 1823 38.61 584 37.68 0.8959 

  IV 4 1538 32.58 519 33.48 0.8959 

Past history of other major 

surgery   1 332 1.58 104 1.49 0.5767 

Time elapsed since last CABG 

(days)   None 4227.66 2689.13 4217.65 2747 0.901 

Time elapsed since last PCI (days)   None 1598.18 1811.28 1605.91 1830.02 0.8323 

Time since onset of symptoms 

(days)  

0 18992 90.08 6297 89.94 0.8813 

   1 1356 21.79 456 21.88 

    2 328 5.27 117 5.61   

    3 223 3.58 65 3.12   

    4 91 1.46 35 1.68   

    5 38 0.61 16 0.77   

    6 38 0.61 11 0.53   

    7 8 0.13 4 0.19   

Anginal classification within 2 

weeks None 1 1254 5.97 403 5.76 0.3681 

  CCS I 2 759 3.61 287 4.1   

  CCS II 3 1859 8.85 599 8.56   

  CCS III 4 8130 38.71 2720 38.85   

  CCS IV 5 9002 42.86 2992 42.74   
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Cardiomyopathy or LV 

dysfunction   1 2859 13.61 1004 14.34 0.1262 

Admission characteristics        

Insurance  Medicare/Medicaid only 1 6982 33.24 2243 32.04 0.1064 

   Multiple 2 12730 60.61 4296 61.36 0.1064 

CAD Presentation No symptom, no angina 1 1004 4.78 324 4.63 0.666 

  Symptom unlikely to be ischemia 2 436 2.08 163 2.33   

  Stable angina 3 2553 12.15 853 12.18   

  Unstable angina 4 10515 50.06 3481 49.72   

  NSTEMI 5 4087 19.46 1400 20   

  STEMI or equivalent 6 2409 11.47 780 11.14   

Hospital status Outpatient 1 6082 28.96 2028 28.97 0.6108 

  

Outpatient converted to 

inpatient 2 3952 18.82 1353 19.33   

  Inpatient 3 10968 52.22 3620 51.71   

Admit source Emergency department 1 5792 27.58 1965 28.07 0.7317 

  

Transfer from another acute care 

facility 2 4418 21.04 1464 20.91   

  Other 3 10788 51.38 3571 51.01   

PCI status Elective 1 8025 38.21 2716 38.81 0.8336 

  Urgent 2 10084 48.01 3333 47.63   

  Emergency 3 2860 13.62 937 13.39   

  Salvage 4 35 0.17 12 0.17   

Inpatient Inpatient for this episode 1 14920 71.03 4973 71.03 0.9982 

Door to balloon time (min)   None 77.45 336.78 65.81 82.56 0.3654 

Symptom action time (min)   None 386.66 684.12 422.6 889.4 0.6099 

Stress studies               

Stress echocardiogram Low risk 1 166 14.12 57 14.92 0.6096 

  Intermediate risk 2 941 80.02 298 78.01   

  High risk 3 67 5.7 27 7.07   

  Unavailable 4 2 0.17 0 0   
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SPECT stress test Low risk 1 425 8.56 128 7.78 0.099 

  Intermediate risk 2 4357 87.74 1462 88.82   

  High risk 3 156 3.14 40 2.43   

  Unavailable 4 28 0.56 16 0.97   

Exercise stress test Low risk 1 43 12.36 11 10.28 0.4438 

  Intermediate risk 2 274 78.74 91 85.05   

  High risk 3 27 7.76 4 3.74   

  Unavailable 4 4 1.15 1 0.93   

Stress test with CMR Low risk 1 2 7.14 1 14.29 0.779 

  Intermediate risk 2 23 82.14 6 85.71   

  High risk 3 2 7.14 0 0   

  Unavailable 4 1 3.57 0 0   

Imaging studies               

Coronary calcium score Yes 1 51 0.78 21 0.98 0.3871 

Calcium score   None 856.61 961.73 609 841.03 0.3074 

Cardiac CTA No disease 1 18 28.13 11 42.31 0.1651 

  1 vessel disease 2 17 26.56 3 11.54   

  2 vessel disease 3 21 32.81 9 34.62   

  3 vessel disease 4 2 3.13 3 11.54   

  Indeterminate 5 5 7.81 0 0   

Left main stenosis (%)   None 12.3 23.99 12.38 24.18 0.8251 

Proximal LAD stenosis (%)   None 40.41 39.57 40.11 39.74 0.615 

Mid/Distal LAD stenosis (%)   None 58.45 37.79 58.72 37.61 0.6218 

Circumflex artery stenosis (%)   None 54.09 39.51 53.54 39.48 0.3404 

Ramus stenosis (%)   None 16.9 32.24 17.46 32.48 0.4474 

RCA stenosis (%)   None 64.44 37.32 64.33 37.41 0.827 

Proximal LAD graft stenosis (%)   None 14.33 32.74 13.75 32.06 0.727 

Mid/Distal LAD graft stenosis (%)   None 25.3 40.37 25.89 40.68 0.6671 

Circumflex artery graft stenosis 

(%)   None 48.06 46.09 50.72 46.44 0.1149 

RCA graft stenosis (%)   None 51.26 45.86 52.78 45.93 0.3667 
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Ramus graft stenosis (%)   None 10.53 28.18 11.87 30.51 0.412 

Dominance Left 1 1702 8.11 550 7.86 0.5951 

  Right 2 17668 84.23 5927 84.74   

  Co-dominant 3 1605 7.65 517 7.39   

LV ejection fraction   None 52.2 13.48 51.83 13.49 0.0867 

Medications               

Antianginal - beta-blockers   1 13541 87.32 4460 87.02 0.5799 

Antianginal - Ca-channel blockers   1 4388 28.3 1437 28.04 0.7222 

Antianginal - Long acting nitrates   1 4616 29.77 1540 30.05 0.7025 

Antianginal - ranolazine   1 631 4.07 198 3.86 0.5156 

Antianginal - other   1 740 4.77 254 4.96 0.5937 

Thrombolytics   1 82 3.42 25 3.21 0.7774 

Laboratory investigations               

Pre-PCI CKMB   None 21.67 56.96 23.32 60.64 0.443 

Pre-PCI TnI   None 5.07 25.23 5.01 18.02 0.9118 

Pre-PCI TnT   None 0.45 2.18 0.44 1.39 0.8698 

Pre-PCI Serum Creatinine   None 1.22 1.15 1.22 1.18 0.9977 

Pre-PCI Hemoglobin   None 13.19 2 13.21 2.03 0.6364 

PCI variables before start of PCI               

Time of PCI start 00:00 - 05:59 AM 0 463 2.2 168 2.4 0.1027 

  06:00 AM - 11:59 AM 1 10205 48.59 3385 48.35   

  12:00 Noon - 5:59 PM 2 9102 43.33 3086 44.08   

  6:00 PM - 11:59 PM 3 1234 5.88 362 5.17   

Day of PCI Sunday 0 600 2.86 204 2.91 0.5308 

  Monday 1 4164 19.82 1428 20.4   

  Tuesday 2 4117 19.6 1321 18.87   

  Wednesday 3 3830 18.23 1239 17.7   

  Thursday 4 3854 18.35 1316 18.8   

  Friday 5 3753 17.87 1280 18.28   

  Saturday 6 686 3.27 213 3.04   

Diagnostic catheterization done   1 13971 66.52 4605 65.78 0.2568 
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Other procedure with diagnostic 

catheterization   1 2911 13.86 963 13.76 0.8271 

Fluoroscopy time (min)   None 17.26 13.41 17.49 13.52 0.2189 

Fluoroscopy dose (mGy)   None 2156.1 1494.94 2220.65 1447.97 0.4495 

Contrast volume (ml)   None 186.67 84.11 187.17 83.4 0.665 

Number of diseased vessels   0 265 1.26 73 1.04 0.2583 

    1 10097 48.07 3411 48.72   

    2 6290 29.95 2117 30.24   

    3 4352 20.72 1400 20   

Estimated glomerular filtration 

rate   None 69.94 20.1 70.4 20.11 0.1016 

Cardiogenic shock at the start of 

PCI   1 450 2.14 133 1.9 0.2176 

PCI procedure related 

characteristics               

Glycoprotein IIb/IIIa inhibitors Given 1 2883 13.73 1015 14.5 0.1067 

Fondaparinux   1 11 0.05 6 0.09 0.4522 

    2 2 0.01 2 0.03   

    3 1 0 0 0   

Low molecular weight heparin   1 1789 8.52 574 8.2 0.5252 

    2 3 0.01 2 0.03   

Unfractionated heparin Given 1 10054 47.87 3352 47.88 0.9916 

Aspirin   1 19935 94.92 6621 94.6 0.5628 

    2 117 0.56 43 0.61 0.5628 

Bivalirudin   1 13532 64.43 4525 64.63 0.753 

Clipidogrel   1 15517 73.88 5238 74.82 0.2914 

    2 70 0.33 21 0.3   

Ticlopidine   1 20 0.1 8 0.11 0.8961 

    2 35 0.17 11 0.16   

Prasugrel   1 2102 10.22 663 9.7 0.4622 

    2 40 0.19 13 0.19   

Ticagrelor   1 2937 18.19 960 17.85 0.8284 
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    2 42 0.26 12 0.22   

    3 1 0.01 0 0   

Number of drug eluting stents   None 1.45 1.03 1.47 1.04 0.2011 

Number of bare metal stents   None 0.18 0.56 0.18 0.57 0.4689 

Minimum stent diameter (mm)   None 2.87 0.51 2.87 0.51 0.2165 

Total stent length (mm)   None 31.48 21.93 31.98 22.23 0.1129 

Number of lesions   None 0.13 0.6 0.13 0.61 0.6337 

Transradial access   1 2460 11.71 799 11.41 0.4987 

Vascular closure device   1 11595 55.2 3890 55.56 0.6001 

Intra-aortic balloon pump Present at the start of PCI 1 69 27.82 30 36.59 0.3239 

  Inserted during PCI 2 59 23.79 17 20.73   

  Inserted after PCI 3 120 48.39 35 42.68   

Other mecahanical ventricular 

support Present at the start of PCI 1 50 26.74 14 25 0.4269 

  Inserted during PCI 2 116 62.03 32 57.14   

  Inserted after PCI 3 21 11.23 10 17.86   

Outcomes               

Acute kidney injury Observed 1 955 4.55 328 4.69 0.6317 

Bleeding Observed 1 744 3.54 272 3.89 0.1838 

Stroke Observed 1 56 0.27 19 0.27 0.9466 

Death Observed 1 232 1.1 67 0.96 0.2982 

At least one adverse outcome Observed 1 1630 7.76 552 7.88 0.7371 
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Table 2. Predictive accuracy of the MLP classifier 

Model Outcome Epochs Accuracy in training set 

AUC (95% CI)  

Accuracy in test set 

AUC (95% CI) 

Pre-PCI model (model #1) AKI 9 0.8197 (0.8050 - 0.8344) 0.7745 (0.7472 - 0.8019) 

  Bleeding 11 0.8518 (0.8372 - 0.8645) 0.8508 (0.8287 - 0.8728) 

  Stroke 65 0.7266 (0.6574 - 0.7957) 0.7174 (0.6163 - 0.8186) 

  Death 8 0.9196 (0.9004 - 0.9386) 0.9116 (0.8737 - 0.9494) 

  Any AO 9 0.8266 (0.8154 - 0.8379) 0.7981 (0.7782 - 0.8180) 

PCI model (model #2) AKI 9 0.6579 (0.6390 - 0.6768) 0.6253 (0.5923 - 0.6583) 

  Bleeding 18 0.7745 (0.7563 - 0.7926) 0.7349 (0.7031 - 0.7607) 

  Stroke 49 0.5690 (0.4885 - 0.6495) 0.4711 (0.3521 - 0.5900) 

  Death 13 0.8429 (0.8149 - 0.8710) 0.8126 (0.7618 - 0.8633) 

  Any AO 14 0.7107 (0.6967 - 0.7248) 0.6782 (0.6535 - 0.7026) 

Final model AKI - 0.8175 (0.8023 - 0.8326) 0.7793 (0.7521 - 0.8065) 

  Bleeding - 0.8763 (0.8629 - 0.8898) 0.8590 (0.8363 - 0.8818) 

  Stroke - 0.7293 (0.6594 - 0.7993) 0.6990 (0.5882 - 0.8098) 

  Death - 0.9233 (0.9035 - 0.9431) 0.9035 (0.8684 - 0.9386) 

  Any AO - 0.8372 (0.8261 - 0.8482) 0.8057 (0.7862 - 0.8252) 
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Table 3. Improved risk-stratification using the MLP-based classification 

Characteristic Parameter AKI Bleeding Death 

Accuracy ΔAUC, p 0.0564, 2.2x10
-26

 0.0526, 4.4x10
-23

 0.0161, 0.0489 

Discrimination IDI, p 0.0486, 4.0x10
-31

 0.0717, 9.2x10
-34

 0.0602, 4.7x10
-7

 

Classification NRI, p 0.0729, 0.0110 0.1765, 3.3x10
-8

 0.6078, 1.4x10
-25
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FIGURE LEGENDS 

 

Figure 1. Analysis pipeline for MLP-based predictive model. For details, please see text. The 

derivation and training sets are color coded as orange while the validation and test sets are 

color coded blue. Categorical variables are indicated by a stepwise gradient and continuous 

variables are indicated by a continuous gradient. 

 

Figure 2. Predictive performance of the MLP-based classifier in the test set (n = 7,001). This 

trellis plot shows the accuracy (ROC curves), calibration (calibration plots) and stratification (bar 

graphs) for each outcome indicated on the left. AUC, area under the ROC curve; CI, confidence 

interval; E/O, expected over observed ratio; LR, level-specific likelihood ratio (subscripts 

indicate the tertiles); L, M, U, lower, middle and upper tertile, respectively. 
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