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Abstract 23 

Given the unprecedented demand for SARS-CoV-2 testing during the COVID-19 pandemic, the benefits 24 

of specimen pooling have recently been explored. As previous studies were limited to mathematical 25 

modeling or testing on low throughput PCR instruments, this study aimed to assess pooling on high 26 

throughput analyzers. To assess the impact of pooling, SARS-CoV-2 dilutions were performed at varying 27 

pool depths (i.e. 1:2, 1:4, and 1:8) into test-negative nasopharyngeal or oropharynx/anterior nares 28 

swabs matrix. Testing was evaluated on the automated Roche Cobas 6800 system, or the Roche 29 

MagNApure LC 2.0 or MagNAPure 96 instruments paired with a laboratory-developed test using a 96-30 

well PCR format. The frequency of detection in specimens with low viral loads was evaluated using 31 

archived specimens collected throughout the first pandemic wave. The proportion of detectable results 32 

per pool depths was used to estimate the potential impact. In addition, workflow at the analytical stage, 33 

and pre-and post-stages of testing were also considered. The current study estimated that pool depths 34 

of 1:2, 1:4, and 1:8 would have allowed the detection of 98.3%, 96.0%, and 92.6% of positive SARS-CoV-35 

2 results identified in the first wave of the pandemic in Nova Scotia. Overall, this study demonstrated 36 

that pooling on high throughput instrumentation can dramatically increase the overall testing capacity 37 

to meet increased demands, with little compromising to sensitivity at low pool depths. However, the 38 

human resources required at the pre-analytical stage of testing is a particular challenging to achieve.  39 

Introduction 40 

In response to the 2019 novel coronavirus (COVID-19) pandemic, caused by severe acute respiratory 41 

syndrome coronavirus 2 (SARS-CoV-2), there has been an unprecedented demand for laboratory testing. 42 

Molecular methods such as real-time reverse transcription polymerase chain reaction (RT-qPCR) have 43 

been the primary testing method and a fundamental tool in patient management and public health 44 

containment and mitigation strategies.[1-5]  45 
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In the initial stages of the pandemic, testing was restricted to symptomatic individuals with a compatible 46 

travel history to an area of COVID-19 concern; however, our understanding of SARS-CoV-2 epidemiology 47 

improved and the recommendations for testing evolved over time. With global spread and data 48 

suggesting the possibility of SARS-CoV-2 transmission through asymptomatic or pre-symptomatic 49 

individuals, travel requirements or presence of compatible symptoms were no longer a prerequisite for 50 

testing.[6-9] Subsequently, the demand for testing became overwhelming, and laboratories were 51 

challenged by insufficient testing supplies.[1,10-13] As COVID-19 cases began to decline, the pressure on 52 

laboratories to meet testing demands continued, as testing remained a cornerstone to support the 53 

reopening of the economy and easing of public health restrictions.[14,15]   54 

A possible strategy to increase testing capacity and gain laboratory efficiencies, is group testing (i.e. 55 

specimen pooling). While many pooling permutations are possible, its simplest application involves 56 

combining patient samples prior to testing, and retesting of individual specimens following identification 57 

of a positive pool.[16-23] The optimal number of specimens within pools (i.e. pool depth) can be 58 

estimated through mathematic modeling, and varies with disease prevalence and assay 59 

performance.[16-38] While larger pool depths may achieve higher efficiency, the trade-off is reduced 60 

sensitivity and the potential generation of false negative results.[18-23, 31-38] When prevalence is low, 61 

typically only a subset of specimens with low viral loads pass undetected.[18-23, 31-38]  62 

Pooling using RT-qPCR has been applied for surveillance of various infectious diseases in both animals 63 

and humans.[39-42] For SARS-CoV-2, pooling has been applied in modelling or for relatively small 64 

throughput instruments with varying pool depths [16-38], but no studies have described the impact of 65 

pooling on automated high throughput analyzers. This study validated pooling of specimens for SARS-66 

CoV-2 testing at different pooling depths on high throughput analyzers, and discusses some practical 67 

considerations prior to implementation.   68 
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Methods 69 

Pooling efficiency modeling  70 

The impact of prevalence and pooling depth on testing capacity was modeled as previously described 71 

[17] with online software (https://www.chrisbilder.com/shiny), using an assumption of RT-qPCR 72 

sensitivity of 95% and specificity of 99.9%. Testing capacity was calculated for prevalence values 73 

spanning 0.1 to 10%, and for pooling depths ranging for 3 to 10. A value above 100% indicates testing 74 

capacity is increased.   75 

Specimen collection and pooling 76 

The collection of specimens for SARS-CoV-2 RT-qPCR testing were performed using a flocked 77 

nasopharyngeal (NP) swabs collected in 3.0 ml of universal transport medium (UTM) (Copan Diagnostics 78 

Inc., Murrieta, CA), or a Aptima Multitest swab (Hologic Inc., San Diego, CA) for oropharynx/anterior 79 

nares (OP/Na) collection in 2.9 ml of specimen transport medium (STM).[10] Each specimen was stored 80 

at 4°C until testing, and aliquots were stored at -80°C. For pooling, specimens were diluted in triplicate 81 

using a Voyager 8-channel adjustable tip spacing pipette (Integra Biosciences Corp., Hudson, NH) at 82 

ratios of 1:2, 1:4, and 1:8, to achieve volumes of 1.5 ml. Dilutions were performed using negative matrix 83 

(UTM or STM), consisting of combined SARS-CoV-2 test-negative specimens (n≥48).  84 

Nucleic acid extraction and RT-qPCR  85 

Swabs material and dilutions were processed with one of three RT-qPCR methods. First, the SARS-CoV-2 86 

assay was used on the automated Cobas 6800 system (Roche Diagnostics, Laval, QC). For NP specimens 87 

in UTM, 600 µl was processed directly, but for the OP/Na swabs in STM, 200 µl was diluted into 1 ml of 88 

Cobas omni Specimen Diluent prior to use.[10] Threshold cycles (Ct) values were categorized as positive 89 

with dual target positive results (E gene and Orf1a), indeterminate for single target results, or negative 90 
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in absence of Ct values. The two remaining methods used different extraction methods where a Total 91 

Nucleic Acid (TNA) extraction was performed on either a Roche MagNApure LC 2.0 or MagNAPure 96 92 

instrument, and paired with a laboratory-developed test (LDT) [1,10,11]. Briefly, TNA was extracted 93 

from 200 µl of specimen, eluted into 50 µl of elution buffer, and 5 µl was used as template in a duplex 94 

RT-qPCR targeting the SARS-CoV-2 envelope (E) [43] and RNA-dependent RNA polymerase (RdRp). 95 

Amplification was performed on an Applied BioSystems 7500 Fast system (Thermo Fisher Scientific, 96 

Mississauga, ON). Results were categorized as positive with dual target positive results with Ct values 97 

≥38, indeterminate for single target results between 35 and 38 (unless confirmed by another method 98 

with a different genetic target), or negative for Ct values ≥38. 99 

Estimated impact of pooling on SARS-CoV-2 detection 100 

For each instrument and swab type, a limit of detection (LoD) analysis was performed using 10-fold 101 

serial dilutions of previously positive SARS-CoV-2 specimens in UTM or STM, in comparison to viral 102 

dilution at varying pool depths (i.e. 1:2, 1:4, and 1:8). Virus concentration was estimated in relation to a 103 

standard curve with quantified virus provided by the National Microbiology Laboratory (NML) 104 

(Winnipeg, MB).[31] Ct values for specimens dilutions at different pooling depths were compared to 105 

undiluted specimens, and used to defined the subsequent analyses.  106 

The frequency of detection in specimens with low viral loads (i.e. Ct values near the defined in the LoD 107 

for each pool), was assess retrospectively using archived specimens at -80°C. The proportion (%) of 108 

detectable results per Ct value category was used to estimate the potential impact of pooling in previous 109 

results obtained in Nova Scotia from January 24th, 2020 to June 26th, 2020. Results were categorized by 110 

Ct values, instruments, and RT-qPCR targets. 111 

Considerations for specimen workflow, turnaround times, and human resources  112 
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Using direct observation, the average (n=10) hands-on times tasks required for each instrument was 113 

estimated, the theoretical daily maximum specimen throughput was estimated assuming ideal 114 

conditions, with no restrictions for human resources, reagents/consumables, or cost. Maximal testing 115 

capacity assumed retesting of individuals specimen from positive pools would occur on a separate 116 

instrument with equivalent sensitivity [1,17,44-47]. Human resources required for analytical, and pre 117 

and post-analytical processing were estimated. Pre-analytical steps accounted for the specimen 118 

registration into the hospital laboratory information system (LIS) (i.e. 3-5 min/specimen), labelling, and 119 

aliquoting.  Analytical steps included specimen organization, pooling, and any instrument pre-processing 120 

steps. Post- analytical steps included result interpretation, reporting, and notifications to ordering 121 

physicians, infection prevention and control, and public health.           122 

Results  123 

Epidemiology and impact of prevalence on testing capacity at various pool depths 124 

In Nova Scotia, the overall daily positivity rates varied from 0.0% to 8.0%, and daily fluctuations were 125 

evident (Figure 1A). Using mathematical modelling, it was demonstrated that pooling depths between 3 126 

and 8 were inefficient at a prevalence of ≥8%, and pools of 9 or 10 were inefficient at a prevalence of 127 

≥6% (Figure 2). However, at low prevalence, testing capacity increased with pool depth.       128 

Estimated impact of pooling on SARS-CoV-2 detection 129 

Using LoD analyses, the potential impact of pooling at depths of 1:2, 1:4, and 1:8 was assessed for each 130 

instrument (Figure 2). Compared to undiluted controls, increasing pool depths progressively reduced the 131 

analytical sensitivity, as seen by the decrease in SARS-CoV-2 RNA detection near the LoD, and the 132 

incremental increase of approximately 1 to 2 Ct values for each pooling dilution (Figure 2). Similar trends 133 

were noted for both NP and OP/Na swabs collections on each instrument (Figure 2). It should be noted 134 
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that OP/Na specimens required an initial pre-processing step (i.e. 1:6 dilution in manufacturer diluent) 135 

on the cobas 6800 instruments and, NP swabs in UTM therefore achieved lower LoDs.[10] Moreover, 136 

the cobas 6800 was more sensitive than the LDT paired with the MagNAPure 96and processing on the 137 

MagNAPure LC was the least sensitive method. Regardless of the comparative differences in analytical 138 

sensitivity, similar trends were noted for the relative reduction in sensitivity with increasing pool depths 139 

compared to the undiluted controls.  140 

To further quantify the potential impact of pool depth, the frequency of detection was compared 141 

against previously tested specimens with low viral loads (i.e. Ct values ≥33 on the cobas 6800 or Ct 142 

values ≥32 on the LDT). Of 134 archived specimens retested on the cobas 6800, 113 yielded a detectable 143 

signal and Ct values were categorized (Figure 3A). Similar approaches were used for the LDT (Figure 3C). 144 

Overall, the frequency of SARS-CoV-2 detection with high Ct values decreased as the pooling depth 145 

increased (Figure 3). Using these proportions, the number of specimens that would have been missed 146 

during the first pandemic wave was estimated (Figure 3B and D). Excluding the 21 indeterminate results 147 

that were not reproducible, the proportion of specimens missed for pooling depths of 1:2, 1:4, and 1:8 148 

would be 1.6% (9/570), 5.3% (30/570), and 11.1% (63/570), respectively (Figure 3B). Similarly, if the 17 149 

indeterminate results were excluded for the LDT data, the proportion of specimens missed for pooling 150 

depths of 1:2, 1:4, and 1:8 would be 1.8% (12/677), 3.0% (20/677), and 4.4% (30/677), respectively 151 

(Figure 3D).  152 

Considerations for workflow and maximal specimen throughput  153 

The theoretical maximal daily specimen throughput for each instrument was estimated, and increased 154 

with pool depth (Figure 4). In terms of specimen processing, the FTEs required in the pre-analytical steps 155 

were prominent, and increased with pool depth. These were primarily attributed to specimen 156 

registration (Figure 5). The FTE requirements in analytical phase were unchanged by pool depths, and 157 
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only a small increase would be required in the post-analytical stage given the manual steps required 158 

result interpretation, reporting, and communication.  159 

Discussion 160 

Given the unprecedented demand for COVID-19 testing, the benefits of pooling have recently been 161 

explored for the diagnosis of SARS-CoV-2. To date, pooling for SARS-CoV-2 has been limited to 162 

mathematical modeling or testing on low to moderate throughput RT-qPCR instruments.[16-38] In this 163 

study, pooling assessed on high throughput analyzers was shown to increase testing capacity with 164 

minimal reduction in analytical sensitivity at low pool depths. This study also considered the potential 165 

impacts of pooling at the pre- and post-analytical stages. Overall, the theoretical capacity of high 166 

throughput instruments could attain over 5,000 tests a day with a conservative pool depths of 1:4, but 167 

the human resource required in the pre-analytical stage would be the most significant barrier to 168 

implementation.  169 

Since first proposed by Dorfman in 1943 [16], pooling has been well recognized as a strategy to gain 170 

efficiency and increase testing capacity.[*] Mathematical models have been developed to help choose 171 

the optimal pool depth that would achieve maximum testing capacity, for a defined disease prevalence 172 

and instrument performance characteristics.[16-23] Using modeling data for the Cepheid Xpert COVID-173 

19 assay, Becker et al. [17] suggested that a pool size of 6 was ideal at a positivity rate of 3%, but at 174 

7.6%, a pool size of 3 would be more efficient. However, in this study, when using modelling to assess 175 

the value of pooling at a given prevalence, and establishing a cutoff to decide when to switch between 176 

different pooling depths, it was shown that fluctuations in the daily positivity rates needed to be 177 

considered. For example, during times of the peak detection of SARS-CoV-2 cases in Nova Scotia, the 178 

daily positivity rates fluctuated between 2 and 8%. At these rates, and using a conservative pooling 179 

depth of 1:4, testing capacity would range between being efficient (at 208%) and being inefficient (at 180 
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92.3%). However, rates as high as 8% were infrequent, so a pool depth of 1:4 would have been efficient 181 

throughout the entire pandemic wave with the exception of a single day that reach a positivity of 8%. 182 

Even a pool depth of 1:8 would have been efficient for all but 3 days, when prevalence exceeded 6%. 183 

Therefore, a significant amount of resources could have been saved by pooling in Nova Scotia.  184 

Whether used to meet increased testing demands or as resource sparing strategies, the benefits of each 185 

pool depths must be balanced against the potential concomitant loss in sensitivity. Typically, in times of 186 

high disease prevalence, pool depth is kept as low as possible to achieve desired testing capacity. In 187 

times where prevalence is low (i.e. ≤2%), higher pool depths could be tolerated to conserve reagents in 188 

preparation for subsequent waves of COVID-19, or as a mechanism to increase testing capacity to 189 

support broader surveillance strategies.[8,15,28-34] This study, like others, showed that higher pool 190 

depths increase the risk of false negative results, as the inherent loss in sensitivity fails to identify a 191 

proportion of specimens with low viral loads.[17,18,21,23,31,33,36] Typical pool depths used for SARS-192 

CoV-2 RT-qPCR testing range from 3 to 12 [17,31,37,38], yet higher pool depths have been attempted 193 

[18,21,23,26,34]. In an extreme example of high pooling depth, Hossain et al. [48] released an 194 

unpublished document that describes pooling of up to 19,200 RNA samples for simultaneous detection 195 

of SARS-CoV-2 using next-generation sequencing (NGS). While NGS technology could be a powerful tool 196 

for disease surveillance, this protocol was not validated for clinical testing, and the authors did not 197 

consider the significant loss of sensitivity that would likely occur from such a substantial level of pooling.  198 

The extent to which specimens are pooled is predicated on the level of risk that is deemed acceptable. 199 

For example, the Canadian Blood Services (www.blood.ca) commonly used a pool depths of 1:6 for 200 

bloodborne pathogen screening using RT-qPCR, to ensure adequate sensitivity even if the overall 201 

disease prevalence is low. Overall, the current study estimated that pool depths of 1:2, 1:4, and 1:8 202 

would have allowed the detection of 98.3%, 96.0%, and 92.6% of positive SARS-CoV-2 results identified 203 
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in the first wave of the pandemic in Nova Scotia. Without a prospective comparison, it is difficult to 204 

ascertain the true impact of the SARS-CoV-2 cases with low viral loads that would potentially have been 205 

missed with pooling. Specimen pooling should have a minimal impact on clinical sensitivity for detection 206 

of new symptomatic cases, as high viral loads are generally present during this stage of illness.[7,49-56] 207 

Similarly, missing SARS-CoV-2 in individuals with low viral loads in the recovery stage might impact the 208 

epidemiologic case counts, which is important for public health contact tracing, but would have little 209 

value for patient management as these individuals are likely no longer infectious.[18,36,49-52]. 210 

Conversely, undetected low viral loads may represent asymptomatic individuals or those in early or late 211 

stages of infection.[49-56] To mitigate the risk of missing early or pre-symptomatic infections with 212 

pooling, individuals should be encouraged to self-monitor for symptoms, self-isolate, and undergo 213 

repeat testing at defined time points.[5,8,14,15,17,28,29] On a population level, a combination of 214 

pooling, mass testing, and repeat testing could help cases that would otherwise not have been captured 215 

with routine individual testing.[8,14,15,28,32-34] In other words, the decreased sensitivity that is 216 

inherent to pooling could theoretically be offset by the reciprocal increased testing capacity, if mass 217 

testing and repeated testing over time would improve case finding. 218 

From an analytical standpoint, testing capacity increases with pooling depth if prevalence is low, and the 219 

risk of generating false negative results with pooling is minimized by using the most sensitive method 220 

available. In this study, both the analytical sensitivity and daily specimen throughput was shown to be 221 

highest on the Cobas 6800, and specimen throughput increased with pool depth. The impact of high 222 

prevalence on testing capacity could be reduced by retesting positives pools on a secondary instrument, 223 

rather than resolution of pools on the subsequent run on the same instrument; however, the secondary 224 

assay should have equal or greater sensitivity. The Cepheid Xpert Xpress SARS-CoV-2 is a rapid molecular 225 

assay has been shown to have comparable performance to the Cobas 6800 [10,31,44-47], but was not 226 

assessed in parallel in this study due to the limited availability of tests. In times of low prevalence and 227 
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reduced test numbers, positive pool resolution could easily be accommodated on the same instrument 228 

used for initial pool testing; however, lower throughput analysers could be considered for smaller test 229 

volumes, recognizing the relative decrease in sensitivity of these methods would have less of an impact 230 

during times of low disease prevalence. Whether in time of high or low prevalence, testing should not 231 

be based on maximal instrument capacity, but on established turnaround time goals, to avoid delays in 232 

specimen result reporting. Overall, pooling on high throughput analyzers could be undertaken with only 233 

minor changes to the analytical workflow.  234 

No previous study has described the potential impacts of pooling at the pre- and post-analytical stages 235 

of testing. First, there are a number of factors that influence pre-analytical steps that are outside the 236 

scope of this study (e.g. specimen type, quality and timing of collection, and transport conditions). Once 237 

specimens arrive to the laboratory, routine activities in the pre-analytical stage include registration, 238 

labelling, aliquoting, and any pre-processing steps required prior to testing. While automation (i.e. 239 

robotics) could be used to enhance specimen traceability, reduce the potential for contamination, and 240 

help with specimen organization [20,23], the biggest contributor to workload in the pre-analytical stage 241 

in our laboratory is specimen registration into the laboratory information systems (LIS). The LIS 242 

eventually communicates the test results to the ordering physician, and other healthcare providers (e.g. 243 

infection prevention and control, and public health). Specimen registration is crucial to all laboratory 244 

testing. Meeting the FTE requirements that accommodate higher testing capacity is one of the biggest 245 

barriers to pooling on high throughput analyzers in our laboratory. In contrast, at the post-analytical 246 

stage, FTE requirements required to increase testing capacity would be subtle, and largely dependent on 247 

the time required for result interpretation, reporting, and communications. These processes could 248 

potentially be streamlined with automation if the instruments are interfaced to the LIS. Future studies 249 

will explore the incremental benefits of automation at the pre- and post- analytical steps, paired with 250 

specimen pooling on high throughput analyzers. 251 
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This is the first study reporting the performance of pooling on a high throughput analyzers, with 252 

considerations for workflow at the analytical stage, and pre-and post-stages of testing. Assuming 253 

reagent availability, the most significant barrier to implementation of pooling in our laboratory is not the 254 

instrumentation, but the number of FTEs required to support specimen collection and registration. 255 

Careful consideration should be given to all aspects of testing prior to implementation of pooling.  256 
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 440 

Figure legends 441 

Figure 1. Epidemiology of SARS-CoV-2 in Nova Scotia, and impact of prevalence and pool size on testing 442 

capacity. A) The total number of SARS-CoV-2 tests performed (histograms) and positivity rates (in red) 443 

are plotted against a time. NP swabs in UTM are depicted in yellow, and OP/Na swab in STM are in blue.  444 

B) Testing capacity is plotted against the positivity rate for each pool depth. A value of above 100% was 445 

considered an increase in testing capacity, whereas values below 100% were deemed inefficient.  446 

Figure 2. Impact of pool depth on the analytical sensitivity. Ten-fold serial dilutions of SARS-CoV-2 were 447 

tested on each instrument and for each swab type, and compared to the same dilutions processed using 448 

pooling depths of 1:2, 1:4, and 1:8. Note: The results for the E gene target for each instrument are 449 

shown, but similar results were observed for the other RT-qPCR targets: RdRp in the LDT assay, or Orf1a 450 

for the cobas 6800 (data not shown). 451 

Figure 3. Impact of pooling on the detection of low SARS-Cov-2 viral loads.  A) The frequency of 452 

detection in specimens with low viral loads was assess using previously tested specimens. B) The 453 

proportion (%) of detectable results per Ct value category obtained in A) applied to estimate the 454 

potential impact of pooling a depths of 1:2, 1:4, and 1:8. Results were categorized by instruments and 455 

RT-qPCR targets, and the E gene target results are depicted. Results for the alternative targets (i.e. Orf1a 456 

on the cobas 6800, or the RdRp target on the LDT) showed similar trends as E gene for each instrument 457 

(data not shown).  458 
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Figure 4. Estimated workflow for maximal specimen throughput on each study instrument based on 459 

pool depth. Hands-on time (red), automation (blue), and times required specimens to be loaded onto 460 

the instrument (triangles) are illustrated. Ideal workflow assumed resolution of positive pools using a 461 

secondary method with equal or greater sensitivity (e.g. Cepheid Xpert Xpress SARS-CoV-2 assay, 462 

annotated “Xpert” on the figure. 463 

Figure 5. Estimated FTE requirements to achieve maximum instrument capacity. By monitoring the time 464 

required for routine testing activities (n=10), the average time required for each tasks involved at the 465 

pre-analytical, analytical, and post-analytical stages of testing were estimated for each instrument, and 466 

expressed as the number of full-time employees (FTE) required to support testing at different pool 467 

depths. 468 
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