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Abstract

A fundamental problem dealing with the Covid-19 pandemic has been
to estimate the rate of infection, since so many cases are asymptomatic
and contagious just for a few weeks. For example, in the US, estimate
the proportion P(t) = N/330 where N is the US total who have ever
been infected (in millions)at time ¢ (months, ¢ = 0 being March 20).
This is important for decisions on social restrictions, and allocation of
medical resources, etc. However, the demand for extensive testing has
not produced good estimates. In the US, the CDC has used the blood
supply to sample for anti-bodies. Anti-bodies do not tell the whole
picture, according to the Karolinska Instituet [2], many post infection
cases show T-cell immunity, but no anti-bodies. We introduce a method
based on a difference-differential equation (dde) for P(t). We emphasize
that this is just for the present, with no prediction on how the pandemic
will evolve. The dde uses only = = z(s), which is the number/million
testing positive, and y = y(s), the number/million who have been tested
for all time 0 < s <t (months), with no assumptions on the dynamics
of the pandemic. However, we need two parameters. First, p, the ratio
of asymptomatic to symptomatic infected cases. Second, 7, the period
of active infection when the virus can be detected. Both are random
variables with distribution which can be estimated. For fixed p, we
prove uniform bounds

,oyé()t)+1 <P(t) <(1+p)a(t),

are best possible, with range depending on 7. One advantage of our

(1+p)

theory is being able to estimate P for many regions and countries where
z and y is the only information available.

!dhh@umd.edu or Professor D.H.Hamilton, Dept Math., UMCP, Md 20742



D.H.Hamilton 1

Competing Interest Statement

The author have declared no competing interest.

Funding Statement

No external funding was received.

Author Declarations

1 confirm all relevant ethical guidelines have been followed, and any necessary IRB
and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the
research described are given below:

N/A

All necessary patient/participant consent has been obtained and the appropriate
institutional forms have been archived.

N/A

I understand that all clinical trials and any other prospective interventional studies
must be registered with an ICMJE-approved registry, such as Clinical Trials.gov. 1
confirm that any such study reported in the manuscript has been registered and
the trial registration ID is provided (note: if posting a prospective study registered
retrospectively, please provide a statement in the trial ID field explaining why the
study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the rel-
evant EQUATOR Network research reporting checklist(s) and other pertinent ma-
terial as supplementary files, if applicable.

Yes



2 D.H.Hamilton

1 Introduction

There has been some unfortunate modeling of the Covid epidemic[7]. We
will stay away from predicting the future, but instead, try to understand
the immediate past by using some biology, stats, and analysis, to develop a
transparent formula to estimate the proportion P(t) of the US population
that have ever been infected by the Coronavirus 19 at time ¢ (months, where
zero is March 20). This uses the number y(s) of those tested/million, and
cases x(s)/million testing positive, over the time interval 0 < s < ¢. The
aim is to overcome the problem that testing misses those past the 1 — 3(7?)
week period of infection. The other problem is that asymptomatics are often
not being tested, [14], [17], [18], [13]. Asymptomatics represent proportion
r = p/(1+ p) of all infected, with the wide estimate 0.5 < r < 0.95. Ideally,
one might try large scale testing for anti-bodies. However, many anti-bodies
tests are unreliable, some infected do not develop antibodies. A recent study
by King’s College [5] showed that a majority of post infection patients loose
most of their anti-bodies within a month. In any case, there has been no
widespread testing for anti-bodies. On June 24, the CDC [9] announced new
estimates using sampling from regional US blood labs, where on average, 8%
had anti-bodies. Considering the numbers testing positive in those regions,
this implied p ~ 11. So, it is important to have a good estimate of P.

To reiterate, we introduce a new method to estimate P(t), the proportion of
the population who would test positive for the virus at any time before time
t, i.e. all those who have ever been infected. This is a more robust measure
as the per test, etc., for the virus is fairly reliable. Our method also requires
parameter 7, the time period during which individuals test positive. We show
T is quite significant, indeed, we show how it affects the CDC estimate of p.

As “ for every infection only p/(1+ p) is symptomatic”, a simple estimate is
P~(+pz=P (PRE 1),

with PRE standing for “pandemic rate equation”. However, this assumes
only symptomatic cases are counted, and ignores large scale testing which
uncovers and counts asymptomatic cases.
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Trying to count the asymptomatic cases, leads to the quadratic
r=(1—-r)P+rP(y—(1—r)P)
which has solution Py(t) =

ry+(1—r)—/(ry+ (1 —r))2—dar(l —r) - (1+p)x
2r(l —r) — opy+1

(PRE 2)

This second estimate assumes all testing done once at time ¢, whereas testing
is spread over time. Furthermore, those who have been infected test positive
only for a relatively short time, and testing past this period will not count
them. Nevertheless, at the beginning of the pandemic, the bounds P; and
Py were close. Now (at ¢t = 4.6), we find for the US, assuming r ~ .93 with
2(4.6) = 1.5% and y(4.6) = 19.5%, that P, ~ 21.4% while P, ~ 6%.

Our main result models P as the solution of the “pandemic rate equation”:

v —ry/ (P(t) — P(t — 7))
1-—r)(1—r(PEt)—Pt—-1))"

with initial conditions z(t) = y(t) = P(t) =0, t < 0. Our assumption is that
symptomatic cases are immediately treated, and thus tested (and counted).
In actual fact, symptomatic cases take about a week before going for treat-
ment /testing?. This delay could be entered as another random variable, but
it is simpler to understand that our estimate will always be about a week
out of date. Also, we assume that asymptomatic cases are discovered by
essentially random testing from the entire population.

P'(t) =

(PRE)

On June 24, the CDC[10] estimated = .9125, i.e. the ratio of asymptomatic
cases to symptomatic is about p = 11. The results of the Karolinska Inst.[2]
shows p ~ 14 is more plausible, i.e. » = .93. Of course, 7 and r are random
variables whose distributions can be estimated. Simulations with lognormal
distributed 7 = 0.5+ 0.25,7 = 0.93 + 0.03 (68% CI), our best estimate is

P = 18% + 4% 68% CI (August 8, 2020)

with the main error coming from uncertainty in p.

20ur first version[1] used another model, where symptomatic cases are not immediately
tested. We found that even with a delay of two weeks, there was no significant difference
from the present immediate response model- whose mathematics is much easier to handle.
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2 The Theory

Now for the mathematics, first the complete statements, then the proof.

2.1 The Formulae

As before, P = P(t) is the proportion of those in the population who would
ever test positive for the virus in time interval [0, ¢| months, with initial time
t = 0, March 20. As before, the parameters r and 7 denote the proportion
of the infected who are asymptomatic, and the length of infection, respec-
tively. To begin with, we now assume the parameters rand 7 are fixed for
the population. The functions x,y, are smoothed with derivatives x’,1/.

We prove that P satisfies a nonlinear difference-differential equation:

o —ry'(P(t) — P(t = 7))

PO=a5a=—rew-pra-n)

(3)

with initial conditions z(t) = y(t) = P(t) = 0, t < 0. The two simple minded
estimates are essential bounds for the general case.

THEOREM Suppose that x,y, P, are increasing functions. Then,
for fized p, independently of T the solution of (3) satisfies the bounds

(1+p)z(t)
C P < Py < (14 pe(t)
py(t) +1
and, furthermore, these bounds are best possible.
Upper & Lower bounds for P(t)
pop.pro. ' P{t)

P(t)

0.15

0.10

0.05:— - - Pﬁt)

“““A‘tmonth.

USA data:r=0.93, 1=0.5
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2.2 Derivation of Pandemic Rate Equation

We prove PRE. There is a large population of total size n million. Also, we
use X = X(s) as the number who have tested positive, and Y = Y'(¢) as the
number who have been tested up till time s < ¢ (months). As before, the
parameters r, 7, denote the proportion of the infected who are asymptomatic,
and the length of infection, respectively. We now assume the parameters r, 7,
are fixed for the population of size n. People are sick for a time interval [t —
7,t] when they test positive. So, it is only during this time interval that the
virus can be detected. Consider a very short time interval [t — At, ¢], during
which the quantities z,y change by Ax = x(t) — z(t — At) , Ay = y(t) —
y(t — At) . The data for testing y and cases x is discrete and discontinuous,
but we assume to be differentiable. Thus Az ~ 2/(t)At , Ay ~ y/(t)At.

The total number of cases comes from those who are symptomatic, take
themselves for treatment and hence are tested; and those, who we assume
are randomly tested, and a certain proportion turn out to be infected (but
asymptomatic). We assume symptomatic and asymptomatic are only in-
fected for a time period of length 7 during which they test positive. There is
the question of how quickly symptomatic cases go for treatment. We assume
they immediately go for testing. 3

We also use Z(t) the total number of symptomatic cases, and W (t) the
number of asymptomatic cases. Evidently, X = Z + W. At time ¢, the
number of past infections is nP(t), so in time period [t — A, t], the number
of new symptomatics is (1 — r)nP’(t)At > 0, assuming P increasing. Thus,

Z'(t)At = (1 — r)nP'(t)At

There is also AY ~ Y'(t)At new tests, which counts those who sought help,
and those asymptomatic cases caught up in essentially random sampling.
Thus, not counting the symptomatics gives

Y'(t)At — (1 —r)nP'(t)At >0,
assuming Y’ > Z’. The proportion of these testing positive is

r(P(t) = (P(t = 7))

3In [1] we considered the plausible idea that there was delay ~ 7.
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Thus, the new asymptomatics is
AW =r(P(t) — (Pt —7)(Y'(t) — (1 — r)nP'(t)) At

Now, as AX = AZ+ AW, the new cases during [t —A, t] is AX ~ X'(t)At =

{(X =r)nP'(t) +r(P(t) — (Pt —7))(Y'(t) — (1 —r)nP'(t))} At

With At — 0, and = = X/n,y = Y/n gives the delay-differential equation
=01-r)P +r(P{t)—Plt—7)(y — (1 —r)P)

which simplifies to (3).

The nonlinear dde cannot be solved explicity in general, but is well suited for

numerical solutions such as NDSolve in Mathematica, which has routines for

delay-differential equations. The formula is for fixed p and 7, but in reality
there is a distribution of values. We handled these by stochastic simulations.

2.3 Proof of THEOREM

This was motivated by considering two extreme cases. First case:
T=0= P(t) — P(t —7) =0, and the dde becomes

' T

Pl(t) = 7— = P(t) = 7—

Secondly: once infected always infected, i.e. 7 =00 = P(t—7) =0, dde is

' —ry P(t)

A= ")(1=rP{D) (4)

P'(t) =

We are assuming x, y, are both are increasing with ' < 3/. Writingy = x+u
we have v/ > 0 and fot uw'ds = y(t) — x(t) viewed as constraints on u. Hence,

P(t) = /0 tP’(s)clSZ /0 t %d“ /Ot qu—(i) 1—P7§;)(s)d8

Now 0 < P(s) < 1 is increasing so
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is maximized at s = t. Therefore, the second integral is maximised if «’ is a
Dirac measure concentrated at s = t. It follows that P has lower bound
x(t)  r(y®) —=z@) PE) xl)—ry@®)PQ)

1—r 1—r  1-rP() (I—n(—rP@)

Solving for P(t) gives

>7"y—|—(1—7")—\/(ry+(1—r))2—4a:r(1—r)> x

P = 2r(1—r) Try+(1-7)

which proves the lower bound. Observe that for smooth z, y, this lower bound
is not achieved, even in the limit as 7 — o0o. Indeed, numerical solution of
(4) for given x and y provides a somewhat better lower bound than P,.

Finally, we prove P(t) is sandwiched between P; and P, by showing the
solution is monotone decreasing in 7. Consider

a'(t) —ry'(H)(P(t) — P(t — 7))
(1=r)1=r(P(t) = P(t—7)))

H(t,T) =

Now, as 0 <7 < 1and 2’ <y’ weseethat H > 0as0 < P(t)—P(t—7) < L.
As 7 varies from 0 to oo, we observe P(t) — P(t —7) increases from 0 to P(t).

Define function .
hu) = 5 a2
1—u

L,

which is decreasing as
—a
B (u) = <0
(1) = = <0

Thus P’ = H is monotone decreasing in 7. Hence, P decreases as 7T increases.
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We also carried out simulations for varying 7 which gives consistent results:

0.18
0.6 P(4.13) for various periods of infection

0.14 -

0.10

o )
0.5 1.0 1.5 2.0 2.5 3.0 T months

USA data attimet=4.13,r=0.93

2.4 Estimating p and 7

The estimate of p (or r) is from a variety of sources, collected in [12]. In
China, for children r ~ .95; at a NYC hospital where all pregnant women
were tested r ~ .9; while r ~ .5 for passengers on cruise ships. WHO
currently has r ~ .8 which is consistent with results from Iceland, where it
is estimated r > 0.8 (where many “symptomatics” really had the flu which
reduced the ratio).

We expect r to be different for different populations, indeed, be age depen-
dent. Nevertheless, we want an average value for the entire population. By
our formula, for early in the epidemic, we have P ~ (1 + p)z. Now, on
March 29, for NYC, the CDCJ9], [8] used anti-bodies to estimate P ~ .07,
while x ~ .004, giving r ~ .943. Later, on May 29, the CDCJ10] estimate was
P ~ 23, while z ~ .024, giving r ~ .9. Similar results were found in different
regions of the US giving the CDC average estimate » = 0.9. However, the
Karolinska Inst. [2] estimates at least 25% more infections from their study
of T-cell immunity. So, we take r = 0.93 £ 0.03.

We make the important observation that P ~ (1+ p)z is only valid for small
x,y,t, so using it to estimate p on present US data underestimates p by
~ 20%. This underestimate will grow as = and y become larger.
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3 Results

Our method was first tested on a hypothetical case. Then we use USA data.

3.1 Test cases

As nobody knows the true level of infection, we test by using a hypothetical
infection which has proportion F, in the population governed by:

Py = R(Py(t) — Po(t — 10))(1 — 2Py(t))

This assumes about 50% of the population can be infected (exactly once)
and the period of contagion is 7y. R is the rate of infection. Also some small
initial value Py(t) = ¢(t), t < 0 is required. For R = 5 and 7 = 0.25, this
was solved numerically:

test function Po(t)

0.05

We need some testing function y(t), choose ' = 0.1 constant. Then, the
function z for the number of cases/mill. satisfies the dde

o' = (1 —ro) Py + ro(Fo(t) — Po(t — 7))y — (1 — o) Fy)
where the proportion g = 0.9 or py = 9 is given.

Next, we apply our process: first approximate z’,y by X1,Y1 . A not very
good approximation is shown:
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0.010F /\
/ \
0.008| / \
/

0.006 // )

/ \
0.004 - \

PRI
1 2 3 4 5 6 7

Smooth approx X1(t) to data x'(t)

Then, obtain the predicted proportion P(t) using PRE:

X1—=rY1(P(t)— P(t—1))

P = AT =P — Pl =)

Now, of course, we have no apriori way of choosing the right p and 7. So
these “would be obtained by field data”. However, if we choose the right
ones, in this case 7 = 0.25,p =9

true sol. P.(t)
0
p=9

. PRE sol. P(t)
0.05+
| p= 9
1 2 3 e 5 6

We find if r, 7, are close to the true rg, 79, then the predicted proportion P
is close to the true proportion Fy,. However, if say r is twice ry, then P is
approximately twice the value of F. On the other hand, the solution P is
relatively less sensitive to variations in the period of infection 7.
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__ PREsol.P:p=127,7=025

__——— truesol. % :p=9,t=0.25

—

- PREsol. P :p=9,Tt=0.5

"

/

What this means is that the PRE is well posed, indeed, it is linear in 2’y
and roughly linear in p.

3.2 USA data

For the US over time, 0 <t < 4.6 months, the data is approximated by
y(t) = (0.01539¢2 — 0.00422¢3 + 0.000661¢t1)U () ,
and by the function
z(t) = (0.00473t% — 0.0030094¢ 4 0.0007488t* — 0.00006139t>)U (t) ,
using the Heaviside Step Function U(t) to emphasize x,y = 0 for ¢ < 0.
This is simply a smooth interpolation and not meant to be any prediction,
although the 3-4 term polynomials are a good fit for data at 11 points.

USA data: x cases/mill. & y test/mill.

T T T T T T T T T T T T T T T T
0.015 - /40.19

x(t)
0.01F . 10.13

0.005 - T 10.063

t (months)
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We then solve PRE for P with various values of r:

, r=0.95
O.20j

, r=0.93
0.15

i - 1=091
0.10
0.05}

1 2 3

USA data,t=0.5

' t month

EN

4 Conclusions

Our theory shows that it is possible to estimate the proportion of all who
have been infected by methods easy enough to perform on any computer with
Mathematica. The estimate is as accurate as sampling, and stable. Thus, it
is not necessary to sample the whole population.

Using this method, one can make predictions on the saturation point, i.e.
the proportion o of susceptibles in the population. Of course, this depends
also on the population profile, in particular the amount of older, sick people.
Applying our formula to data from the states NY and NJ one sees that
P > 30%, which suggests that o lies in the range 35—45%, which is consistent
with their x curves.

The formula shows proportion presently infected is

(@' —ry'(P(t) = P(t —7))T
(1 =r)(@ =r(P{) - P(t —7)))

PP(t)=P(t)— P(t—7)~ P'(t)Tr =

Various authorities have tried to estimate PP: they use the proportion of
infected among those daily tested , analytically this is the function 2'(t) /y/(t).
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Comparing 2'(t)/y/(t) with P'(t)7 for USA data:

0.14 |- present infection vs x'/y'

0.08f
0.06
0.04 |

0.02f

USA data:r=093,t=0.5

At the present time, the 2'(t)/y/(t) estimate is out by about a factor two,
but nonetheless, in the right ballpark (and erring on the safe side).

The CDC has used x/P to estimate p. This is accurate enough for small ¢,
but for current time, our theory shows, with 7 ~ 0.5, that the CDC method
underestimates p by at least 20%, with the discrepancy growing with time.

One could also make quick estimates of P for various nations. Our main
example is the USA, which at P ~ 18%, has not too far to go before reaching
saturation. On the other hand, my native Australia, which had a severe
lockdown, seems to have P ~ 1%, i.e. it has a long, long way to go.

5 Data and computations

There is considerable data available from CDC, Oxford University [4], and
Los Alamos[6]. All computations done on an iMac using Mathematica.
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