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Within the framework of a two-component model of the COVID-19 epidemic, taking into account
the special role of superspreaders, we consider the impact of the recovery factor and quarantine
measures on the course of the epidemic, as well as the possibility of a second wave of morbidity. It
is assumed that there is no long-term immunity in asymptomatic superspreaders who have under-
gone the infection, and the emergence of long-term immunity in those who have undergone severe
illness. It is shown that, under these assumptions, the relaxation of quarantine measures leads to
the resumption of virus circulation among asymptomatic superspreaders. Depending on the charac-
teristics of the quarantine, its removal may or may not lead to a renewed wave of daily morbidity. A
criterion for the occurrence of repeated wave of morbidity is proposed based on the analysis of the
final phase of the first wave. Based on this criterion, the repeated wave of the epidemic is predicted
in New Zealand. A natural explanation is given for the decrease in lethality among the infected
against the background of an absolute increase in their number.

I. INTRODUCTION

In previous work [1], a two-component model of the
COVID-19 epidemic was proposed. The model is based
on the selection of two immunologically different groups
of the population - superspreaders and sensitive. Super-
spreaders carry the infection without visible symptoms,
so they spread it. Sensitive, having received an infec-
tion, fall ill, are isolated and therefore cannot spread it
further. A few relevant examples have shown that the
model adequately describes the course of the COVID-19
epidemic.

At the same time, the two-component model describes
only the spread of the virus and does not consider the
recovery processes. Further, it does not consider quar-
antine measures during the epidemic and the impact
of these measures on the course of the epidemic itself.
In this paper, we will include these factors in the two-
component model and examine their impact on the final
phase of the epidemic. In particular, the possibility of a
second wave of the epidemic will be considered, and the
conditions for its appearance will be determined.

The article is structured as follows.

In its second part, we consider the impact of recovery
processes on the dynamics of the epidemic in the frame-
work of the two-component model, as well as the impact
of the quarantine as a factor affecting the spread rate.
In this part, we introduce both factors into the dynamic
equations of the two-component model and find an an-
alytical solution under conditions of permanent quaran-
tine.

The third part examines the 4 phases of the epi-
demic. In particular, the effect of lifting the quarantine
in the final phase is being investigated. The effect is to
re-increase the endemic equilibrium number of asymp-
tomatic superspreaders. This, however, does not mean

* Electronic address: dimaschko@gmx.net

an automatic re-increase in the incidence, if the propor-
tion of those who have been ill and who have received
immunity among the sensitive is already large enough.
In the fourth section, we formulate a criterion for pre-
dicting the presence of a re-wave based on the analysis
of the final segment of the first phase of the epidemic.
Next, we compare the results obtained with the current
course of the epidemic in a few countries and territories.
The final section summarizes the application of the
model to the course of the current COVID-19 pandemic
and provides a natural explanation for the decrease in
mortality resulting from the two-component model.

II. RECOVERY RATE AND PERMANENT
QUARANTINE FACTOR

The dynamic equations of the two-component model
[1] describe the change in the number of infected sensitive
(n1 out of their total number N7) and the number of
infected superspreaders (ny out of their total number Ns)
over time:
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In this model, only superspreaders spread the infection,
see Fig.1.

Equations (1,2) take into account only the process of
infection spread and do not take into account the recovery
processes. In addition, they do not take into account the
quarantine measures that have a direct impact on the
spread rates of g; and go.

To consider this effect, we introduce the quarantine
factor @), which takes a value from 0 to 1. The effect of
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Fig. 1: Scheme of the two-component epidemic model

quarantine on the dynamics of the spread is reduced due
to the same decrease in the spread rates g; and go:

g1 — Qg1, g2 — Qg2 (3)

When considering the recovery processes, we will proceed
from the assumption that after suffering a disease with
severe symptoms, a person acquires absolute immunity.
Thus, he is deprived of the opportunity to be re-infected
and, from the point of view of the model, is no different
from a simple patient - both during the illness and after
it, a person from the sensitive group cannot spread the
infection. Therefore, such a restoration does not affect
the dynamics of the two-component model.

In contrast, recovery processes in asymptomatic in-
fected individuals have a direct impact on the spread of
the virus. We will assume that asymptomatic infected are
deactivated with a recovery rate of . However, they do
not acquire any lasting immunity and can be re-infected.
This creates a circulation of infection among the super-
spreaders, leading to endemic equilibrium.

Considering the factors of quarantine @) and the recov-
ery rate v, the equations of the two-component model
take the form
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After switching to new variables

it is reduced to a simple form:

ds
= Qag(1-s1) s, (7)
ds
7; = Qg (1 — s2) 59 — ¥52. (8)
Here the value
a=24 (9)

g2

is the ratio of the spread rates g1 = ag and g5 = g. In
the case of a long-time permanent quarantine, () = const,
this system of equations has an exact solution
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where 7 = Qgt is dimensionless time and

o
Qg
- dimensionless parameter of superspreaders deactivation
rate. As in the absence of the quarantine (Q = 1) we
have an epidemic occurs, the epidemic criterion is met

(1 < 1). Consequently, the ratio of the recovery () and
spread (g) rates is also less than one:
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The found solution (10,11) meets the initial conditions
s1(0)=0, s2(0)=s, 0<s<1, (14)

that is, at the beginning of the epidemic, there are al-
ready infected people, but no sick ones yet.

A stable endemic equilibrium among superspreaders is
the state of
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In accordance with (12,15), at a sufficiently small value
of @, i.e. with a sufficiently strict quarantine leading to
the case of u > 1, so = 0 - all superspreaders are de-
activated. In the opposite case of non-strict quarantine,
when the value of the quarantine factor () is not small
enough and the parameter y is less than one (¢ < 1), an
endemic equilibrium takes place with a certain propor-
tion of active infected superspreaders, ss > 0.

In such a solution the proportion of cases sensitive s;
continues to grow until it reaches the limit value s; = 1.
It is this condition that corresponds to the end of the
epidemic and the vanishing of the daily incidench among
superspreaders the infection continues, as at the begin-
ning of the epidemic, to circulate at the stationary en-
demic level. Plots of the daily incidence ds; /dt according
to the found solution (10, 11) for different values of the
quarantine factor @ is shown in Fig. 2. As it should be,
quarantine suppresses the amplitude of the disease wave.
At the same time, it increases its duration.

Thus, in the two-component model, the quarantine fac-
tor @ does not affect the reproductive number, which
determines the exponential growth rate of the incidence,
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Fig. 2: Plots of the daily incidence ds;/dt for different
values of the quarantine factor ). All plots correspond
to o = 0.25. In the absence of the quarantine (Q = 1)
the dimensionless recovery parameter p = 0.1, in other
two cases it is inverse proportional to the Q.
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Fig. 3: Course of an epidemic within the
two-component model. Filled areas show share of
infected sensitive s1(t) (orange) and superspreaders
s2(t) (blue). When t — oo, the share of infected
sensitive s1(t) tends to 1, the share of infected
superspreaders ss(t) tends to the endemic equilibrium
value of (1 — p).

but rather the endemic equilibrium number of asymp-
tomatic superspreaders. The daily incidence is directly
proportional to this number. In addition, it is propor-
tional to the proportion of those who do not recover
among sensitive, which decreases during the epidemic.
The end of the epidemic in this model does not corre-
spond to the disappearance of infected superspreaders,
but to the exhaustion of the number of still not infected
sensitive individuals, which constitute only a relatively
small part of the total population. The whole course of
the epidemic in the two-component model is shown on a
diagram in Fig.3.
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Fig. 4: Quarantine factor Q(t), typical time
dependence.

IIT. VARIABLE QUARANTINE FACTOR AND
THE SECOND WAVE

In the general case, the value of the quarantine factor @
is some function of time Q(t), determined by the sequence
and severity of quarantine measures. A typical course of
the function Q(t) is shown in Fig.4. Natural boundary
conditions for it are

Q(0) = Q(o0) = 1. (16)

At the beginning of the epidemic, there is no quarantine
and the quarantine factor is close to one, which corre-
sponds to the boundary condition Q(0) = 1. As the epi-
demic develops, quarantine measures are taken, which
are responsible for reducing the value of the @ factor.
As the incidence decreases, the quarantine measures are
removed, and the quarantine factor returns to the initial
value. This corresponds to the second boundary condi-
tion Q(o0) = 1.

For an arbitrary dependence Q(t), the dynamic equa-
tions (7,8) have no exact solution. However, taking into
account the boundary conditions (16), it turns out to be
possible to carry out a qualitative analysis of the course of
the epidemic corresponding to the real dependence Q(¢).
In this analysis, it is convenient to divide the entire course
of the epidemic into 4 phases.

A) The epidemic phase itself. At the beginning
of the epidemic, there is no quarantine,Q = 1. At the
same time, the number of the superspreaders is growing
exponentially, s, o< 9= The daily incidence among
sensitives is directly proportional to the number of su-
perspreaders dsy/dt < sy and therefore also grows expo-
nentially.

B) Quarantine start phase. In this phase, the
spread rates are suppressed by quarantine measures with
a factor of Q < 1, the relative number of the super-
spreaders reaches the endemic equilibrium value so =
1—v/(Qg) and stops growing. Therefore, the daily inci-
dence ds; /dt, which is directly proportional to the num-
ber of superspreaders, also stops growing. In this phase,
the daily incidence reaches its maximum.



C) Endemic phase. In conditions of constant quar-
antine and, accordingly, an endemic constant number of
the superspreaders, the daily incidence is gradually de-
creasing due to a decrease in the proportion of those who
have not been cured among sensitive, (1 — s1). Ideally,
by the end of this phase, this proportion is already small,
1 — 51 << 1

D) Quarantine release phase. After the quarantine
is released, the equilibrium number of the superspreaders
increases from the value s, = 1—v/(Qg) established after
the quarantine is turned on to the maximum possible
value so =1 —7/g.

Thus, even if the endemic equilibrium number of the
superspreaders was significantly reduced during quaran-
tine, after the quarantine was lifted at the end of the
epidemic, it again increases to its maximum value.

If the proportion of those who did not recover among
the sensitive by the time the quarantine was lifted is
already small, 1 — s; < 1, then this does not lead to a
noticeable increase in the daily incidence at the end of
the epidemic.

If this share has not yet managed to become sufficiently
small, i.e. a significant part of the sensitive, then the
release of quarantine leads to a noticeable increase in the
daily incidence, i.e. to the second wave.

To illustrate the possibility of the emergence of the
second wave, let us consider the course of the epidemic
at different values of the quarantine factor @), shown in
Fig. 5. In the case of variable quarantine Q(t) we treat
the quarantine factor @) as the minimal value of the func-
tion Q(t). This factor controls the endemic equilibrium
number of the superspreaders during quarantine.

At Q =1 (absence of the quarantine), Q = 0.40 and Q
= 0.20 (soft or moderately strict quarantine), the equilib-
rium endemic number of the superspreaders differs from
zero. In these three cases, superspreaders continue to
spread the infection during quarantine, and the incidence
decreases relatively slowly due to a decrease in the num-
ber of sensitive who have not been ill. As can be seen
from the first three graphs, here the release of quaran-
tine after a significant decrease in the incidence does not
lead to the appearance of a noticeable second wave, since
by this moment the vast majority of the sensitive have
already been ill.

If Q = 0.08 (very strict quarantine), as shown in the
fourth graph, then the endemic equilibrium number of
superspreaders during quarantine becomes zero. On the
one hand, this leads to a rapid zero morbidity during
quarantine. However, it is for this reason that most sensi-
tive do not have time to get sick during quarantine. After
the quarantine is released, the number of the superspread-
ers returns to the former endemic equilibrium non-zero
value, and a new wave of infected people appears among
the sensitive. It represents the second (residual) wave of
morbidity

Thus excessively strict quarantine that deactivates all
carriers of the virus is harmful. The reason for this is
that in the absence of the virus, the sensitive are com-

pletely deprived of the opportunity to acquire immunity
during the course of the disease. When active infected
superspreaders reappear after the quarantine has been
lifted, this still inevitably leads to the infection of the
sensitive, deprived of immunity, to the appearance of a
second wave of the epidemic and, thereby, to an increase
in its duration.

IV. SECOND WAVE CRITERION AND
ANALYSIS OF THE REAL COURSES OF THE
EPIDEMIC

Since the severity of quarantine can be assessed only by
its consequences, it seems reasonable to find a criterion
for the possibility of a second wave after quarantine is
removed (corresponds to the phase D in Fig.5) based on
the analysis of the current course of the epidemic, i.e.
before the quarantine was lifted (corresponds to the start
quarantine phase B and endemic phase C in Fig. 5).

The forecast of the second wave will be based on the
course of the epidemic immediately before and after the
first maximum. In accordance with the exact solution
(10,11), before reaching the first maximum, the increase
in the incidence rate under quarantine conditions with
factor @ occurs with an exponential rate oc e(@9=7t  Af-
ter reaching the first maximum, the incidence rate de-
creases exponentially o< e~ (@9t The ratio of the
increment of increase and decrement of decrease is the
value

Ao Q9—v

aQg+~

In the epidemic limit v/(Qg) < 1, when the recovery
constant can be neglected, this ratio is equal to 1/a.

In [1], we showed, using the examples of a number of
countries, that this value has a numerical value of

o =0.24 + 0.06. (18)

(17)

This means that for finite v, the value of A can not exceed
1/a = 4. The lower the quarantine factor @, that is the
stricter the quarantine, the smaller the value of A. In
accordance with Fig.5, the lower @, the more likely the
second wave. Consequently, the small value of A <« 4
indicates appearance of the second wave.

Examples of this kind are Israel (A=1.1) and Serbia
(A=0.9), where there is a significant second wave. The
course of the epidemic in these countries is shown in
Fig.6. The value of the critical parameter A is determined
by the section of the graph at half the maximum height
and the projection of the top of the graph onto this sec-
tion. The value of parameter A in this and subsequent
graphs is estimated as the ratio of the lengths of the right
and left segments of this section.

A very interesting situation shown in Fig.7 is observed
in Australia and New Zealand. The first peak of the
epidemics in both neighbouring countries is similar, ob-
served in the same time and satisfies the second wave cri-
terion: A=0.9 in Australia and A=1.0 in New Zealand.
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Fig. 5. The appearance of the second wave with a
decrease in the quarantine parameter @ (i.e., with an
increase of the quarantine). The model parameters are
taken as o = 0.25 and p = 0.1. Sections A, B, C, D
correspond to 4 different phases of the epidemic: A -
the epidemic phase itself, B - the phase of the beginning
of quarantine, C - the endemic phase, D - the phase of
quarantine lifting. The dotted line shows the quarantine
factor Q(t) as a function of time. solid - daily incidence.
For comparison, the course of morbidity is shown in the
complete absence of quarantine measures, @Q=1. In this
case, the maximum incidence would exceed the
maximum scale of the graph by about 1.5 times. The
minimum value of the quarantine factor Q=0.40
conditionally corresponds to moderate quarantine
measures, Q=0.20 - strict, @=0.08 - extremely strict.
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Fig. 6. The course of the COVID-19 epidemic (deaths
in the 14 days preceding the current one) in Israel and
Serbia.

In Australia we already observe the second wave with
maximum about 500 cases per day. The value of A=1.0
indicates the emergence of a similar second wave in New
Zealand in the near future.

Counterexamples of countries with moderate values of
A are Germany (A=1.5) and Italy (A=2.5), where the
signs of the second wave are very weak. The course of
the epidemic in these countries is shown in Fig.8.

In addition to the excessively strict quarantine, the rea-
son for the appearance of the second wave can obviously
be its premature weakening. In this case, the endemic
equilibrium number of superspreaders increases against
the background of a significant proportion of sensitive
individuals who have not recovered and have not yet re-
ceived immunity. This will lead to an immediate increase
in the incidence, as appears to have happened in Iran and
the United States. The course of the epidemic in these
countries is shown in Fig.9.

Note that in terms of the criterion of severity of quar-
antine, Iran is equivalent to Germany, and the United
States is equivalent to Italy (Fig. 8). This indicates that
in both cases, extending the quarantine until the end of
the first wave would have avoided the appearance of a
second wave.
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Fig. 7. The course of the COVID-19 epidemic (cases in
the 14 days preceding the current one) in Australia and
New Zealand. The two-component model predicts the
second wave in New Zealand.

V. CONCLUSIONS AND DISCUSSION

Thus, the two-component model not only provides an
adequate description of the course of the COVID-19 epi-
demic, but also allows one to assess the impact of the
severity and duration of quarantine measures on the
course of the epidemic. It results a simple criterion for

predicting the possibility of a second wave of the epi-
demic after the quarantine is weakened. Based on this
criterion, we can predict the repeated wave of the epi-
demic in New Zealand.

Further, the two-component model provides a natural
explanation for the observed decrease in mortality among
those infected. It is important to understand that, due
to the individual differences in the immune response, the
concepts of “infected” and “sick” are not equivalent: in-
fection leads to disease only in sensitive and does not lead
to disease in superspreaders. The increase in the number
of infected in the final phase of the epidemic may largely
occur not due to an increase in real morbidity, but due to
an increase in the number of asymptomatically infected
superspreaders found during testing. Since those who
have recovered from the sensitive acquire immunity, an
increasing proportion of those infected are superspread-
ers. That is why, according to the two-component model,
there is a decrease in mortality among the full array of in-
fected people, which consists of two parts: sick - infected
sensitive, and asymptomatically infected superspreaders
identified during testing.

For this reason, data on absolute mortality from
COVID-19 are more adequate for model verification than
data on the number of infected. It is these data that were
predominantly used to evaluate the re-wave criterion in
the last section of our work.

Finally, note that the two-component model ignores
the spatial heterogeneity of population density. This cir-
cumstance is important for countries with a large ter-
ritory and an extensive system of regions and mega-
lopolises (Russia, USA). For such countries, the epidemic
acquires a multifocal character, and its spread to the en-
tire territory of the country takes a longer time. Tak-
ing this circumstance into account requires considering
the spatial distribution and corresponding modification
of the model in the spirit of [2].
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