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Abstract 

Background 

Novel angiotensinogen (AGT) inhibitors are in early clinical development for treatment of hypertension. 

Evidence that this therapeutic approach will safely reduce risk of cardiovascular outcomes in humans is 

limited. We leveraged genetic data from more than one million individuals to characterise the effects of 

AGT inhibition.  

 

Methods 

We identified a genetic instrument for AGT inhibition from systolic blood pressure (SBP) genome-wide 

association study data, and investigated its relationship with AGT gene expression and circulating AGT 

protein concentration. We examined the instrument’s association with cardiovascular and renal outcomes, 

and compared the effect of the instrument with that of genetic instruments for other renin-angiotensin 

system (RAS) components and the causal effect of SBP overall. We performed phenome-wide 

association analyses to identify unanticipated effects of AGT inhibition. 

 

Results 

The AGT instrument (rs2478539; 0.49 mmHg lower SBP per G-allele) was strongly associated with 

hypertension, and showed evidence of colocalisation with AGT mRNA expression across various tissues. 

Scaled to a 10 mmHg lower SBP, the AGT instrument was associated with a 41% lower risk of major 

cardiovascular events, a composite of myocardial infarction, coronary revascularisation and stroke 

(111,549 cases; odds ratio 0.59, 95% confidence interval, 0.47 ‒ 0.74; P = 3.1 × 10-6). There was little 

evidence of heterogeneity between the AGT vascular estimates when compared to equivalent estimates 

from other RAS targets and the effect of SBP lowering more broadly, and no strong evidence of potential 

target-mediated adverse effects. 

 

Conclusion 

Our findings suggest that inhibition of AGT safely reduces risk of major vascular events. These results 

support ongoing clinical development programmes for AGT inhibitors.  
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Introduction 

Hypertension is the leading contributor to global morbidity and mortality, with recent estimates indicating 

that elevated systolic blood pressure (SBP) leads to more than 200 million disability-adjusted life years and 

10 million deaths annually.1 Lowering of blood pressure (BP) through lifestyle intervention or 

pharmacotherapy reduces the risk of several cardiovascular outcomes including coronary events and 

stroke.2 However, despite the existence of numerous BP-lowering pharmacotherapies, more than half of all 

patients with hypertension may have inadequately controlled BP3 (i.e. failing to lower their BP below the 

recommended threshold, typically 130/80 mmHg4). Several factors may contribute to this, including 

suboptimal adherence to therapy or lifestyle interventions, lack of access to healthcare, and physician 

prescribing behaviours, among others. Furthermore, resistant hypertension (the failure to control BP 

despite using a minimum of three antihypertensive drugs at maximal tolerated doses5) affects around 10% 

of patients with hypertension.6 These observations underscore a need for novel BP-lowering agents that 

are effective, safe and that promote greater adherence. 

 

The renin-angiotensin system (RAS) is a hormone system that regulates blood pressure, primarily via its 

effects on fluid and electrolyte balance and systemic vascular resistance. Several proteins in the RAS 

pathway are targeted by commonly-used anti-hypertensive drugs (including angiotensin-converting enzyme 

(ACE) inhibitors, direct renin inhibitors, and angiotensin II receptor blockers7; Figure 1A). Angiotensinogen 

(AGT), a protein encoded by the AGT gene, is the initial substrate of this pathway, with cleavage of AGT 

by renin leading to production of angiotensin I. Angiotensin I is converted by ACE to angiotensin II, which 

is the primary mediator of the pathway’s effects on BP. At least two AGT-blocking biopharmaceutical agents 

are currently under development.8 These agents, an RNA interference (RNAi)-based therapy (ALN-AGT01) 

and an antisense oligonucleotide (ASO)-based therapy (IONIS-AGT-LRx), act by blocking translation of 

AGT messenger RNA (mRNA), thereby reducing the amount AGT protein produced. These therapeutic 

approaches allow for less frequent administration, which may offer benefits in terms of adherence and 

cardiovascular risk reduction, when compared to existing orally-administered small molecule-based 

antihypertensives.8 By way of example, recent clinical trials of inclisiran, an RNA-based inhibitor of 

proprotein convertase subtilisin/kexin type 9 (PCSK9), have shown that six monthly injection of this agent 

https://paperpile.com/c/gAtFBC/FEVPT
https://paperpile.com/c/gAtFBC/IzYUj
https://paperpile.com/c/gAtFBC/C2DR1
https://paperpile.com/c/gAtFBC/ghd1W
https://paperpile.com/c/gAtFBC/qaq4C
https://paperpile.com/c/gAtFBC/Hwn9v
https://paperpile.com/c/gAtFBC/Glu5J
https://paperpile.com/c/gAtFBC/S2eF7
https://paperpile.com/c/gAtFBC/S2eF7
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leads to sustained reductions in LDL cholesterol,9 which suggests that this approach may provide a means 

by which adherence is improved. Inhibition of AGT—the most proximal protein in the RAS pathway—may 

also avoid counterregulatory mechanisms that attenuate the BP-lowering effects of other RAS pathway 

targeting-drugs.8  

 

Available pre-clinical evidence suggests that RNA-based AGT inhibitors lower BP in rodents10,11 and ALN-

AGT01 and IONIS-AGT-LRx are currently under investigation in phase I and II randomised controlled trials 

(RCTs), respectively.12–14 Current guidance from the United States Food and Drug Administration (U.S. 

FDA) may enable anti-hypertensive approval on the basis of surrogate endpoints such as BP lowering,15,16 

and allows for drug labelling that includes information on the cardiovascular risk reduction expected from 

such blood pressure lowering.17 For instance, aliskiren, a first-in-class small molecule direct renin inhibitor, 

was approved by the FDA in 2007 for the treatment of hypertension, without cardiovascular outcomes data 

at the time of approval.18,19 However, not all anti-hypertensive classes may offer similar reductions in 

cardiovascular and renal risk,15,20–23 and class- or drug-specific adverse effects may exist. Definitive 

conclusions about the efficacy and safety of AGT inhibition in humans may therefore require larger trials.  

 

Naturally-occurring human genetic variation can be leveraged to validate the effects of drug target 

modulation in humans, and has been applied to a wide range of drug targets.24–27 Such studies may be 

particularly valuable prior to initiating large trials aimed at establishing effects on outcomes of interest. We 

applied this genetic approach to characterise target-mediated therapeutic and adverse effects that might 

be expected to arise from pharmacological inhibition of AGT. 

 

 

  

https://paperpile.com/c/gAtFBC/cOn0
https://paperpile.com/c/gAtFBC/S2eF7
https://paperpile.com/c/gAtFBC/GbaUs+1PB6q
https://paperpile.com/c/gAtFBC/hoSoK+jNn0U+YxpZl
https://paperpile.com/c/gAtFBC/oF4m+cclq
https://paperpile.com/c/gAtFBC/mgNT
https://paperpile.com/c/gAtFBC/ZcPc+jjND
https://paperpile.com/c/gAtFBC/qtif+MW77+oF4m+tMjd+MbJz
https://paperpile.com/c/gAtFBC/vTiKF+xN93f+8HuRs+YFbaD
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Methods 

Study design 

We selected genetic variant(s) in or near to the AGT gene associated with SBP as proxies for AGT 

inhibition (Figure 1B). We examined the validity of this instrument as a proxy for AGT inhibition by 

evaluating the instrument’s association with risk of hypertension (using various phenotype definitions 

independent of reported BP values) and the likelihood of colocalisation with molecular phenotypes 

relating to AGT (AGT gene expression and circulating AGT protein concentration). The instrument’s 

association with clinical outcomes was examined in two ways, i.e. a hypothesis-driven analysis (focusing 

on cardiovascular and renal outcomes recognised to be associated with hypertension28) and a 

hypothesis-generating analysis (encompassing a phenome-wide analysis of binary outcomes and 

biomarkers). AGT estimates were compared to those from other RAS genes and to estimates from an 

instrument encompassing all SBP-associated variants (i.e. genome-wide but excluding variants in or 

close to RAS pathway genes). 

 

Renin-angiotensin system (RAS) pathway gene selection 

We identified genes encoding well-established components of the RAS pathway, focusing on the most 

proximal components to AGT. This included AGT (encoding angiotensinogen), REN (renin), ACE 

(angiotensin-converting enzyme), AGTR1 (angiotensin II receptor 1), and ENPEP (glutamyl 

aminopeptidase or aminopeptidase A). See Figure 1A for an illustrative diagram of the RAS pathway and 

its components. We excluded genes encoded on sex chromosomes (AGTR2, ACE2) due to a lack of 

sufficient genome-wide association study (GWAS) data pertaining to these genes. 

 

Instrument selection  

We applied a stepwise conditional analysis algorithm29 to identify conditionally independent, GWAS-

significant (P < 5 × 10-8) variants in or near (100 Kb on either side of each gene, with gene boundaries 

identified using the biomaRt R library) each target gene of interest, in publicly-available summary 

statistics from a GWAS of SBP.30 This dataset was selected since it was the largest set of publicly-

available genome-wide summary statistics available for SBP in European-ancestry individuals that had 

https://paperpile.com/c/gAtFBC/OCS11
https://paperpile.com/c/gAtFBC/FcpVc
https://paperpile.com/c/gAtFBC/BUjlD
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not been adjusted for body mass index (which may induce issues related to collider or selection bias31) 

but which did include correction for medication use (addition of 15 mmHg to SBP for individuals reported 

to be taking BP-lowering medication), as is typically done for large-scale genetic association studies of 

blood pressure traits.32 Correcting for medication use in GWAS of SBP was recently shown not to lead to 

bias in Mendelian randomisation (MR) analyses of SBP.33 

 

We examined each selected variant in the OpenTargets Genetics34 database to provide further evidence 

linking the variant to its intended target gene. This included annotations pertaining to the variant’s likely 

functional impact, distance between the variant and the target gene, and an aggregated score quantifying 

the functional evidence linking a variant to the target gene. If one of the selected variants was not 

available in one of the GWAS consortia datasets, we selected the best possible proxy (r2 > 0.9 in the CEU 

population, using the LDproxy function in the LDLinkeR35 R library) to use instead.  

 

Data Sources and Outcomes 

Estimates for the hypothesis-driven analysis were derived in UK Biobank (UKBB) and from publicly-

available GWAS summary statistics for the relevant traits. The hypothesis-generating phenome-wide 

analyses were performed using data from UKBB and FinnGen. FinnGen is a project combining genotype 

data from Finnish biobanks and digital health record data from Finnish health registries.36 

 

UKBB: Population and Genotyping 

UKBB is a prospective study of more than 500,000 British individuals aged between 45 and 69 and 

recruited between 2006 to 2010.37 Phenotypic data includes self-reported medical history at enrolment, as 

ascertained by self-administered touchscreen interface and a subsequent verbal interview with a medical 

professional; hospital-derived electronic health record (EHR) data, including International Classification of 

Diseases, ninth and tenth revision (ICD-9 and ICD-10) codes and Office of Population and Censuses 

Surveys Classification of Interventions and Procedures version 4 (OPCS-4) procedure codes, and an 

extensive set of physical measurements.  

 

https://paperpile.com/c/gAtFBC/uibDp
https://paperpile.com/c/gAtFBC/2VEA9
https://paperpile.com/c/gAtFBC/hQ36
https://paperpile.com/c/gAtFBC/VjaaT
https://paperpile.com/c/gAtFBC/JxND
https://paperpile.com/c/gAtFBC/QZzaH
https://paperpile.com/c/gAtFBC/6wgAa
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We excluded all samples indicated to have poor quality genotypes by UKBB (on the basis of high sample 

heterozygosity and missingness), and further excluded individuals meeting the following criteria: 

withdrawn their consent for participation; >10 third degree relatives; putative sex chromosome 

aneuploidy; sex mismatches (comparing genetically determined vs. self-reported sex, and comparing 

between assessments); ethnicity mismatches (mismatches between genetically determined and self-

reported ethnicity for white British individuals, and any ethnicity mismatches between assessments). We 

reviewed pairwise genetic relatedness between individuals and excluded one individual per pair of 

individuals with an estimated second degree or closer relatedness (equivalent to a kinship coefficient of 

greater than 0.088). We included only individuals in the white British ancestry subset38 (i.e. samples who 

self-reported 'White British' and who have very similar genetic ancestry based on a principal components 

analysis of the genotypes). After applying these filters, up to 377,220 subjects remained. 

 

Genotyping, quality control and imputation were performed centrally by UKBB, and details are fully 

described elsewhere.38 Briefly, genotype data are available for 488,377 individuals, 49,950 of whom were 

genotyped using the Applied Biosystems UK BiLEVE Axiom Array by Affymetrix [containing 807,411 

markers39]. The remaining 438,427 individuals were genotyped using the Applied Biosystems UK Biobank 

Axiom Array by Affymetrix (containing 825,927 markers). Both arrays were specifically designed for use in 

the UKBB project and share ~95% of marker content. Phasing was done using SHAPEIT3, and 

imputation was conducted using IMPUTE4. For imputation, the Haplotype Reference Consortium (HRC) 

panel40 was used wherever possible, and for variants not in that reference panel, a merged UK10K + 

1000 Genomes reference panel was used. SNPs were imputed from both panels, but the HRC imputation 

was preferentially used for SNPs present in both panels.  

 

The UKBB project was approved by the North West Multi-Centre Research Ethics Committee and all 

participants provided written informed consent to participate. This research has been conducted under 

UKBB application number 11867. 

 

UKBB: Outcomes 

https://paperpile.com/c/gAtFBC/CFk9d
https://paperpile.com/c/gAtFBC/CFk9d
https://paperpile.com/c/gAtFBC/DmRkz
https://paperpile.com/c/gAtFBC/z14aH
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Individual values for SBP in mmHg units were derived as in a recent GWAS for SBP performed in 

UKBB.32 We derived the mean SBP for each participant from two SBP measurements performed at 

baseline using either an automated or a manual sphygmomanometer. For subjects with only a single 

measurement available, we used this single value. We then corrected these values for blood pressure-

lowering medication use by addition of 15 mmHg to the derived SBP value for subjects who had reported 

taking blood pressure medication at baseline.41 We defined hypertension in one of three ways, using 

either self-reported and/or physician-coded data (Table S1). We selected major cardiovascular events 

(MCVE; a composite of myocardial infarction [MI], coronary revascularisation and all stroke) as our 

primary outcome of interest, analogous to the commonly used composite outcome studied in 

cardiovascular outcomes trials. We also examined more specific vascular outcomes (myocardial 

infarction, coronary revascularisation, all stroke, ischaemic stroke, haemorrhagic stroke), and further 

cardiac (heart failure) and renal (chronic kidney disease and urinary albumin-creatinine ratio) outcomes. 

Definitions used in UKBB are given in Table S2.  

 

GWAS consortia 

We supplemented data from UKBB with summary-level data from several GWAS, including data for MI,42 

stroke (including all stroke and ischaemic stroke),43 haemorrhagic stroke,44 heart failure,45 chronic kidney 

disease,46 and urinary albumin-creatinine ratio.47,48 GWAS data for serum triglyceride concentration (TG) 

were also examined,49,50 following a putative association identified in the phenome-wide biomarker 

analysis. Where available, we selected data pertaining to analyses conducted in European-ancestry 

individuals. Further details on each consortium are provided in Table S3. 

 

Finngen 

FinnGen is a public-private partnership project combining genotype data from Finnish biobanks and 

digital health record data from Finnish health registries, with summary statistic data currently publicly 

available for up to 96,499 participants (round 2 data release).36 A full description of the methods used to 

derive these data is given on the FinnGen web portal.36  

 

https://paperpile.com/c/gAtFBC/2VEA9
https://paperpile.com/c/gAtFBC/zS5Af
https://paperpile.com/c/gAtFBC/PRyvH
https://paperpile.com/c/gAtFBC/ZbbAa
https://paperpile.com/c/gAtFBC/6o6BM
https://paperpile.com/c/gAtFBC/BCjFk
https://paperpile.com/c/gAtFBC/dBON0
https://paperpile.com/c/gAtFBC/RUT1x+pVfrT
https://paperpile.com/c/gAtFBC/uvgKw+zllsb
https://paperpile.com/c/gAtFBC/QZzaH
https://paperpile.com/c/gAtFBC/QZzaH
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Statistical analyses 

Colocalisation analysis 

We used coloc, a Bayesian modelling approach implemented as an R package51, to estimate the 

posterior probability of shared causal variant(s) driving associations in pairs of traits (i.e. colocalisation). 

We assessed colocalisation at the AGT locus for 2 pairs of traits: SBP and tissue-specific AGT mRNA 

expression (i.e. expression quantitative trait loci [eQTL] data),52 and SBP and circulating AGT protein 

concentration (i.e. protein quantitative trait loci [pQTL] data).53 We first ran colocalisation analyses using 

unconditioned summary statistics for each trait. Since the results from colocalisation analyses may be 

biased by the presence of multiple independent signals, we also ran colocalisation with conditioned 

datasets. To do this, we first identified independent signals in the AGT locus for each trait, using the 

GCTA-COJO statistical suite29 with genotype data from UKBB as a linkage disequilibrium (LD) reference 

panel. We then conditioned each dataset on the identified independent signals (using the GCTA-COJO --

cojo-cond function), and performed colocalisation analyses using these conditioned datasets.  

The pQTL dataset included the effect allele and minor allele frequency but did not indicate the minor 

allele; this precluded derivation of the effect allele frequency in this dataset, which is required for 

conditional analysis. However, we extracted data pertaining to the minor allele and minor allele frequency 

for the same variants from a similar (European) ancestry population (i.e. UKBB) to identify the minor 

allele. To do this, we first filtered on variants with MAF < 0.45 in both datasets, and then filtered on 

variants where the difference in MAF between the two datasets was < 0.03. We then assigned the minor 

allele in the pQTL dataset, derived the effect allele frequency from the given minor allele frequency, and 

ran conditional analyses on these data.  

We performed all colocalisation analyses on 400-kb and 2-Mb regions centred on the lead SBP variant, 

and used the default coloc priors. Colocalisation analyses where PP3 (the posterior probability of distinct 

causal variants) plus PP4 (the posterior probability of a shared causal variant) > 0.8 were considered to 

be adequately powered to detect colocalisation.54,55 For adequately powered colocalisation analyses, we 

considered a PP4 > 0.7 as being consistent with colocalisation between the two traits, similar to other 

recent studies.56–59 We visualised colocalisation using the LocusCompareR R library.60  

 

https://paperpile.com/c/gAtFBC/Rq2ug
https://paperpile.com/c/gAtFBC/tsq3Z
https://paperpile.com/c/gAtFBC/zKHke
https://paperpile.com/c/gAtFBC/FcpVc
https://paperpile.com/c/gAtFBC/8cylz+WgQP
https://paperpile.com/c/gAtFBC/xxYt1+PYZVt+luZZ5+DKclK
https://paperpile.com/c/gAtFBC/OqLUD
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Association analysis in UKBB 

The genotype-outcome association analyses in UKBB were performed using SNPTEST v2.5.4. We used 

an additive frequentist model (using “-frequentist 1”) and included sex, age at baseline, age2, genotyping 

array (a binary variable), recruitment centre, and the first 15 principal components as covariates in all 

analyses. We accounted for genotype uncertainty by using “-method expected”.  

 

Scaling and meta-analysis of estimates 

We scaled all estimates relating to outcomes and traits of interest to a 10 mmHg reduction in SBP. To do 

this, we first derived the allelic effect estimate (in mmHg units) for the association of each instrument with 

SBP, by multiplying the effect estimate (in SD units, as per the selected GWAS in UKBB30) by the SD of 

medication-corrected SBP in UKBB (20.6 mmHg). We then derived a scaling factor for each instrument by 

dividing 10 by the allelic effect estimate for SBP and subsequently multiplied all per-allele effect estimates 

[log(OR) and the standard error of log(OR) for binary outcomes; beta and the standard error of beta for 

quantitative traits] by this scaling factor. Scaling may enable more meaningful interpretation of findings 

(as common genetic variants typically have small per-allele effect sizes) and allows for comparison 

between estimates from different instruments. However, genetic instruments for exposures represent 

potentially lifelong durations of exposure and the nature of the exposure-outcome relationship (for 

instance, whether it is cumulative) makes direct comparisons of estimates derived from a genetic 

instrument to a treatment trial challenging.  

 

We meta-analysed scaled estimates from UKBB with scaled estimates from GWAS consortia for 

equivalent outcomes using inverse-variance weighted fixed-effect meta-analysis, implemented in the 

metafor R library.61  

 

Mendelian randomisation analysis of SBP 

To derive MR estimates for the effect of genetically-predicted SBP on cardiovascular traits (MCVE, MI, all 

stroke and TG), we first extracted independent variants from a GWAS of SBP conducted in UKBB30 (the 

same dataset used for identifying the gene-specific instruments), using the clump_data function (with 

https://paperpile.com/c/gAtFBC/BUjlD
https://paperpile.com/c/gAtFBC/HwDMC
https://paperpile.com/c/gAtFBC/BUjlD
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default settings of r2 cutoff < 0.001 and clumping window of 10,000 kb) in the TwoSampleMR R library.62 

We removed all variants correlated (within 10 Mb and r2 > 0.001) with any of the RAS pathway genes’ 

instruments, which led to identification of 367 SBP-associated variants. Proxies (r2 > 0.9) were used if any 

variants were not present in the outcome datasets. We used the maximum number of SBP-associated 

SNPs available for each outcome; variants and estimates used in MR analyses are presented in Tables 

S4-S6. We then performed two-sample MR analyses of SBP on these outcomes, using summary 

statistics pertaining to studies with non-overlapping (with UKBB) participants (notably datasets from 

CARDIoGRAMplusC4D, MEGASTROKE, and Global Lipids Genetics Consortium). This included the 

inverse variance weighted-method, as well as the simple median, weighted median, and MR-Egger 

methods. The inverse variance weighted estimates were used if the estimates derived from the MR-Egger 

method suggested that there was no strong evidence of directional pleiotropy. MR estimates [log(OR) of 

outcome per SD unit change in SBP] were scaled to a 10 mmHg lower SBP by using the SD of 

medication-corrected SBP in UKBB (20.6 mmHg) and an MR estimate for MCVE was generated using 

fixed effect meta-analysis of the scaled MI and all stroke MR estimates. MR analyses were conducted 

using the MendelianRandomization R package.63 

 

Comparison to RAS pathway genes and SBP-instrument 

We examined heterogeneity between the RAS (i.e. between AGT, REN, ACE, and ENPEP) estimates using 

Cochran’s Q test. We also compared the AGT estimates to those from the SBP MR analyses. Since the 

SBP MR analyses were performed using non-UKBB outcome data only (to avoid overfitting), we performed 

a sensitivity analysis where the AGT and RAS estimates only included data from the same datasets as 

used in the SBP MR analyses. We also performed these analyses for any putative associations found in 

the exploratory phenome-wide analyses (see below) to examine the potential validity of such associations 

and to assess whether the associations could represent target-specific effects as opposed to effects 

mediated through RAS or SBP. Lastly, we assessed the log-linear association between genetically lowered 

SBP and risk of vascular outcomes, comparing the effect of SBP overall (using the IVW estimates from the 

MR analyses of SBP and vascular outcomes, with the SBP instrument not depleted for RAS genetic 

variants) to the RAS gene-specific estimates.   

https://paperpile.com/c/gAtFBC/diFwL
https://paperpile.com/c/gAtFBC/SlkGI
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Phenome-wide association analyses (PheWAS) 

We performed phenome-wide scans in two large-scale cohorts: UKBB and the FinnGen cohort. For 

UKBB, we extracted estimates for the AGT instrument’s association with 1,074 binary outcomes (those 

with at least 200 cases available) from publicly available summary statistics generated by the Lee lab64 

and for 30 circulating biomarkers analysed by the Neale lab.65 We used a 5% false discovery rate (FDR)-

adjusted P-value threshold in each dataset. For FinnGen, we extracted estimates for 950 binary 

outcomes (those with at least 200 cases available) across 15 disease and organ-system categories, from 

publicly available summary statistics derived from up to 96,499 individuals,36 and also applied a 5% FDR-

adjusted P-value threshold.  

 

Estimating the effect of therapeutic AGT inhibition. 

We sought to estimate the potential effect of therapeutic angiotensinogen inhibition on risk of vascular 

outcomes. One way of deriving such estimates is by comparing the effect of an instrument of interest (e.g. 

for AGT) to the effect of a reference instrument acting as a proxy for another, related, therapy that has 

already been evaluated in RCTs. Alternatively, if the effect of a drug target on disease appears to show a 

similar magnitude of effect as the downstream biomarker on which it intervenes (in this case SBP), it is 

possible to use a scaling factor derived from a polygenic SBP instrument as compared to estimates from 

meta-analysis of broader SBP-lowering agents. We used two reference instruments for this analysis: 

firstly, using genetic and therapeutic estimates for the overall effect of lowering SBP, and secondly, using 

genetic and therapeutic estimates for ACE inhibition. For the first analysis, we extracted estimates for the 

effect of pharmacologically lowered SBP on vascular outcomes from a meta-analysis of RCTs.66 To 

derive estimates pertaining to therapeutic AGT inhibition, we followed two steps. First, we determined a 

scaling factor by dividing the log(relative risk) of therapeutic SBP lowering by the log(OR) of genetically 

lowered SBP (with the genetic estimate derived using a ‘complete’ polygenic SBP instrument that was not 

depleted for RAS genetic variants). We then scaled the genetic AGT estimate by this scaling factor to 

estimate the pharmacologic AGT inhibition estimate per 10 mmHg lower SBP. For the second analysis, 

we extracted RCT estimates pertaining to ACE inhibitors from a Cochrane Systematic Review of first-line 

https://paperpile.com/c/gAtFBC/ut9q1
https://paperpile.com/c/gAtFBC/9zSK8
https://paperpile.com/c/gAtFBC/QZzaH
https://paperpile.com/c/gAtFBC/y1Iy
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anti-hypertensive therapy.67 We extracted these estimates and first scaled them to a 10 mmHg reduction 

in SBP (using the effect of ACE inhibitors—a 16.5 mmHg reduction in SBP—as per the same meta-

analysis67). To derive estimates pertaining to therapeutic AGT inhibition using the ACE-derived scaling 

factor, we followed the same steps outlined above.  

 

Role of the funding source 

The funders of the study had no role in study design, data collection, data analysis, data interpretation, or 

writing of the report.   

https://paperpile.com/c/gAtFBC/3UKEq
https://paperpile.com/c/gAtFBC/3UKEq
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Results 

Selection and validation of AGT instrument 

We identified one independent signal in the AGT gene associated with SBP at genome-wide significance 

(P < 5 × 10-8; rs2478539, 0.49 mmHg lower SBP per G-allele, P = 8.0 × 10-27; Figure S1). This variant, an 

intronic single nucleotide polymorphism (SNP) in AGT, was selected as a genetic proxy (i.e. instrument) for 

AGT inhibition. The instrument was strongly associated with risk of hypertension in UKBB, with consistent 

estimates for various definitions of this phenotype (e.g. clinician-coded hypertension, odds ratio [OR] 0.96 

per G-allele, 95% confidence interval [CI], 0.95 ‒ 0.97, P = 1.9 × 10-9, Figure 2A).  

 

To further investigate the validity of the instrument as a proxy for investigational RNA-based AGT inhibitors, 

we used colocalisation analyses to examine the effect of this variant on AGT mRNA expression across 

several tissues and circulating AGT protein concentration. Colocalisation analyses of SBP and AGT mRNA 

expression (using expression quantitative trait loci [eQTL] data from several tissues52) provided evidence 

of colocalisation in several tissues, using both unconditioned datasets and datasets conditioned on either 

the lead eQTL or the lead SBP-associated variant (e.g. probability of a shared causal variant [PP4] in 

skeletal muscle tissue = 86% in the unconditioned analysis; Figure 2B, Table S7-S8).  

 

Next we evaluated the effect of the instrument on circulating AGT protein concentration,53 as recent 

evidence from a phase I RCT has shown that administration of ALN-AGT01 leads to large reductions in 

circulating AGT protein levels.68 We found a 0.13 standard deviation (SD) units lower AGT concentration 

(95% CI, -0.22 ‒ -0.05); P = 0.003; Figure S2) per SBP-lowering allele of rs2478539. There was no evidence 

of colocalisation of genetic signals relating to AGT plasma concentration (i.e. protein quantitative trait loci 

[pQTLs]) and the lead SBP signal (PP4 < 1%; Figure S3A, Table S9); however, using data conditioned on 

the lead SBP signal did provide evidence of colocalisation (PP4 = 88%; Figure S3B, Table S9). We selected 

the top AGT pQTL (rs73102646, r2 = 0.21 and D’ = 0.94 with rs2478539 in European-ancestry populations) 

for sensitivity analysis.  

 

Association with cardiovascular and renal outcomes 

https://paperpile.com/c/gAtFBC/tsq3Z
https://paperpile.com/c/gAtFBC/zKHke
https://paperpile.com/c/gAtFBC/DEBN3
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We investigated the association of the AGT instrument with cardiovascular outcomes, including coronary 

events (MI and coronary revascularisation), stroke (haemorrhagic and ischaemic stroke) and major 

cardiovascular events (MCVE; a composite of all coronary events and strokes, including death from either), 

scaled to a 10 mmHg lower SBP. This revealed a 41% lower risk of MCVE (OR 0.59; 95% CI, 0.47 ‒ 0.74; 

P = 3.1 × 10-6), 45% lower risk of MI (OR 0.55; 95% CI, 0.40 ‒ 0.76; P = 2.6 × 10-4), and a 31% lower risk 

of all stroke (OR 0.69; 95% CI, 0.50 ‒ 0.94; P = 0.02), with similar reductions in risk of coronary 

revascularisation and haemorrhagic stroke (Figure 3; Figure S4). Estimates for MCVE, MI and all stroke 

derived using the AGT pQTL were concordant to those of our primary AGT instrument, scaled to the same 

difference in SBP (P-heterogeneity = 0.82, 0.98, and 0.45 respectively for MCVE, myocardial infarction and 

all stroke, with similar findings when comparing conditional estimates; Figures S5-S6).  

 

The AGT instrument was weakly associated with a lower urinary albumin-creatinine ratio (-0.07 ln(mg/g) 

units, 95% CI, -0.14 ‒ -0.01, P = 0.03; Figure S7) and lower risk of chronic kidney disease (OR 0.72; 95% 

CI, 0.51 ‒ 1.01; P = 0.06; Figure S8). We found no evidence of association with risk of heart failure (OR 

0.92; 95% CI, 0.67 ‒ 1.27; P = 0.63; Figure S8). We assessed association with further outcomes with 

phenome-wide association analyses (PheWAS). 

 

Comparison to RAS pathway genes and a genome-wide SBP instrument 

We next compared the effects of the AGT instrument to those of other downstream targets in the RAS 

pathway (Figure 1A). We followed an identical procedure to that used to select the AGT instrument, and 

identified instruments for three additional components of the RAS (renin, angiotensin-converting enzyme 

and aminopeptidase A, encoded by REN, ACE, and ENPEP, respectively; Table S10). We also compared 

the AGT estimates to those relating to an instrument including up to 364 SBP-associated variants (i.e. 

genome-wide but excluding variants in or close to the selected RAS genes; see Table S4-S5 for variants 

included in the SBP instrument and Tables S11-S12 for results of the SBP MR analyses). We found no 

strong evidence of heterogeneity between the RAS targets’ estimates for MCVE, MI or all stroke (Figure 

4A-C). The AGT estimates were directionally concordant to the SBP instrument’s estimates for these three 

vascular outcomes, with some evidence of heterogeneity between estimates for MI and MCVE (Figure 4A-
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C). Sensitivity analysis which included restricting analyses to the same data sources (i.e. only including 

data from the MEGASTROKE and CARDIoGRAMplusC4D consortia) attenuated the heterogeneity 

between the AGT and SBP instruments’ estimates (Figure S9A-C). The per-allele effects of each of the 

RAS drug-target instruments (i.e. AGT, REN, ACE and ENPEP) demonstrated disease associations that 

were consistent with the overall log-linear relationship between SBP and vascular outcomes (Figure 4D-F).   

 

Association with further outcomes 

A PheWAS of 1,074 binary outcomes in UKBB revealed no strong evidence of further associations at a 5% 

false-discovery rate (FDR) threshold (Figure S10). PheWAS of 950 outcomes in up to 96,499 Finnish 

individuals revealed a top association of “Hypertensive diseases” (supporting the validity of the instrument 

in this cohort), and no further association at the same FDR threshold (Table S13). Investigation of 30 

circulating biomarkers in UKBB revealed an association of the AGT instrument with elevated plasma 

triglyceride concentration (TG; 0.16 SD units higher scaled to a 10 mmHg lower SBP, 95% CI, 0.07 ‒ 0.26, 

P = 8.2 × 10-4, PFDR-adjusted = 0.02; Table S14). There was little evidence of association with TG in an 

independent GWAS of blood lipids49 (0.07 SD units higher, P = 0.34; Figure S11). There was also evidence 

of heterogeneity between the AGT TG estimate and estimates relating to the RAS pathway genes and the 

SBP instrument, in contrast to the relative concordance between the vascular estimates (Figure S12; see 

Table S6 for variants included in the SBP instrument and Table S15 for results of the SBP MR analysis). A 

further colocalisation analysis revealed no strong evidence of colocalisation between genetic signals 

pertaining to SBP and TG at the AGT locus (probability of distinct causal variants [PP3] = 73% and 

probability of shared causal variant [PP4] = 4%, using a 2Mb-interval; Figure S13, Table S16). 

 

Estimating the expected clinical effect of pharmacological AGT inhibition 

Estimates derived from human genetics may differ to those from clinical trials for multiple reasons, including 

that the effects of genetic variants may be lifelong, as opposed to pharmacological perturbation of shorter 

duration and occurring later in life.69 To gauge insight into the expected effect size of pharmacological 

inhibition, we can scale the genetic estimates for a target of interest by a scaling factor derived from an 

existing biomarker or drug target for which there are RCT data and a valid genetic instrument, and where 

https://paperpile.com/c/gAtFBC/uvgKw
https://paperpile.com/c/gAtFBC/Yx6Zg
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the mechanism of action is related to that of our target of interest.69 Figure 4 shows that the vascular disease 

associations for genetic instruments for individual RAS therapeutic targets scale to the overall association 

of a polygenic instrument for SBP. This suggests that a scaling factor derived from SBP (comparing a 

polygenic SBP genetic instrument to meta-analysis of SBP lowering agents) may be a reliable approach to 

estimating the therapeutic effect of AGT inhibition. When we compared an SBP genetic risk score to meta-

analysis of SBP lowering agents,66 we found very similar magnitudes of disease association (for MCVE this 

was OR 0.79; 95% CI 0.77 ‒ 0.82 for the SBP genetic instrument and RR 0.80; 95% CI 0.77 ‒ 0.83 for 

meta-analysis of RCTs; both per 10mmHg lower SBP). The corresponding values for genetic and 

pharmacological inhibition of ACE were OR 0.69; 95% CI 0.48 − 1.00 for the ACE genetic instrument and 

RR 0.85; 95% CI 0.79 − 0.91 for meta-analysis of RCTs67 (Figure 5). Applying these scaling values to the 

genetic data for AGT, we estimate that an RCT that lowers SBP by 10mmHg will achieve ORs of MCVE of 

between 0.60 to 0.79 (point estimates scaled using SBP-derived and ACE-derived transformations, 

respectively). 

  

https://paperpile.com/c/gAtFBC/Yx6Zg
https://paperpile.com/c/gAtFBC/y1Iy
https://paperpile.com/c/gAtFBC/3UKEq
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Discussion 

We leveraged large-scale human genetic datasets to show that a genetic instrument for AGT inhibition is 

associated with lower risk of vascular events, with no strong evidence of major harmful associations. These 

findings suggest that therapeutic inhibition of AGT may be expected to safely reduce risk of vascular 

outcomes without leading to major target-mediated adverse effects.  

 

While novel AGT inhibitors may potentially be granted a marketing authorisation on the basis of a surrogate 

outcome (i.e. their effect on BP), larger trials will be needed to establish whether these agents safely reduce 

cardiovascular risk. Available animal data support the efficacy and safety of AGT inhibition,10,11 but 

translation of evidence from animals to humans is recognised to present numerous challenges and 

limitations.70,71 Randomised studies in humans therefore provide more reliable evidence of efficacy and 

safety;72 human genetics provides one way of conducting such investigations. Furthermore, while existing 

RAS targeting medicines have generally been found to be safe, the possibility exists that inhibition of 

upstream targets in RAS (such as AGT) may lead to unique, non-RAS mediated effects not previously 

observed in studies of other RAS pathway modulators. Human genetic data also allows for exploration of 

such target-specific effects.73 

 

The application of human genetics to investigating the effects of drug target modulation is now well-

established,73 with recent examples including investigations of cardiovascular safety,27 identification of 

novel drug indications74 and discovery of opportunities for precision medicine.75 Previous studies of genetic 

proxies for glucagon-like peptide-1 receptor (GLP-1R) modulation25 and Niemann-Pick C1-like 1 (NPC1L1) 

inhibition,76 among others, have successfully anticipated cardiovascular risk reduction prior to completion 

of cardiovascular outcomes trials for these drug classes. Recent work used variants related to existing anti-

hypertensive medications to recapitulate known therapeutic effects and discover novel potential adverse 

effects.77 Our study applied these approaches to provide several insights into the effects of AGT inhibition.  

 

First, we find that genetic variation in AGT is strongly associated with lower risk of major vascular events, 

particularly coronary events, and nominally associated with lower risk of stroke. The AGT instrument’s 

https://paperpile.com/c/gAtFBC/GbaUs+1PB6q
https://paperpile.com/c/gAtFBC/aLIT+12sb
https://paperpile.com/c/gAtFBC/hLS4P
https://paperpile.com/c/gAtFBC/SVIkr
https://paperpile.com/c/gAtFBC/SVIkr
https://paperpile.com/c/gAtFBC/YFbaD
https://paperpile.com/c/gAtFBC/Jzq2f
https://paperpile.com/c/gAtFBC/vUs3x
https://paperpile.com/c/gAtFBC/xN93f
https://paperpile.com/c/gAtFBC/ihips
https://paperpile.com/c/gAtFBC/VigP9
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association with lower albuminuria and reduced risk of chronic kidney disease suggests that AGT inhibition 

may also display beneficial effects on these outcomes, in line with the established therapeutic role of RAS 

pathway inhibition in these renal phenotypes.78 Numerous candidate-gene studies have studied the 

association of genetic variation in AGT with hypertension and vascular outcomes, with conflicting and 

inconsistent results.79 The reasons for these discrepancies are potentially manifold, and include limitations 

related to sample size, population structure, linkage disequilibrium, and others.80 Our study integrates data 

from large-scale GWAS, transcriptomic and proteomic investigations (including more than one million 

participants) to address such limitations and shows that variation in AGT is robustly associated with 

hypertension and vascular outcomes, and that these genetic associations are likely mediated by effects on 

AGT transcription. The proximity of this molecular mediator (gene expression) to the mechanism of RNA-

based AGT inhibitors (blockade of mRNA translation) strengthens the relevance of our findings in the 

context of drug target validation. 

 

Second, the concordance of the AGT vascular estimates to those relating to other RAS pathway genes 

suggests that these effects are RAS-pathway mediated, whilst the congruence to the estimates of the SBP-

instrument further indicates that these effects are directly related to the RAS pathway’s BP-lowering effect. 

These findings indicate that the AGT instrument’s associations with these outcomes represent true, target-

mediated effects.  

 

Third, by comparing our genetic AGT estimates to genetic and RCT estimates relating to SBP lowering and 

ACE inhibition, we approximated the expected effect of therapeutic AGT inhibition on vascular outcomes. 

The AGT estimates derived in these two analyses may represent plausible ranges for the expected effect 

of therapeutic AGT inhibition on vascular outcomes, particularly as we did not observe strong evidence of 

heterogeneity between the AGT genetic estimates and those pertaining to the other RAS genes or the SBP-

instrument. It is worth noting several potential caveats to such comparisons, which may include imprecision 

in estimates used to derive scaling factors (such as e.g. the ACE genetic estimates), AGT inhibitors and/or 

other SBP-lowering therapies having off-target effects, comparative trials not being of a similar duration, 

https://paperpile.com/c/gAtFBC/bcjz
https://paperpile.com/c/gAtFBC/1JswW
https://paperpile.com/c/gAtFBC/S4Ppr
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differential adherence, and dissimilar trial participant characteristics (including background therapy), among 

others.  

 

Recent non-peer reviewed data from a phase I study68 suggest that ALN-AGT01 leads to a more than 90% 

reduction in AGT levels and a more than 10 mmHg reduction in mean 24-hour SBP at week 8, compared 

to placebo. IONIS-AGT-LRx is currently in phase II development13, with no reported phase I data to date. 

Our phenome-wide association analyses in two large-scale European cohorts found no strong evidence of 

target-mediated adverse effects, supporting a phase I report of ALN-AGT01 that has thus far noted no drug-

related serious adverse events.68 Although these early results are encouraging, larger phase II and III 

studies will be needed to further verify our genetic findings and quantify an absence of off-target effects.81  

 

Fourth, our work highlights several issues that are more broadly relevant to studies applying large-scale 

human genetic data to investigate drug targets.82 Genetic variants used as proxies or surrogates for drug 

target modulation are typically selected from genetic association data relating to either gene expression, 

protein concentration or downstream biomarkers. In the present study, we selected variants on the basis 

of their association with a clinical biomarker (i.e. SBP), similar to previous studies of other drug 

targets.27,83,84 Previous studies have linked genetic variation in AGT with altered AGT gene expression 

and/or AGT protein levels, though such findings were inconsistent, largely owing to the limitations of such 

candidate gene studies as mentioned above. We applied colocalisation to provide more definitive evidence 

linking SBP-associated variation in AGT to AGT transcription and/or translation. Colocalisation of SBP with 

AGT mRNA expression suggests that altered gene expression may be a mediating mechanism. We found 

that our AGT instrument was also associated with circulating AGT protein concentration (as measured 

using an aptamer-based assay53), although this association was not supported by colocalisation when using 

unconditioned estimates. Whilst this could represent a true finding (i.e. distinct genetic variants drive 

associations with SBP and AGT protein concentration), there may be alternative explanations. For instance, 

previous work has shown that the presence of protein-altering variants may lead to altered binding of the 

aptamer to the target protein, biasing measurement of protein abundance.85,86 The presence of a missense 

variant in AGT (rs699) in high LD with the selected AGT instrument (r2 = 1.0 in European populations) may 

https://paperpile.com/c/gAtFBC/DEBN3
https://paperpile.com/c/gAtFBC/jNn0U
https://paperpile.com/c/gAtFBC/DEBN3
https://paperpile.com/c/gAtFBC/Ulph
https://paperpile.com/c/gAtFBC/v6KD5
https://paperpile.com/c/gAtFBC/M9sHI+YFbaD+QRgG
https://paperpile.com/c/gAtFBC/zKHke
https://paperpile.com/c/gAtFBC/Gi5ZT+BCdW4
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influence aptamer binding, and could therefore attenuate the association of the AGT instrument with AGT 

protein concentration (Figure S14). Personal communication with the manufacturer of the SomaLogic 

platform confirmed that the location of the AGT aptamer-binding site is currently unknown (SomaLogic CO, 

USA; August 2019). Further work leveraging alternative technologies for measuring circulating protein 

levels (e.g. the antibody-based proximity extension assay offered by Olink Proteomics87) may yield more 

reliable results in this regard. Nevertheless, the similarity of the estimates relating to the pQTL-sourced and 

the SBP-sourced AGT instruments, and evidence of colocalisation of AGT mRNA expression with SBP 

support the validity of our instrument as a proxy for AGT inhibition.  

 

Our analysis of circulating biomarkers identified a potential association with elevated TG, which, although 

modest in the context of the multiple phenotypes tested, prompted further investigation. Whilst this 

association may reflect a true causal relationship (i.e. genetic variants mimicking therapeutic inhibition of 

AGT cause higher TG, which implies that pharmacological inhibition may also be expected to lead to higher 

TG), several other explanations may be worth considering (Figure S15).82 The heterogeneity observed 

between the AGT TG estimate and the estimates relating to other RAS pathway genes, suggests that the 

association of the AGT instrument is unlikely to be mediated via the RAS pathway (in contrast to the 

concordant associations observed for vascular traits). As AGT lies upstream from other RAS targets, the 

potential arises for target-mediated yet non-RAS or non-SBP mediated effects ((B) in Figure S15),73 with 

the implication that, in this scenario, therapeutic AGT inhibition may still lead to a rise in TG through target-

mediated mechanisms. Evidence in rodents suggests that AGT may have non-RAS mediated effects,88 

however several further explanations may exist (Figure S15). The AGT variant’s association with TG may 

be biased by horizontal (also termed pre-translational89) pleiotropy or linkage disequilibrium, or be a chance 

(i.e. false-positive) finding. Our colocalisation analysis of TG and SBP at the AGT locus suggests that 

distinct causal variants are associated with these traits and that the AGT instrument’s association with TG 

may therefore be confounded by linkage disequilibrium. However, if the AGT instrument was in linkage 

disequilibrium with a TG-increasing variant, we would expect the AGT instrument’s association with 

cardiovascular outcomes to be similarly influenced. For instance, in a recent MR study investigating the 

causal effect of blood lipids on coronary disease90, a 1 SD higher TG was shown to lead to a 34% higher 

https://paperpile.com/c/gAtFBC/buYY7
https://paperpile.com/c/gAtFBC/v6KD5
https://paperpile.com/c/gAtFBC/SVIkr
https://paperpile.com/c/gAtFBC/FkSO
https://paperpile.com/c/gAtFBC/J4rj
https://paperpile.com/c/gAtFBC/tCuBL
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risk of coronary disease. Assuming the relationship between TG and vascular disease is linear, the AGT 

instrument’s effect on TG (0.14 SD higher) would therefore be expected to lead to an approximately 4% 

increase in risk of coronary disease. The AGT instrument’s strong association with lower risk of coronary 

events, similar to that expected on the basis of SBP lowering, suggests that this is unlikely, although our 

analyses may be underpowered to detect an effect of this magnitude. This, together with the lack of 

replication in an independent dataset,49 therefore suggests that the TG association found in UKBB is likely 

to be a chance finding. Nevertheless, whilst these investigations suggest that TG elevation is unlikely to be 

a target-mediated effect of AGT inhibition, monitoring of blood lipids in a subset of individuals enrolled in 

ongoing clinical trials of AGT inhibition may be potentially warranted.  

 

Our study has several limitations. Firstly, we have shown evidence of colocalisation with AGT mRNA 

expression in various tissues, albeit not in liver tissue, which is the primary target tissue for RNA-based 

AGT inhibitors currently under development. Our analyses were underpowered to detect evidence of 

colocalisation in liver tissue and larger sample sizes may improve this (e.g. in GTEx, liver tissue only had 

153 samples, vs. 491 samples for skeletal muscle, where we did find evidence of colocalisation). However, 

sensitivity analysis using a variant associated with circulating AGT protein concentration, which is mainly 

liver-derived,8 yielded similar estimates to that of our instrument. In light of this and recent data showing 

that ALN-AGT01 lowers circulating AGT levels68, our findings are likely to be of relevance to these novel 

therapies. Second, our methods would not be able to predict potential off-target effects of specific agents 

or modalities (such as, for instance, torcetrapib-mediated increases in BP, an adverse effect with BP 

increased to a greater extent than that observed for other CETP inhibitors91), nor are they likely to detect 

idiosyncratic adverse effects. Nonetheless, human genetics may be helpful in evaluating whether effects 

observed in clinical trials are target-mediated or not,73 as recently shown for volanesorsen-associated 

thrombocytopenia. Loss-of-function genetic variants in APOC3 were shown not to be associated with 

platelet counts,92 which suggests that the thrombocytopenia observed in a prior trial of volanesorsen,93 an 

ASO targeting apolipoprotein C-III, was not target-mediated. Recent data announced for AKCEA-APOCIII-

LRx, a newer-generation ASO also targeting apolipoprotein C-III, revealed no effects on platelet count.94 

This suggests that the platelet-effect observed with volanesorsen was not target-mediated, and showcases 

https://paperpile.com/c/gAtFBC/uvgKw
https://paperpile.com/c/gAtFBC/S2eF7
https://paperpile.com/c/gAtFBC/DEBN3
https://paperpile.com/c/gAtFBC/SnWL
https://paperpile.com/c/gAtFBC/SVIkr
https://paperpile.com/c/gAtFBC/scjx
https://paperpile.com/c/gAtFBC/jjj6
https://paperpile.com/c/gAtFBC/9HoDk
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the utility of human genetics in disentangling effects observed in clinical trials. Third, analyses may be 

underpowered to detect rare effects, even if such effects are target-mediated, particularly given the 

relatively small effect size of the instrument on the exposure. The phenome-wide analyses we have 

undertaken may therefore have missed uncommon effects. Finally, the effects relating to potentially life-

long genetically modulated AGT may not be directly comparable to those of short-term pharmacological 

modulation in adulthood, although comparison to a reference standard69 (SBP lowering and ACE inhibition 

in our case) may yield more therapeutically-relevant estimates. Comparison of novel AGT inhibitors (RNA-

based therapeutics) to existing anti-hypertensives (typically small molecules) may however still present 

challenges (for instance, improved adherence—a recognised independent predictor of cardiovascular 

risk95—with RNA-based therapeutics may lead to greater reductions in cardiovascular risk than observed 

with small molecules).  

 

In conclusion, our findings provide evidence to support clinical trials of AGT inhibitors as likely showing 

these agents reduce risk of major cardiovascular events, with no strong evidence for target-mediated 

adverse effects. Our results illustrate the value of applying human genetics to shed light on effects of novel 

therapeutic targets, particularly in settings where such therapies may be approved on the basis of surrogate 

outcomes.   

https://paperpile.com/c/gAtFBC/Yx6Zg
https://paperpile.com/c/gAtFBC/fB4vw
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Figure 1. Renin-angiotensin system (RAS) and study design. (A) Simplified illustration of key 

components of the RAS. Yellow denotes main downstream mediators of AGT’s effect on blood pressure; 

blue denotes enzymatic proteins acting on the pathway; green denotes genes encoding various 

components of the pathway; existing RAS-targeting, anti-hypertensive drug classes are shown in white. 

Components not shown include ACE2, AGTR2, and others. (B) We selected genetic variants associated 

with systolic blood pressure (SBP) in or near to the AGT gene as proxies for therapeutic inhibition of AGT. 

We examined the validity of this instrument as a proxy for AGT inhibition by evaluating the instrument’s 

association with risk of hypertension and the likelihood of colocalisation with molecular phenotypes relating 

to AGT. The instrument’s association with clinical outcomes was examined in two stages. First, a 

hypothesis-driven analysis (focusing on cardiovascular and renal outcomes), and second, a hypothesis-

generating analysis (encompassing phenome-wide analyses of clinical outcomes and biomarkers). 

Estimates relating to AGT were compared against those from other RAS genes and to those from an 

instrument encompassing all SBP-associated variants (i.e. genome-wide but excluding variants in or close 

to RAS pathway genes). CARDIoGRAMplusC4D, Coronary Artery Disease Genome wide Replication and 

Meta-analysis (CARDIoGRAM) plus The Coronary Artery Disease (C4D) Genetics; CKDGEN, Chronic 

Kidney Disease Genetics; GLGC, Global Lipid Genetics Consortium; GTEx, Genotype-Tissue Expression 

project; HERMES, Heart Failure Molecular Epidemiology for Therapeutic Targets; KORA, Cooperative 

Health Research in the Region of Augsburg.  

 

Figure 2. Validation of AGT instrument. (A) Per-allele association and scaled estimates of the AGT 

instrument (comprising rs2478539) with risk of hypertension in UK Biobank (UKBB), using various 

definitions of hypertension. “Touchscreen” refers to participants self-reporting (at enrolment) on a 

touchscreen interface that a doctor has ever told them that they have high blood pressure; “Interview” refers 

to nurse-led interview at enrolment where participants reported having hypertension; “ICD” refers to 

International Classification of Disease version 9 and 10 codes [see methods for codes included in definition] 

for hypertension, as recorded by hospital clinicians in the course of routine clinical care in the National 

Health Service (NHS). Boxes represent point estimates of effects. Lines represent 95% confidence intervals 

(CI). OR, odds ratio. (B) Colocalisation of AGT mRNA expression (i.e. expression quantitative trait loci) in 
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skeletal muscle tissue (bottom right frame) and SBP (top right frame). Each plotted point represents a SNP; 

colours of the plotted points indicate the linkage disequilibrium (in r2) of each SNP with rs2478539 (the main 

AGT instrument used in our analyses and indicated as a purple point). The posterior probability of a shared 

causal variant (PP4) in this analysis was 86%. 

 

Figure 3. Scaled associations of the AGT instrument with cardiovascular outcomes. Scaled estimates 

of the AGT instrument with risk of major cardiovascular events (MCVE; a composite of MI, coronary 

revascularisation and all stroke), MI, coronary revascularisation, all stroke, ischaemic stroke, and 

haemorrhagic stroke. Estimates are scaled to a 10 mmHg lower SBP and aligned to the blood pressure-

lowering allele of rs2478539. Boxes represent point estimates of effects. Lines represent 95% confidence 

intervals. CI, confidence interval; OR, odds ratio. 

  

Figure 4. Comparison of scaled associations of AGT, RAS pathway genes and a genome-wide SBP-

instrument and log-linear associations between genetically modulated SBP and risk of vascular 

outcomes. The left-hand panels (A-C) present the scaled estimates of SBP-lowering instruments for AGT 

(rs2478539), REN (rs140578612), ACE (rs8077276), ENPEP (rs6533515 and rs33966350) and an “all 

SBP-SNPs” instrument (up to 364 SBP-associated variants and excluding any variants correlated with RAS 

pathway gene variants) with risk of (A) major cardiovascular events (MCVE), (B) all stroke, and (C) MI. 

Estimates are scaled to a 10 mmHg lower SBP. Phet(RAS) refers to P-value from Cochran’s Q test for 

heterogeneity between the RAS pathway estimates (i.e. between AGT, REN, ACE, and ENPEP estimates). 

Phet(SBP) refers to P-value from Cochran’s Q test for heterogeneity between the AGT estimate and the 

SBP-instrument estimate. Values marked with “*” refer to heterogeneity estimates derived in sensitivity 

analysis restricted to the same datasets, to enable reliable comparisons that are not influenced by between-

study heterogeneity (using non-UKBB data only, see Figure S9 for further information). The right-hand 

panels (D-F) present the per-allele effect [log(OR)] of each RAS pathway instrument (blue boxes) and the 

overall effect of genetically lowered SBP (dotted lines, representing the effect of all SBP-associated 

variants, including any variants correlated with RAS pathway gene variants), on (D) major cardiovascular 

events (MCVE), (E) all stroke, and (F) MI. Boxes represent point estimates of effects. Lines represent 95% 



 

26 

confidence intervals (CI). OR, odds ratio; SNPs, single-nucleotide polymorphisms. 

 

Figure 5. Triangulation of genetic and RCT estimates to predict estimates for therapeutic inhibition 

of AGT. RCT and genetic estimates relating to SBP lowering (up to 372 SBP-associated variants) and ACE 

inhibition (rs8077276) are shown. RCT estimates for SBP lowering were derived from a meta-analysis of 

SBP-lowering RCTs66 and RCT estimates for ACE inhibition were derived from a Cochrane systematic 

review of first-line anti-hypertensive therapy.67 All genetic and RCT estimates were scaled to a 10 mmHg 

lower SBP. Lines represent 95% confidence intervals. RCT, randomised controlled trial.  

https://paperpile.com/c/gAtFBC/y1Iy
https://paperpile.com/c/gAtFBC/3UKEq
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