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Abstract 

 Many colleges and other organizations are considering testing plans to return to operation as 
the COVID19 pandemic continues.  The temporal dynamics of viral load and test false negative rate have 
the potential to alter the apparent efficacy of testing, as testing must identify a sick individual prior to 
that person transmitting the virus to one or more people and isolate them.  High levels of pre-
symptomatic spread and high false negative rates for testing would therefore be likely to make it 
difficult to successfully test an individual in the time frame necessary to stop viral spread. Here, we 
develop a stochastic agent-based model of COVID19 in a university sized population, considering the 
dynamics of both viral load and false negative rate of tests on the ability of testing to combat viral 
spread.  We find that the undetectable period of SARS-CoV-2 can lead to an apparent false negative rate 
of ~17% in the presence of a hypothetical perfect test, while full implementation of dynamic false 
negative rates reported in the literature leads to an overall false negative rate of ~48%.  We then 
compare testing while varying fraction of the population and the frequency of testing.  We find that 
these assumptions about viral load and false negative rate lead to a requirement for high levels of both 
frequency and fraction of population tested in order to bring the apparent R0 below 1.  We conclude 
that models that do not consider the non-uniform dynamics of viral spread and false negative rate may 
come up with unrealistic testing plans that will not lead to the desired reduction in apparent R0.  
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Introduction 

As schools consider their return to normal classes, they are relying on the use of tests to combat 

COVID-19 transmission (Bergstrom, 2020). With little information about how COVID-19 will spread 

through schools, decision-makers are turning to models of viral spread to estimate the amount of 

testing and the frequency that would be required to allow a normal return to schools, as well as other 

interventions (Bradley et al., 2020; Grossman and Peck, 2020; Paltiel et al., 2020). 

Central to the efficacy of mathematical models is the choice of the parameters in those models 

that describe the spread the disease. In order to model testing, the model must make assumptions 

about how long after infection a virus is present at a level that can be detected, and once detectable, 

assumptions about how often the test is wrong. Also important are the considerations about the rate of 

transmission of disease, as high levels of transmission prior to symptom onset make it harder to control 

the outbreak (Hellewell et al., 2020).  Both detection of virus by a PCR based test and transmission of 

disease to another person are processes that should be proportional to viral load in the patient, as it is 

the presence of virus in the patient that will serve to both as the infectious agent and as the template 

for the test.  Viral load by day after symptom onset has been measured by He et al. and used to estimate 

the dynamics of viral load prior to symptom onset (He et al., 2020). They found that virus levels likely 

start rising just over two days before symptom onset, and that ~44% of transmission may occur prior to 

symptom onset (He et al.) (Figure 1).  

Assessing the efficacy of tests relies upon understanding the false negative rate of testing. False 

negative rate testing can be broken down into two basic types of false negative, one where the test fails 

to detect what would otherwise be detectable virus in a sample. Another is a false negative due to the 

latent period of the virus, where there is not yet sufficient viral titer in the sample for it to be detected 

by the test. The viral load data from He et al would suggest that prior to 2.4 days before symptom onset 



people may not have sufficient virus to be detectable by a test even if they are positive for the virus. In a 

study by Kucirka et al, the dynamics of false negative rate over time was determined by examining data 

on false negative test in patients who were eventually found to be positive (Kucirka et al.).  False 

negative rates were found to be 100% until two days prior to symptom onset and they reached a 

minimum of approximately 25% two days after symptom onset (Figure 1).   

These two studies represent two different measures that can inform assumptions about viral 

load, as the ability to transmit disease and detect infection are both likely to be proportional to viral 

load. While He et al directly measured viral load starting after symptom onset and estimated earlier data 

points, Kucirka et al. measured the likelihood of a positive test relative to symptom onset, thus 

collecting data points from presymptomatic patients. Yet notably, the data from both studies predict 

that detection and viral spread are likely to begin approximately 2 days before symptom onset.  

The ability of testing to slow the spread of disease is related to the accuracy and function of the 

test but also to how fast the disease spreads. In order to stop disease spread, each infected person 

must, on average, infect less than one other person (an effective R0 below 1). If a large amount of 

transmissibility occurs in a small window of time, it will be hard to identify the infected individuals 

before they transmit to more than one person (Hellewell et al., 2020). We hypothesize that the interplay 

between an undetectable period during incubation and a non-uniform distribution of transmissivity 

leads to different outcomes for the efficacy of tests in combating disease spread compared to simple 

estimates of a uniform chance of transmission and a uniform false negative rate. To examine this, we 

developed a stochastic agent-based model of 10,000 students, roughly the size of the University of 

Maine. We find that the period of undetectable virus leads to a high basal apparent false negative rate, 

regardless of test sensitivity. When we consider the scenario where only testing is used to combat 

spread, we find that a simple model that assumes uniform viral spread and perfect tests predicts that 

testing everyone every 14 days may be sufficient to bring the effective R0 below 1. However, a model 



using the combination of disease spread based on the viral load data from He et al. and the dynamic 

false negative rates for tests from Kucirka et al. predict that as much as 100% of the population may 

need daily testing to bring the effective R0 below 1 and stop viral spread. While lower levels of testing 

can be effective in the presence of other interventions such as masking or social distancing, we conclude 

that the dynamics of an undetectable period, viral transmission that is biased early in the disease, and 

dynamic false negative rates significantly change the predictions of an SEIR model, and these factors 

should be considered when developing models to plan for public health interventions to combat 

COVID19.  

 

Model 

We chose to build a stochastic agent-based model for two reasons: 1) it would allow us to easily 

implement nonuniform probabilities over the course of infection and 2) a stochastic model would 

capture the inherent noise in a system that is presumed to start with a small number of infected cases.  

We implemented the model in MATLAB using the indicated probabilities and if-then statements.   The 

test was performed with 10,000 individuals to represent the college student body.  The model runs daily 

for 120 days, approximating a semester. The basic structure of the model is outlined in figure 2. Because 

it is a stochastic model, we perform 100 independent runs (Figure 3), and report the median and 95th 

percentile results. The model can be found on GitHub at https://github.com/Kelley-Lab-Computational-

Biology/coronamodel.  

-Symptoms 

 For the timing of symptom onset, we used the symptom onset distribution calculated by He et 

al.  This distribution has a median onset time of 4.2 days, and 99% of cases experience symptom onset 

by 14 days (Figure 4A) (He et al., 2020).    

https://github.com/Kelley-Lab-Computational-Biology/coronamodel
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The CDC reports an overall asymptomatic rate of 40% (CDC, 2020b), but we are concerned about 

the likely asymptomatic rate among a young population.  When the aircraft carrier Theodore Roosevelt 

had an outbreak of COVID-19, they reported that as many as 350 out of 600 sailors were asymptomatic 

for an asymptomatic rate of 58% (Correll, 2020).  As the population aboard a navy ship are likely to skew 

younger and healthier than the population as a whole, we felt they may be more representative of 

college age students.  Thus, we assumed an asymptomatic rate of 50%.  People who are symptomatic 

are then assigned either mild or severe symptoms, based on CDC data that 81% of people experience 

mild symptoms, 14% severe, and 5% critical (CDC, 2020a).  We consider severe and critical together, as 

we expect both to seek medical assistance, and then be isolated from the general population.  We also 

assumed that these number represent the percentages of symptomatic people, so ultimately the model 

assigns 50% asymptomatic, 40.5% mild, and 9.5% severe (Figure 4B).  We assume that those 

experiencing severe symptoms seek medical attention at the beginning of symptom onset and are 

isolated, and initiate contact tracing.  For this paper, we assume that mild cases do not self-isolate, as 

they may not realize that their symptoms are COVID-19 related, or they may be reluctant to identify 

themselves as ill for fear of isolation and removal from their normal college activities (Pagoto, 2020).  

While this assumption will make the spread of the disease harder to contain, we did not want to make 

the model unduly optimistic about behavior.   

-Recovery 

 The CDC reports median recovery time as 14 days for mild illness (CDC, 2020a).  We assume the 

same recovery period for asymptomatic people. Because severe illness results in medical attention and 

isolation, we did not consider the extended recovery period for severe illness as it would not change 

transmission in our model.  The recovery probability distribution is modeled as a Poisson distribution 

with a mean of 14 days (Figure 4C).    



-Probability of viral spread 

 The model assumes an R0 of 2.5 (CDC, 2020b). Each individual in the model receives an R0 

normally distributed around 2.5 to allow for variability in transmissibility between people.  We took 

three different approaches to viral transmission probability. 1) We assume a uniform daily transmission 

probability equal to 2.5/14 (R0 / median time of illness) (Figure 4D).  2) We assume that daily 

transmission rate is proportional to viral load, and so we scale the R0 to the viral load data from He et al. 

(He et al.), where transmission starts 2 days prior to symptom onset (Figure 4E).   3) A daily transmission 

probability scaled to the false negative test rate reported by Kucirka et al. (Kucirka et al., 2020), under 

the assumption that the dynamics of the false negative rate are related to the viral load (Figure 4F).  For 

each of these assumptions about viral spread, people must be detected on average before they spread 

virus to one other person on average (R0 below 1).  We have indicated in Figure 4 D, E, and F with a 

shaded rectangle the time in which sick individual must be detected to keep the average number of new 

infections below 1.   

-Testing 

 Tests can be administered to the entire population, or to randomly selected subsets of the 

population daily or at varied frequencies. For the purposes of this study, we assumed tests are resolved 

on the day they are administered. We consider a few scenarios for false negative rates: 1) Perfect tests, 

where there is no chance of a false negative rate, and there is no period of undetectable infections.  2) 

Our “simple” scenario where the virus is undetectable until 2 days prior to symptom onset, after which 

tests have a uniform 5% false negative rate. 3) Dynamic false negative rates based on those measured 

by Kucirka et al (Kucirka et al.).  Like the simple scenario, there is no chance of detecting an infected 

individual prior to 2 days before symptom onset.  We do not consider the ramifications of false positive 

rate.  While the false positive rate is important due to the burden that incorrectly identified cases place 



on resources (Paltiel et al., 2020), that consideration is not within the scope of this study.  Similarly, 

delay in test results is not considered here.  Any delay will at the least decrease the apparent frequency 

with which tests are done.  Given the wide variation in reported delays of tests, we left that 

consideration out of the model, but any delay in test turn around time should work at least as poorly as 

changing the frequency of the test by that delay. 

-Contact tracing  

 For each individual in the model, we store the identity of the source of their infection, and the 

identities of people they transmit to.  If someone is identified as sick by self-isolating and seeking 

medical attention, or if they are identified by a randomly administered test, contact tracing is initiated.  

We assume a 75% chance to identify each contact of the individual.   

 

Results  

An undetectable period leads to high apparent false negative rates. 

 The viral load data from He et al. suggests that virus first starts reproducing two days prior to 

symptom onset.  Since viral RNA is the template for PCR based tests, the ability of the tests to detect the 

virus will be dependent upon the viral load, so we made the simple assumption that virus was 

undetectable prior to 2 days before symptom onset, and that it was uniformly detectable after this 

point.  The measured false negative rates reported by Kucirka et al. validate this assumption, and also 

provide daily false negative rates after viral load begins increasing.  We made a separate model using 

the Kucirka et al. measured false negative rates.  We then used the models to find out what the 

apparent overall false negative rate would be between these two assumptions when considering the 

variable time of symptom onset.  For example, while the median of symptom onset is between 4 and 5 



days, 12% of cases would have a start of symptoms at 9 days or later.  In this case, there would be at 

least 7 days during which there is insufficient virus present to detect an infection, regardless of the 

efficacy of the test.  

 We used the model to test the effect of these different assumptions on the overall false 

negative rate that would be encountered during random testing for the virus, where the people who are 

positive are randomly distributed through the progression of the disease.  Simulations were run 100 

times, and the median value of the false negative rate is reported (Figure 5).  We found that the simple 

model, which assumes uniformly perfect tests after 2 days prior to symptom onset displays an apparent 

false negative rate of 17%.  In the case of the Kucirka data, which has both the undetectable time period 

before virus replication begins and the measured daily false negative rates afterward, which reach a 

minimum of ~25% two days after symptom onset, the overall false negative rate is calculated as 48%.  It 

is worth reiterating that this is the false negative rate one would experience testing a random group of 

people, not the false negative rate expected for directed testing, such as testing someone who is 

symptomatic.  The Kucirka et al. false negative data is a compilation of both the false negative rate of 

the test, and the false negative rate due to the viral infection dynamics.   The simple model considers 

only the false negative rate from the viral dynamics and places the lower bound at 17% false negative, 

which is large but within the realm of consideration (Paltiel et al., 2020).   

An undetectable period and high early transmission levels lead to a need for higher levels of testing  

If the effective false negative rate ranges from 17% to as high as 48%, it is likely to affect the 

level of testing required to combat the spread of COVID-19.  We set out to examine the effect of testing 

on the spread of disease by calculating the effective R0 of the virus when different testing regimen are 

used, while varying the dynamics of detectability and test false negative rate.  We varied the fraction of 

the population being tested and the frequency of the test for four scenarios.  Those scenarios are: 



Scenario 1: “Perfect tests, Uniform Spread” where we assume no period of undetectability, 

no false negative rate, and a uniform chance of transmission equal to 2.5 / 14. 

Scenario 2: “Simple Undetectability, Fast Spread” where we assume that the virus is not 

detectable until 2 days prior to symptom onset, and then has a 5% false negative rate after 

that point (this 5% false negative rate is a change from the simple assumption above (Figure 

5), which assumed perfect tests).  This condition uses the He et al. viral load data to scale 

the R0 (Figures 1 and 4E), which results in ~45% of transmissivity prior to symptom onset.   

Scenario 3: “Dynamic False Negative, Slow Spread.”  This uses the day-by-day false negative 

rates reported by Kucirka et al for testing (Figure 1).  For transmissivity, we use the day-by-

day positive rates from the Kucirka et al data as a stand-in for viral load (Figure 4F). The 

shape of this profile still biases spread early in the disease, but not as early as the He et al. 

viral load data. 

Scenario 4: “Dynamic False Negative, Fast Spread.”  This scenario uses the day-by-day false 

negative rates from Kucirka et al. for testing, and the He et al. viral load data to scale 

transmissivity. 

 

These simulations are run with testing being the only intervention being used to combat viral 

spread. We report the median effective R0 as well as the 95th percentile R0 for each condition because 

testing regimens that work only half the time may not be useful when considering public health. We see 

that perfect tests can be effective while testing as little as 25% of the populace every other day (Figure 

6).  All simulations that do not assume perfect tests require a larger proportion of the population to be 

sampled under these conditions.   Scenario 2 and Scenario 3 result in remarkably similar results for 

which testing regimens are required for suppression of viral spread.  The fast viral-spread and sensitive 

tests of Scenario 2 are therefore compensated for by the slower viral spread and insensitive testing of 



Scenario 3.  With scenario 4, where the transmission occurs early in the disease and false negative rates 

are high, only testing of every individual every day was able to bring the effective R0 below 1.   Thus, 

viral transmission that is biased early in the progression of the disease and higher false negative rates 

require a more aggressive testing regimen than would be suggested by uniform assumptions.   

While these simulations suggest that testing would have be very aggressive to bring viral spread 

under control, they are not assuming any other interventions. In reality, testing is likely to be 

component of a multi-pronged approach to combating viral spread.  We decided to examine the efficacy 

of testing under a situation where other interventions had brought the viral spread down, but not below 

an apparent R0 of 1. A recent study of mask efficacy suggests that surgical or cloth mask wearing can 

reduce the risk of contracting COVID19 to 33% the risk of those not wearing masks (Chu et al.). 

Interestingly, this is similar to the percent decrease in particulates that has been described for a cloth 

mask (van der Sande et al., 2008)(average reduction in particulates to ~31% of control over a 3 hour 

experiment). We implemented a model where 70% of the population uses masks that reduce 

transmission rate by 67%.  This results in a median apparent R0 of 1.3, and a 95th percentile value of 

1.44.  We then performed the simulations using the array of testing regimens as above.  For this 

analysis, we used the Scenario 4 conditions of dynamic false negative rate (Kucirka et al.) and high early 

viral transmission dynamics (He et al.), as these will give the most conservative results for frequency and 

amount of testing.  We find that under these conditions it would now be possible to bring the effective 

R0 below 1 in 95% of cases by testing 25% of the population every day (Figure 7).  Testing every person 

would now be effective when done once a week.  

Discussion 

Available data on SARS-COV2 viral load over time and on false negative rate of tests over time both 

suggest that virus may not be detectable prior to ~2 days before symptom onset, and transmissibility of 



the virus is biased towards the beginning of disease progression. Here we have examined the effect of 

nonuniform viral transmission and nonuniform detectability of disease on the efficacy of testing as a 

means to stop viral spread. We find that the combination of the non-uniform transmission dynamics and 

false negative rate predict that tests must cover more of the population and be given more frequently 

than predicted by a model that assumes uniform distributions.  Thus, models that make simple 

assumptions about viral spread, and false negative rate or underestimate the effect of the undetectable 

period on the apparent false negative rate may recommend less testing than is necessary to stop viral 

spread.       

The parameters used for these simulations (viral load dynamics, false negative rate, efficacy of 

masks and level of compliance with masking) are not concrete, and are likely to vary between 

institutions, populations, or areas. Because we are not considering the delays in results of tests, the 

amount of delay in test turn around would effectively change the frequency of testing, while also 

making those tests have apparently higher false negative rates.  For example, a test done on day one 

that is not returned until day 3 will not be able to return positives for those people who were not 

detectable on day 1, but would be detectable if they were tested on day 3 with an instantaneous 

turnaround time for the test.    As the model parameters approach containment of viral spread, the 

prevalence of virus in the surrounding community, or other sources of introduction into the system will 

be more important to the considerations for testing amount and frequency.  As such, these results 

should not be seen as recommendations on specific testing strategies, although the results for Scenario 

4 are clearly conservative.  Similarly, these studies should not be construed as saying that tests do not 

work or that tests should not be a part of the public health strategy for combating viral spread.  Instead, 

the takeaway message is that modeling of tests should be done with consideration of the potential for 

an undetectable period, nonuniform transmission dynamics, and the potential for viral load to influence 



false negative rate, as each of these considerations alters the conclusions that a model will come to 

about the number and frequency of tests required to combat viral spread. 

 There are many reports in the news media of organizations using a negative test result as a 

prerequisite for engagement in some activity, such as returning to college or attending a summer camp. 

The Kucirka et al data on dynamic false negative rate should already give pause to these types of plans, 

but we show here that testing a population of people who may have a random distribution of 

progression through disease may have a false negative rate as high as 48%. The possibility of missing 

~1/2 of positive individuals by performing a complete testing of the population of interest should be 

considered when making these plans. This high false negative rate is specific to tests which are 

performed on a population likely to have a random distribution of viral progression. In situations where 

the tests are being given because of symptoms, or because of contact tracing, the population being 

tested would be biased towards later days in the progression of the disease, and the overall false 

positive rate would be lower than the 48% value.  However, even if one were using a test that was 100% 

sensitive and specific given a sample that contains template, it is likely that they would still experience 

the ~17% false negative rate due to the latent period of the virus before it begins replicating. Thus, plans 

to allow people to participate in activities dependent upon a negative test should be aware of the 

greater than 1 in 6 likelihood of missing an infected person in their testing.   

 In conclusion, many people are resorting to modeling of disease transmission to assist in the 

formulation of public health plans for the return to schools and economic activities.  But simple 

assumptions of uniformity of transmission and uniformity of false negative rate can give overly 

optimistic views of the efficacy of testing.  These nonuniform dynamics are complicated to implement in 

a deterministic ODE model, but easier to implement in a stochastic agent-based model.  The stochastic 

model, however, is slow compared to an ODE model.  Answering questions about tests does not, 

however, require a population to be so large as to be unmanageable with a stochastic model, as the 



trends in testing efficacy should remain the same.  Thus, we recommend that stochastic models be used 

to model efficacy of tests so that complex dynamics can be readily accounted for.  The results of 

stochastic models could then be used to parameterize deterministic models for other uses.      
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Figure Legends 

Figure 1: Viral load data and test false-negative rate data both suggest that SARS-CoV-2 is 

undetectable until ~2 days prior to symptom onset.  Shown in cyan is the viral load data by day from 

onset of symptoms from He et al. (He et al., 2020). Shown in magenta is the false-negative rate of tests 

by day from Kucirka et al. (Kucirka et al., 2020).  Viral load begins increasing ~2 days before symptom 

onset, at the same time that the false-negative rate of tests begins dropping.     

Figure 2: Diagram of the stochastic agent based model.  This is a stochastic SEIR model implemented in 

MATLAB. Each transition in state is based on if-then statements with specific probabilities described in 

figure 4. Individuals start as susceptible, and the initial population is seeded with 10 random infected 

individuals, each starting at a random point of progression through the disease, and with random 

symptoms.  Upon being infected, an individual become exposed (presymptomatic), and is assigned a day 

for symptom onset.  Detectability for testing and infectiousness both begin at 2 days prior to onset of 

symptoms.  Infectious individuals can be either asymptomatic, or symptomatic with mild or severe 

symptoms.  Those with severe symptoms will self-isolate and initiate contact tracing through seeking 

medical attention.  Asymptomatic individuals and those with mild symptoms can be isolated through 

contact tracing or through detection by a test. Infectious individuals will recover randomly with a 

median time of 14 days.   

Figure 3: Example of 100 independent simulations with the model. Shown are susceptible, infected 

(encompassing exposed, infectious, and isolated individuals), and recovered individuals in simulations 

where no interventions were implemented. Each individual simulation is represented as semi-

transparent points, while the median value of all simulations is plotted as a line.   

Figure 4: Model Parameters.  A) Probability distribution of onset of symptoms from He et al.  B) 

Breakdown of symptom groups in the model. C) Probability distribution of recovery based on a median 



time to recovery of 14 days. D) R0 of 2.5 scaled to a uniform transmission probability distribution.  The 

gray box indicates where the cumulative probability reaches 1.  Individuals must be detected prior to 

this, on average, in order to reduce the apparent R0 below 1.  E) The R0 of 2.5 scaled to the viral load 

based on He et al. The gray box is the same as above.  D) The R0 of 2.5 scaled to the positive test rate 

from Kucirka et al.  This was done because the changes in positive test rate are likely related to viral 

load, and so may be an alternative representation of transmission likelihood.  The gray box is the same 

as above.    

Figure 5: The undetectable period and temporal dynamics of the false negative rate lead to high 

apparent false negative rates.  In cyan is shown the model run with the simple assumption that infected 

individuals were undetectable before viral load begins, based on the He et al. data., and that after that 

point the tests will always detect infected individuals.  In magenta, the model uses the dynamic false 

negative rates from Kucirka et al., in which both test error and inability to detect due to low viral load 

are mixed together.  Also included is the effect of perfect tests. 

Figure 6: High asymptomatic transmission and dynamic false discovery rate lead to a requirement for 

more testing to bring the viral spread under control.  Heatmaps show the effective R0 from 100 

simulations run with the given proportion of the population tested at the indicated frequency.  The top 

row of matrices shows the median R0, while the bottom row of matrices shows the value of the upper 

95th percentile. While the scenario 1 perfect tests suggest testing the entire population every two weeks 

may work to stop spread of the virus, using scenario 4 parameters predicts that testing the entire 

population daily was necessary.  

Figure 7: In the presence of masking, fewer tests and lower frequencies of testing can be successful in 

driving R0 below 1.  Here we implemented 70% of the population using a mask that is 67% effective 

with the parameters of Scenario 4, early transmission of virus based on the He et al. viral load data, and 



dynamic false negative rates for tests based on Kucirka et al. The top row of matrices shows the median 

R0, while the bottom row of matrices shows the value of the upper 95th percentile. Masking drove the 

median R0 from 2.5 to ~1.3.  Tests were then able to drive the 95th percentile R0 below 1 with less 

aggressive testing schemes than in Figure 6. 
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