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ABSTRACT 

When we consider a probability distribution about how many COVID-19 infected people will 

transmit the disease, two points become important. First, there should be super-spreaders in 

these distributions/networks and secondly, the Pareto principle should be valid in these 

distributions/networks. When we accept that these two points are valid, the distribution of 

transmission becomes a discrete Pareto distribution, which is a kind of power law. Having 

such a transmission distribution, then we can simulate COVID-19 networks and find super-

spreaders using the centricity measurements in these networks. In this research, in the first 

we transformed a transmission distribution of statistics and epidemiology into a transmission 

network of network science and secondly we try to determine who the super-spreaders are 

by using this network and eigenvalue centrality measure. We underline that determination of 

transmission probability distribution is a very important point in the analysis of the epidemic 

and determining the precautions to be taken. 
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INTRODUCTION 

The first half of 2020 passed with the whole world dealing with the COVID-19 outbreak. First, 

many countries implemented lockdown, and then reopening came to the agenda. However, 

at the time of writing this article, there was an important increase in the number of infections 

all over the world and we would probably spend the second half of the year dealing with the 

COVID-19 issue and lockdowns again. The fact that COVID-19 is a relatively new virus also 

challenges scientists and scientific analysis have to navigate the uncharted territories [1]. 

This article attempts to establish a link between the fields of statistics, network science and 

epidemiology using an interdisciplinary approach. From a micro point of view, this 

connection, which was tried to be established, was made by converting transmission 

distribution of statistics and epidemiology into a transmission network of network science. 

From a micro point of view, the study also tries to contribute to efforts to stop the epidemic by 

identifying who the super spreaders are, and then by researching and identifying their 

various characteristics. 

In analyzing COVID-19 outbreak, most of the times, instead of focusing on a transmission 

probability distribution; R0 value as an average or median have been used and super-

spreaders are not taking into account. But the extreme values make a long tail for this 

distribution and rare infection events determine the shape of this distribution.  

It has been seen that different R0 numbers were obtained in the literature for COVID-19 and 

some authors try to emphasize that 80% of cases are infected by a group of 20%. But most 

of the times, the fact that 80% of the infection is carried out by a 20% group is often not 

considered and most of the analysis begin with a R0 reproduction number.  

Nearly all of the COVID-19 studies begin with the determination of reproduction number R0. 

For example, if a disease has an R0 of 15, a person who has the disease will transmit it to an 

average of 15 other people. This coefficient is important because also we use this number to 

see the severity of outbreak and this number is also used as an epidemic threshold 

parameter.  
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Different methods are being used to determine this number. First of all, this number can be 

calculated as: 

R0=Contact rate*Probability of infection*Infection period 

Secondly, this coefficient can be calculated using “attack rate” and attack rate is the 

percentage of the population eventually infected. 

Thirdly we can estimate R0 using formula: 

Ro = 
Life expectancy

Average age
 

And fourthly we can estimate Ro using exponential growth rate. 

“Since the R0 has a key role in measuring the transmission of diseases and is crucial in 

preventing epidemics, thus it is important to know which methods and formulas to apply to 

estimate R0 and have better performance” [2]. But we know that different methods give 

different results [3] and most of the times in scientific articles which method has been used is 

not mentioned. Besides, sometimes R0 value is given as a median; for example, it is 

expressed as, “We estimated that the median of estimated R0 is 5.7 (95% CI of 3.8–8.9)” [4] 

and this may lead us to some confusion too. 

“The emerging picture for epidemic spreading in complex networks emphasizes the role of 

topology in epidemic modeling” [5]. Disease transmission networks have the motifs of 

transmission stories. One of the most important ways to avoid contamination is to have 

information about how this transmission happens. 

The main purpose of this study is to develop a simple method that will make it easier for us to 

look at the COVID-19 issue from the network science window. And focusing on the interplay 

between network theory, statistics and epidemiology [6] In this simple method, first we 

determine a transmission probability distribution and secondly simulating this probability 

distribution we can draw a transmission graph and try to understand the process 

contamination using this graph. We should underline that determination of transmission 

probability distribution is a very important point in the analysis of the epidemic and 
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determining the precautions to be taken. Having such a graph, also we may compute many 

network measures and use this measures in our decision process. 

Our study, which started with an introduction, includes a literature review on the R0 values 

calculated for COVID-19. The following section examines the phenomenon of super-

spreaders. Then, the issues of generating the values obtained by simulating a discrete 

Pareto distribution and drawing and interpreting the transmission network are included. The 

study is completed with a discussion section. 

R0 values calculated for COVID-19 

COVID-19 transmission is strongly heterogeneous [7]. A high degree of individual-level 

variation in the transmission of COVID-19 has been expressed and consensus range of R0 

was found within the interval of 2-3 [8]. Results show that there was probably substantial 

variation in SARS-CoV-2 transmission over time after control measures were introduced. In 

the beginning of outbreak in Wuhan R0 median daily reproduction number changes from 2.35 

to 1.05 in only one week. But even in the before the travel restrictions period it was found 

that, median daily R0 changes between 1.6 and 2.6 in Wuhan [9]. In the early days of 

outbreak in Wuhan another study estimates R at 0.24 (95% CrI: 0.01–1.38) for market-to-

human transmission and 2.37 (95% CrI: 2.08–2.71) for human-to-human transmission [10]. 

And also in another paper it was stated that, “We identified four major clusters and estimated 

the reproduction number at 1.5 (95% CI: 1.4–1.6)” [11]. 

“We modelled the transmission process in the Republic of Korea and Italy with a stochastic 

model, and estimated the basic reproduction number R0 as 2.6 (95% CI: 2.3–2.9) or 3.2 

(95% CI: 2.9–3.5) in the Republic of Korea, under the assumption that the exponential 

growth starting on 31 January or 5 February 2020, and 2.6 (95% CI: 2.3–2.9) or 3.3 (95% CI: 

3.0–3.6) in Italy, under the assumption that the exponential growth starting on 5 February or 

10 February 2020, respectively.” [12]. From these lines we learn that Ro is between 2.6 -3.2 

for Republic of Korea and 2.6-3.3 for Italy. 

Transmission was modelled as a geometric random walk process, or negative binomial 

offspring distribution is used to calculate the probabilities: “Once we had estimated Rt , we 
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used a branching process with a negative binomial offspring distribution to calculate the 

probability an introduced case would cause a large outbreak” [9]. Also, “The relative odds of 

transmission among contacts of various types were estimated by use of conditional logistic 

regression” [13]. 

Another important study, in a Bayesian framework tries to use a matrix of transmission 

probabilities to estimate the transmission network and in this article transmission probabilities 

have been estimated by Monte Carlo Markov Chain procedure using Metropolis-Hastings 

algorithm [14]. 

Super-Spreaders 

We want to give three examples to show how the same virus can have different results in 

different environments. We should also add that there are no big differences in the dates of 

the events as seen from footnotes: 

“For example, the value of R on the Diamond Princess cruise ship was estimated to be 

11 even though the worldwide average is 3.28. The close confines and movement of the 

ship’s staff facilitated COVID-19 transmission. The virus was the same, but the 

environment and behavior were different, altering R of the virus.”[15] 

“Since then, epidemiologists have tracked a number of other instances of SARS-CoV-2 

super-spreading. In South Korea, around 40 people who attended a single church 

service were infected at the same time.”[16] 

“At a choir practice of 61 people in Washington state, 32 attendees contracted confirmed 

COVID-19 and 20 more came down with probable cases. In Chicago, before social 

distancing was in place, one person that attended a dinner, a funeral and then a birthday 

party was responsible for 15 new infections.” [16] 

Looking at the outbreaks in history, it can be seen that the phenomenon of super-spreaders 

is not new. “We examine the distribution of fatalities from major pandemics in history 

(spanning about 2,500 years), and build a statistical picture of their tail properties. Using 

tools from Extreme Value Theory (EVT), we show for that the distribution of the victims of 

infectious diseases is extremely fat-tailed” [17]. Susceptible hosts within a population had not 
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equal chances of becoming infected. Although “it is still unclear why certain individuals infect 

disproportionately large numbers of secondary contacts” [18]. If we have extreme 

transmitters, then “the practice of relying on an average R0 in dynamic disease models can 

obscure considerable individual variation in infectiousness”[19].  

Heterogeneities in the transmission of infectious agents are known since the end of 1990’s 

[20]. We can define the phenomenon of super-spreaders in the framework of network 

science as follows: “The super-spreaders are the nodes in a network that can maximize their 

impacts on other nodes, as in the case of information spreading or virus propagation” [21]. 

This definition reminds us the outlier concept of statistics, But super-spreaders are not 

outliers that can be discarded from analysis, “In this framework, super-spreading events 

(SSEs) are not exceptional events, but important realizations from the right-hand tail of a 

distribution” [22]. 

Another definition starts with establishing the relationship between heterogeneity and super-

spreaders: “Heterogeneity in Rt between cases appears to be particularly important for SARS 

because of the occurrence of “super-spread events (SSEs)”—rare events where, in a 

particular setting, an individual may generate many more than the average number of 

secondary cases” [23]. 

One of the most important features of COVID-19 in contamination in society is the Pareto 

principle created by super-spreaders. Super-spreaders transmit the disease to a large 

number of people in an outlier-like manner, resulting in few people transmitting the disease to 

a large number of people, and as a result we have a transmission distribution as a power-law 

distribution. 

Researchers are beginning to come to a consensus that coronavirus transmission more or 

less follows the 80/20 Pareto Principle [24] and estimated that 20% of cases were 

responsible for 80% of local transmission [25]. When we examine the researches, we can 

see that some results have slightly different results than the Pareto Principle such as, 

“indicated high levels of transmission heterogeneity in SARS-CoV-2 spread, with between 1-

10% of infected individuals resulting in 80% of secondary infections” [26] and “Model 
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suggested a high degree of individual-level variation in the transmission of COVID-

19…suggesting that 80% of secondary transmissions may have been caused by a small 

fraction of infectious individuals (~10%)” [8] 

METHODS 

In the outbreak, the number of patients’ variable, in other words, the number of transmissions 

changes only at the discrete points of time. This means that the number of transmissions in 

outbreaks is discrete variables. The number of COVID 19 patients varies in many situations; 

how many new people are infected with the disease, how many patients have recovered and 

how many of them are likely to be infected or infectious again. If we were able to predict the 

transmission processes, there would be a deterministic approach in creating a transmission 

network however its impossibility is clear. Therefore, this is a stochastic process, as the 

number of transmission and from whom it is transmitted cannot be fully estimated or 

determined. Probability distributions are used in stochastic simulation models. In the 

simulation model, the number of transmissions, which is an discrete event, varies in the 

number of patients depending on time [ between 't' time point and 't + 1' time point (s 't' and 't 

+ 1 may be, 7 days or 14 days period)] which is a change or increase is a discrete value and 

this change or increase is a discrete value. However, since there is no definite vaccination or 

herd immunity, person-to-person transmission remains a dynamic process. 

In simulation models, the distribution is determined by collecting information and data about 

the subject studied. In the light of these data, the model is established by determining the 

probability distributions of probabilistic (stochastic) processes. In this study, as a result of 

literature search, the principle that COVID-19 transmission is related to Pareto distribution 

and power-law has been adopted and we decided the distribution to be produced in the 

drawing of the random transmission network, as the discrete Pareto distribution. By 

simulating the Pareto distribution, disease transmission data from one patient to others was 

randomly derived. The network drawn with the derived data is created according to the 

Power-low distribution. Power-low is independent of scale. The concept of independence 

from the scale indicates that the ratio and probability in small numbers such as 10, 40 are 
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equal to the ratio and probability in large numbers such as 1000, 40000. In such networks, 

few nodes have many connections, and many nodes have few connections the “rich get 

richer” rule (preferential attachment,) remains valid in connection [27]. The same similar logic 

has been applied in the determination of super-spreaders in drawing the COVID-19 network. 

Thus, the study is based on the principles that some people infect more people(super-

spreaders) and some infect less or not (isolate). 

RESULTS 

Simulating Discrete Pareto Distribution (Zipf Distribution) 

Zipf, Pareto and power law “terms are used to describe phenomena where large events are 

rare, but small ones quite common. For example, there are few large earthquakes but many 

small ones. There are a few mega-cities, but many small towns. There are few words, such 

as 'and' and 'the' that occur very frequently, but many which occur rarely” [28]. Economists 

know that Wilfried Fritz Pareto observed that 20% of Italians held 80% of the country’s wealth 

in the 19th century. Pareto principle also known as the 80/20 rule. 

If we give an example of one of the studies on the transmission distribution as power-law, 

“The empirical data are highly consistent with the hypothesis that the number of reported 

cases are taken from a truncated power-law distribution of the form P(n) ∼ n−µ, 1 ≤ n ≤ nmax “ 

[29]  

Using the code in an R source [30], we can simulate a discrete Pareto distribution and draw 

its histogram as in Figure 1. 

> library(degreenet) 

> a=simdp(n=1000,v=2.5, maxdeg=40) 

> head(a,100) 

   [1]    1  1  3  2  1  1  1  1  2  1  1  2  2  1  1  1  1  1  1  4  2  2  1  2  1 

   [26]  1  1  2  1  2 11  1  2  1  1  1  3  1  3  3  1  1  1  1  1  1  1  2  1  1 

   [51]  1  1  1  1  1  1  1  1  1  1  1  9  1  4 11  1  1  2  1  1  1  1  1  1  1 

   [76]  1  1  2  1  1  1  1  1  1  2  1  1  1  2  1  1  1  1  2  1  3  1  8  1  4 

> hist(a,breaks=50) 
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Figure 1. Histogram of a simulated discrete Pareto distribution 

Drawing COVID-19 Transmission Graphs 

Contact networks and disease transmission networks are different from each other. 

However, although data on this subject is obtained through filiation studies or contact trace 

apps, it is not easy to convert these data into social network-like networks due to some 

uncertainties and bureaucratic problems. In this case, how to determine a synthetic COVID-

19 transmission network question becomes important.  

The number of incoming connections in a "contact" network does not have to be one. For 

example, in Figure 2, people B and D were placed closer than 1.5 meters from C, but the 

people which transmitted disease to C, was B, as seen in Figure 2. Briefly, nodes in contact 

networks can have multiple incoming and outgoing connections. 

> library(igraph) 

> el <- cbind( c("A","B","D","E","E","E","A","D"), 

+          c("B","C", "A","F","G","H","E","C")) 

> g <- graph.edgelist(el, directed=TRUE) 

> plot(g) 
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Figure 2. A contact graph 

Eventually, "contact" networks become "contamination" networks. All these graphs, come 

from "contact" networks. The graph in the Figure 2 is a "transmission" graph, and as can be 

seen, the number of incoming connections are one for all these 5 nodes.  In contrast, the 

number of outgoing connections can be an integer greater than one. For example, in the 

Figure 3, E is infected by A and F, G and H are infected by E. Similarly, A is infected by D, 

and B and E are infected by A. These can be referred to as "transmission" graphs. 

> library(igraph) 

> el <- cbind( c("A","B","C","D","E","E","E","A"), 

+                     c("B","C", "D", "A","F","G","H","E")) 

> g <- graph.edgelist(el, directed=TRUE) 

> plot(g) 
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Figure 3. A transmission graph 

It is also possible to find all the paths from any node to other nodes using these graphs. For 

example, according to the line above, there is a single ABC-shaped path leading to C in A. 

Similarly, from A to F can also be reached via the AEF pathway, and the number of jumps in 

both the ABC pathway and the AEF pathway is two. 

> library(igraph) 

> el <- cbind( c("A","B","C","D","E","E","E","A"), 

+ c("B","C", "D", "A","F","G","H","E")) 

> g <- graph.edgelist(el, directed=TRUE) 

> all_simple_paths(g,"A",c("C","F")) 

[[1]] 

+ 3/8 vertices, named, from 307e42f: 

[1] A B C 

[[2]] 

+ 3/8 vertices, named, from 307e42f: 

[1] A E F 

Different personal contact network structures can reduce R, which represents how many 

individuals are infected by each carrier. “By introducing a social network approach, we 

propose that a decrease in R can simultaneously be achieved by managing the network 
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structure of interpersonal contact” [31] . If we move from this point, we can think about 

different network structures that will reduce infectiousness in epidemics, considering that we 

may encounter different outbreaks in the future. 

As it can be seen in Figure 4, “From a social network perspective, the shape of the infection 

curve is closely related to the concept of network distance (or path lengths), which indicates 

the number of network steps needed to connect two nodes” [31,32]  

 

Figure 4. Two example networks. a–c with the same number of nodes and ties [31] 

In Figure 4, two example networks. a–c, have the same number of nodes (individuals) and 

ties (social interactions) but different structures (shorter path lengths in a and longer path 

lengths in c), which imply different infection curves (b and d, respectively). Bold ties highlight 

the shortest infection path from the infection source to the last infected individual in the 

respective networks. Network node colour indicates at which step a node is infected and 

maps onto the colours of the histogram bars [31] 

In order to obtain such a network, first we need to have a probability distribution regarding 

the number of people a person can infect the disease. When we have such a transmission 

probability distribution about the probabilities that a person can transmit the disease to how 

many people, we can draw a social network-like COVID-19 transmission graph by generating 

random variables about how many people can transmit the disease at each stage. 
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> library(igraph) 

> g=graph(edges=c(1,2,1,3,1,4,2,5,2,6,2,7,2,8, 

+ 3,9,3,10,3,11,4,12,12,13,12,14,12,15,12,16,10,17,10,18, 

+ 9,19,9,20,9,21,5,22,6,23,6,24,6,25,7,26,8,27,8,28, 

+ 11,29,11,30,11,31,11,32,11,33,11,34), n=34, directed=T) 

> plot(g) 

Figure 5 and 6 display us a COVID-19 transmission graph using simulated discrete Pareto 

distribution values. And in Figure 6 we can see the first and second stages of this graphs. In 

the third stage shape of the graph transforms into Figure 5. 

 

Figure 5. COVID-19 transmission graph using simulated discrete Pareto distribution 

values 
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Figure 6. The first (on the left) and second stages (on the right) of COVID-19 

transmission graphs 

In figure 7, network structure of COVID-19 infections in India until March 13, 2020, reveals 

that most transmission has occurred from individuals with recent travel history abroad (node 

0) [33]. 

 

Figure 7: Network structure of COVID-19 infections in India until March 13, 2020 [33] 

It is really interesting that similarities between our Figure 5 and Figure 7 of COVID-19 

infections in India until March 13. Besides, Figure 7 of India has been drawn using real data. 

We know that, “Typically the network structure is inferred from indirect, incomplete, and often 

biased observations. Specification of an adjacency matrix is even more difficult when the 
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underlying network is dynamic” and another centrality measure named expected force has 

been offered for additional advantages over existing spreading power and centrality 

measures [34]. But in our study we will use eigenvalue centrality measure to determine which 

nodes are super-spreaders. And as a result we have found that Node 3 is a super-spreader, 

as seen in figure 5. 

> eigen_centrality(g) 

$vector 

 [1] 0.52856114 0.47925178 0.80872093 0.23798419 0.18863564 0.25935484 

 [7] 0.18863564 0.21841342 0.43765240 0.36856516 1.00000000 0.15849962 

[13] 0.05490112 0.05490112 0.05490112 0.05490112 0.12766364 0.12766364 

[19] 0.15159409 0.15159409 0.15159409 0.06533964 0.08983536 0.08983536 

[25] 0.08983536 0.06533964 0.07565407 0.07565407 0.34638012 0.34638012 

[31] 0.34638012 0.34638012 0.34638012 0.34638012 

DISCUSSION 

This study, which is conducted within the framework of interdisciplinary approach, focuses 

mainly on two purposes. In the first of these purposes transforming a transmission 

distribution of statistics and epidemiology into a transmission network of network science is 

aimed; In the second one, we try to determine who the super-spreaders are by using this 

network. 

It is not appropriate to express the transmission distribution of this disease with an average 

R0 because this distribution is a power law descending from left to right. But at the beginning 

of the COVID-19 outbreak, this mistake has been made in the analysis. Besides, we know 

that different methods for R0 give different results and most of the times in scientific articles 

which method has been used is not mentioned. 

And the second mistake is not to consider the importance of super-spreaders in this 

distribution. Looking at the outbreaks in history, it can be seen that the phenomenon of 

super-spreaders is not new and spanning about 2,500 years and the distribution of the 

victims of infectious diseases is extremely fat-tailed. Most of the times, the fact that 80% of 
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the infection is carried out by a 20% group is often not considered and most of the analysis 

begin with a R0 reproduction number. In fact, we should add that there is a connection 

between these two errors and that this is a single error. The super-spreaders are the nodes 

in a network that can maximize their impacts on other nodes, in the case of virus 

transmission n. Although it is still unclear why certain individuals infect disproportionately 

large numbers of secondary contacts, the fact that 80% of the infection is carried out by a 

20% group is important. But maybe it is necessary to add that some research tells us that 

80% of secondary transmissions may have been caused by a small fraction of infectious 

individuals (~10%). 

COVID-19 transmission is strongly heterogeneous, while a high degree of individual-level 

variation in the transmission of COVID-19 has been expressed and consensus range of R0 

was found within the interval of 2-3. On the other hand, in Wuhan, R0 median daily 

reproduction number changes from 2.35 to 1.05 in only one week. From the results of 

another research we learn that R0 is between 2.6 -3.2 for Republic of Korea and 2.6-3.3 for 

Italy and also these results falsify the above mentioned so called consensus. 

We have to underline that point, determination of transmission probability distribution is a 

very important point in the analysis of the epidemic and determining the precautions to be 

taken. We know that in such a case network structure is inferred from indirect, incomplete, 

and often biased observations. As the main difficulty in establishing such a link is the lack of 

data and information due to the very recent COVID-19 that’s why required data are 

generated by simulation. After transforming a transmission distribution into a transmission 

network and having such a graph, also we may compute many network measures and use 

this measures in our decision process. 

Disease transmission networks have the motifs of transmission stories. One of the most 

important ways to avoid contamination is to have information about how this transmission 

happens. From a social network perspective, the shape of the infection curve is closely 

related to the concept of network distance (or path lengths), which indicates the number of 

network steps needed to connect two nodes. 
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Contact networks and disease transmission networks are different from each other. Incoming 

and outcoming edges can be any number in a contact network but in a transmission network 

the number of incoming edge always must be one and outcoming edge can be any number 

like contact networks. 

In our study, we have used eigenvalue centrality measure to determine which nodes are 

super-spreaders. In fact, the issue does not end at this point and is just beginning, because 

only if the biological, social and genetic features of the determined super-spreaders can be 

determined, only then can these people be prevented from accelerating the outbreak. 
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