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Abstract: A long-standing question in infectious disease dynamics is the role of transmission 

heterogeneities, particularly those driven by demography, behavior and interventions. We 

characterize SARS-CoV-2 transmission heterogeneities based on detailed patient and contact 

tracing data in Hunan, China. We find 80% of secondary infections traced back to 15% of SARS-

CoV-2 primary infections, indicating substantial transmission heterogeneities. Transmission risk 

scales positively with the duration of exposure and the closeness of social interactions and is 

modulated by demographic and clinical factors. The lockdown period increases transmission risk 
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in the family and households, while isolation and quarantine reduce risks across all types of 

contacts. The reconstructed infectiousness profile of a typical SARS-CoV-2 patient peaks just 

before symptom presentation. Modeling results indicate SARS-CoV-2 control requires the 

synergistic efforts of case isolation, contact quarantine, and population-level interventions, owing 

to the particular transmission kinetics of this virus. 

 

Main Text: While it has been well documented that the clinical severity of COVID-19 increases 

with age (1–5), information is limited on how transmission risk varies with demographic factors, 

clinical presentation, and contact type (6–12). Individual-based interventions such as case 

isolation, contact tracing and quarantine have been shown to accelerate case detection and interrupt 

transmission chains (13). However, these interventions are typically implemented in conjunction 

with population-level physical distancing measures, and their effect on contact patterns and 

transmission risk remains difficult to separate (14–24). A better understanding of the factors 

driving SARS-CoV-2 transmission is key to achieve epidemic control while minimizing societal 

cost, particularly as countries relax physical distancing measures.  

    Hunan, a province in China adjacent to Hubei where the COVID-19 pandemic began, 

experienced sustained SARS-CoV-2 transmission in late January and early February 2020, 

followed by a quick suppression of the outbreak by March 2020. As in many other provinces in 

China, epidemic control was achieved by layering interventions targeting SARS-CoV-2 cases and 

their contacts with population-level physical distancing measures. In this study, we reconstruct 

transmission chains among all identified SARS-CoV-2 infections in Hunan, as of April 3, 2020, 

based on granular epidemiological information collected through extensive surveillance and 

contact tracing efforts. We identify the demographic, clinical and behavioral factors that drive 

transmission heterogeneities and evaluate how interventions modulate the topology of the 

transmission network. Further, we reconstruct the infectiousness profile of SARS-CoV-2 over the 

course of a typical infection and estimate the feasibility of epidemic control by individual and 

population-based interventions.  

    We analyze detailed epidemiological records for 1,178 SARS-CoV-2 infected individuals and 

their 15,648 close contacts, representing 19,227 separate exposure events, compiled by the Hunan 

Provincial Center for Disease Control and Prevention. Cases were identified between January 16 
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and April 3, 2020; primary cases were captured by passive surveillance, contact tracing or travel 

screening and were laboratory confirmed by RT-PCR. Individuals who were close contacts of the 

primary cases were followed for at least 2 weeks after the last exposure to the infected individual. 

Prior to February 7, 2020, contacts were tested if they developed symptoms during the quarantine 

period. After February 7, 2020, RT-PCR testing was required for all contacts, and specimens were 

collected at least once from each contact during quarantine, regardless of symptoms. Upon positive 

RT-PCR test results, infected individuals were isolated in dedicated hospitals, regardless of their 

clinical severity, while their contacts were quarantined in medical observation facilities. The case 

ascertainment process is visualized in Fig S1. 

The dataset includes 210 epidemiological clusters representing 831 cases, with additional 347 

sporadic cases (29%) unlinked to any cluster (see Supplementary Materials & Methods for more 

details).  For each cluster, we stochastically reconstruct transmission chains and estimate the 

timing of infection most compatible with each patient’s exposure history. We analyze an ensemble 

of 100 reconstructed transmission chains to account for uncertainties in exposure histories (Fig. 1 

visualizes one realization of the transmission chains, while Fig S2A illustrates variability in the 

topology of the aggregation of 100 realizations transmission chains). 

We observe between 0 and 4 generations of transmission, with the largest cluster involving 20 

SARS-CoV-2-infected individuals. The number of secondary infections ranges from 0 to 10, with 

a distribution of secondary infections best characterized by a negative binomial distribution with 

mean µ = 0.40 (95% CI, 0.35 to 0.47) and variance µ(1 + µ/k) = 0.96 (95% CI, 0.74 to 1.26), 

where 𝑘 = 0.30 (95% CI, 0.23 to 0.39) is the dispersion parameter (Fig. 1). We find that 80% of 

secondary infections can be traced back to 15% of SARS-CoV-2 infected individuals, indicating 

substantial transmission heterogeneities at the individual-level. We can also assess geographic 

diffusion within Hunan province and find that the great majority of transmission events occur 

within the same prefecture (94.3%, 95%CI, 93.7% to 95.0%), with occasional spread between 

prefectures (5.7%, 95%CI, 5.0% to 6.3%).  

Characterizing SARS-CoV-2 transmission heterogeneities at the individual level.   

To dissect the individual transmission heterogeneities and identify predictors of transmission, we 

analyze the infection risk among a subset of 14,622 individuals who were close contacts of 870 

SARS-CoV-2 patients. This dataset excludes primary cases whose infected contacts report a travel 
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history to Wuhan. The dataset represents 74% of all SARS-CoV-2 cases recorded in the Hunan 

patient database.  Contacts of these 870 patients have been carefully monitored, so that 17,750 

independent exposure events have been captured.  

We start by characterizing variation in transmission risk across the diverse set of 17,750 

exposures. We study how the per-contact transmission risk varies with the type of exposures, 

exposure duration, exposure timing, and physical distancing intervention, after adjusting for 

demographic, clinical, and travel-related factors.  Exposures are grouped into 5 categories based 

on contact type, namely: household, extended family, social, community, and healthcare (Table 

S2), with the duration of exposure approximated by the time interval between the initial and final 

dates of exposure. To gauge the impact of physical distancing on transmission risks, we further 

stratify exposures by the date of occurrence, with January 25, 2020 marking the beginning of 

lockdown in Hunan (based on Baidu Qianxi mobility index (25), Fig. S3A insert). To address 

putative variation in infectiousness over the course of infection, we distinguish whether exposures 

overlap with the date of symptom onset of a primary case, a period associated with high viral 

shedding.  We use a mixed effects multiple logistic regression model (GLMM-logit) to quantify 

the effects of these factors on the per-contact risk of transmission (see Table S3 for a detailed 

definition of all risk factors and summary statistics). 

Based on the point estimates of the regression (see Fig. S3A for regression results), we find that 

household contacts pose the highest risk of transmission, followed by extended family, social and 

community contacts, in agreement with a prior study (12). Healthcare contacts have the lowest 

risk, suggesting that adequate protective measures were adopted by patients and healthcare staff 

in Hunan. Interestingly, the impact of physical distancing differs by contact type (Table 1): the 

risk of transmission in the household increases during the lockdown period, likely due to increased 

contact frequency at home as a result of physical confinement. In contrast, the transmission risk 

decreases for community and social contacts during lockdown, possibly due to adoption of prudent 

behaviors such as mask wearing, hand washing and coughing/sneezing etiquette. We find that 

longer exposures are riskier, with one additional day of exposure increasing the transmission risk 

by 10% (95% CI, 5% to 15%). Further, transmission risk is higher around the time of symptom 

presentation of the primary case (Table 1). In addition, susceptibility to infection (defined as the 

risk of infection given a contact with primary case) by age: children aged 0-12 years are 

significantly less susceptible  than individuals 26-64 years (odds ratio 0.41, 95% CI 0.26 to 0.63); 
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while patients older than 65 years are significantly more susceptible (odds ratio 1.39, 95% CI 1.02 

to 1.91). In contrast, we find no statistical support for age difference in infectivity (Fig. S3A). 

These results are in agreement with previous findings (12, 26, 27). 

For each of the 17,750 contact exposure events, we estimate the probability of transmission 

using the point estimate of the baseline odds and the odds ratios from the GLMM-logit regression 

(Fig. S3A). In Fig. 2A, we plot the distribution of transmission probabilities for household, 

extended family, social, and community contacts separately. The average per-contact transmission 

probability is highest for household contacts (7.2%, 95% CI, 1.2% to 19.6%), followed by family 

(1.7% , 95% CI, 0.4% to 5.6%) and social contacts  (0.9%, 95% CI, 0.2% to 2.7%); while the risk 

is lowest for community contacts (0.4%, 95% CI, 0.1% to 1.1%). These transmission probabilities 

reflect the joint effect of duration of exposure (Fig. 2B), superimposed on differences in 

transmission risk by type of contact (Fig. S3A). While confidence intervals on risk estimates are 

broad, there is statistical support for separating out contacts in 5 categories and including a time 

covariate to capture the effect of the lockdown, rather than collapsing the contact data into fewer 

categories (Table S4). In contrast, there is no statistical support for a more complex model that 

considers a different effect of contact duration by type of contact (Table S4). It is worth noting that 

the per-contact transmission probabilities were estimated in a situation of intense interventions and 

high population awareness of the disease, and thus, they may be not generalizable elsewhere.  

The number of contacts is also a key driver of individual transmission potential and varies by 

contact type. Fig. 2C presents the contact degree distribution, defined as the number of unique 

contacts per individual. We find that the distributions of individual contact degree are over-

dispersed with dispersion parameter 0 < 𝑘 < 1 across all contact types. Furthermore, household 

(𝑘 = 0.72) and extended family (𝑘 = 0.64) contacts are less dispersed than social (𝑘 = 0.19) and 

community (𝑘 = 0.14) contacts, suggesting that contact heterogeneities are inversely correlated 

with the closeness of social interactions. Fig. 2D visualizes the age-specific contact patterns 

between the primary cases and their contacts, demonstrating diverse mixing patterns across 

different types of contact. Specifically, household contacts present the canonical “three-bands” 

pattern where the diagonal illustrates age-assortative interactions and the two off-diagonals 

represent inter-generational mixing (28, 29). Other contact types display more diffusive mixing 

patterns by age. We also see that among all primary cases, young and middle-aged adults have the 

most social contacts (Fig 2E). 
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Next, we summarize the overall transmission potential of an individual by calculating the 

cumulative contact rate (CCR) of all primary cases. The CCR captures how contact opportunities 

vary with demography, temporal variation in the infectiousness profile, an individual’s contact 

degree, and interventions. (See Section 4.3 in Materials and Methods for detailed definition). After 

adjusting for age, sex, clinical presentation, and travel history to Wuhan, we find that physical 

distancing measures increase CCRs for household and extended family contacts and decrease 

(although not statistically significant) CCRs for social and community contacts (Fig. 2E). In 

contrast, faster case isolation universally reduces CCRs, decreasing transmission opportunities 

across all contact types (Fig. 2E). 

Characterizing the natural history of SARS-CoV-2 infection by strength of interventions.  

We have characterized SARS-CoV-2 transmission risk factors and have shown that individual and 

population-based interventions have a differential impact on contact patterns and transmission 

potential. Next, we use our probabilistic reconstruction of infector-infectee pairs to further dissect 

transmission kinetics and project the impact of interventions on SARS-CoV-2 dynamics. Based 

on the reconstructed transmission chains, we estimate a median serial interval of 5.3 days, with an 

inter-quartile range (IQR) of 2.7 to 8.3 days, which represents the time interval between symptom 

onset of an infector and his/her infectee (Fig. S7B, D). The median generation interval, defined as 

the interval between the infection times of an infector and his/her infectee, is 5.3 days, with an 

IQR of 3.1 to 8.7 days (Fig. S7A, C). We estimate that 63.4% (95% CI, 60.2% to 67.2%) of all 

transmission events occur before symptom onset, which is comparable with findings from other 

studies (6–8, 10–13, 19, 30, 31). However, these estimates are impacted by the intensity of 

interventions; in Hunan, isolation and quarantine were in place throughout the epidemic. 

    Case isolation and contact quarantine are meant to prevent potentially infectious individuals 

from contacting susceptible individuals, effectively shortening the infectious period. As a result, 

we would expect right censoring of the generation and serial interval distributions (32). 

Symptomatic cases represent 86.5% of all SARS-CoV-2 infections in our data; among these 

patients, we observe longer generation intervals for cases isolated later in the course of their 

infection (Fig. 3A). The median generation interval increases from 4.0 days (IQR, 1.9 to 7.3 days) 

for cases isolated 2 day since symptom onset, to 7.0 days (IQR, 3.6 to 11.3 days) for those isolated 

more than 6 days after symptom onset (p<0.001, Mann-Whitney U test). We observe similar trends 
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for the serial interval distribution (Fig. 3B). The median serial interval increases from 1.7 days 

(IQR, -1.6 to 4.8 days) for cases isolated less than 2 day after symptom onset, to 7.3 days (IQR, 

3.4 to10.8 days) for those isolated more than 6 days after symptom onset (p<0.001, Mann-Whitney 

U test). 

    Faster case isolation restricts transmission to the earlier stages of infection, thus inflating the 

contribution of pre-symptomatic transmission (Fig. 3C).  The proportion of pre-symptomatic 

transmission is estimated at 87.3% (95% CI, 79.8% to 93.4%) if cases are isolated within 2 day of 

symptom onset, while this proportion decreases to 47.5% (95% CI, 41.4% to 53.3%) if cases are 

isolated more than 6 days after symptom onset (p<0.001, Mann-Whitney U test). 

Next, we adjust for censoring due to case isolation and reconstruct the infectiousness profile of 

a typical SARS-CoV-2 patient in the absence of interventions. To do so, we characterize changes 

in the timeliness of case isolation over time in Hunan. Fig. S8 shows the distributions of time from 

symptom onset to isolation during three different phases of epidemic control, coinciding with 

major changes in COVID-19 case definition  (Phase I: before Jan. 27th; Phase II: Jan. 27th – Feb. 

4th; Phase III: after Feb. 4th, Fig. S3) (33). In Phase I, 78% of cases were detected through passive 

surveillance; as a result, most cases were isolated after symptom onset (median time from onset to 

isolation 5.4 days, IQR (2.7, 8.2) days, Fig. S8A). In contrast, in Phase III, 66% of cases were 

detected through active contact tracing, shortening the median time from onset to isolation to -0.1 

days (IQR (-2.9, 1.8) days, Fig. S8C). Timeliness of isolation is intermediate in Phase II. We use 

mathematical models (detailed in Materials and Methods) to dynamically adjust the serial interval 

distribution for censoring, and we apply the same approach to the time interval between a primary 

case’s symptom onset and onward transmission (Fig. S10). These censoring-adjusted distributions 

can be rescaled by the basic reproduction number 𝑅! to reflect the risk of transmission of a typical 

SARS-CoV-2 case since the time of infection or since symptom onset (Fig 3D-E). We find that in 

the absence of interventions, infectiousness peaks near the time of symptoms onset (Fig. S10D). 

This is consistent with our regression analysis, where the higher risk of transmission is near 

symptom onset (Table 1). 

Evaluating the impact of individual and population-based interventions on SARS-CoV-2 

transmission. 
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Next, we use the estimated infectiousness profile of a typical SARS-CoV-2 infection (Fig. 3D-E) 

to evaluate the impact of case isolation on transmission. We first set a baseline reproduction 

number R0 for SARS-CoV-2 in the absence of control. Results from a recent study (33) suggest 

that the initial growth rate in Wuhan was 0.15 day-1 in raw case data (95% CI, 0.14 to 0.17), 

although the growth rate could be substantially lower (0.08 day-1) if changes in case definition are 

considered. Conservatively, we consider the upper value of the growth rate at 0.15 day-1 together 

with our generation interval distribution adjusted for censoring (Fig. S10C), to estimate R0. We 

obtain a baseline reproduction number 𝑅! = 2.19  (95% CI, 2.08 to 2.36), using the renewal 

equation framework (34). This represents a typical scenario of unmitigated SARS-CoV-2 

transmissibility in an urban setting. The reconstructed infectiousness profile in the absence of 

control is shown in solid red lines in Fig. 3D-E, with respect to time of infection and symptom 

onset respectively. Notably, we find that SARS-CoV-2 infectiousness peaks slightly before 

symptom onset (-0.1 days on average), with 87% of the overall infectiousness concentrated within 

±5 days of symptom onset and 53% of the overall infectiousness in the pre-symptomatic phase 

(Fig. 3E).  

    Next, we evaluate the impact of case isolation on transmission by considering three different 

intervention scenarios mimicking the timeliness of isolation in the three phases of the Hunan 

epidemic control. We further assume that 100% of infections are detected and isolated and that 

isolation is fully protective (i.e., there is no onward transmission after the patient has been 

isolated/quarantined). The infectiousness profiles of the three intervention scenarios are shown in 

dashed lines in Fig. 3D-E. We find that the basic reproduction number decreases in all intervention 

scenarios, but the projected decrease is not sufficient to interrupt transmission (Fig. 3D, 𝑅!" = 1.75 

for Phase I, 𝑅!" = 1.46  for Phase II, and 𝑅!" = 1.01 for Phase III).  

We further relax the assumption of 100% case detection and isolation and relate changes in the 

basic reproduction number to two independent parameters measuring the strength of interventions: 

the effectiveness of case isolation and contact quarantine (measured as the fraction of total 

infections isolated) and the timeliness of isolation (measured as the delay from symptom onset to 

isolation, phase diagram in Fig. 3F). Dashed lines in Fig. 3F illustrate 30%, 40% and 50% of 

reduction in 𝑅!. To reduce 𝑅! by half (the minimum amount of transmission reduction required to 

achieve control for a baseline 𝑅!~2), 100% of infections would need to be isolated even if 
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individuals are isolated as early as the day of symptom onset. In practice, epidemic control is 

unrealistic if case isolation and quarantine of close contacts are the only measures in place.   

Our data support that case isolation and quarantine of close contacts are effective in reducing 

SARS-CoV-2 transmission, especially if these interventions occur early in the infection. To 

achieve epidemic control, however, these interventions need to be layered with additional 

population-level measures, including increased teleworking, reduced operation in the service 

industry, or broader adoption of face masks. The synergistic effects of these interventions are 

illustrated in Fig. 3G. We find that a 30% reduction in transmission from population-level 

measures would require a 70% case detection rate to achieve epidemic control, assuming that cases 

can be promptly isolated on average upon symptom presentation. Of note, a 30% reduction in 

transmission could also encompass the benefits of residual population-level immunity from the 

first wave of COVID-19, especially in hard-hit regions (35, 36). As a sensitivity analysis, we 

further consider a more optimistic scenario with a lower baseline 𝑅! = 1.56, corresponding to an 

epidemic growth rate of 0.08 day-1 (95% CI, 0.06 to 0.10) in Wuhan (33), which is adjusted for 

reporting changes. As expected, control is much easier to achieve in this scenario: if detected 

SARS-CoV-2 infections are effectively isolated on average 2 days after symptom onset, a 25% 

population-level reduction in transmission coupled with a 42% infection isolation rate is sufficient 

to achieve control (Fig. 3H). 

Discussion 

Detailed information on 1,178 SARS-CoV-2 infected individuals along with their 15,648 

contacts has allowed us to dissect the behavioral and clinical drivers of SARS-CoV-2 transmission; 

to evaluate how transmission opportunities are modulated by individual and population-level 

interventions, and to characterize the typical infectiousness profile of a case. Informed by this 

understanding, particularly the importance of pre-symptomatic transmission, we have evaluated 

the plausibility of SARS-CoV-2 control through individual and population-based interventions. 

Healthcare contacts pose the lowest risk of transmission in Hunan, suggesting that adequate 

protective measures against SARS-CoV-2 were taken in hospitals and medical observation centers 

(Table 1). The average risk of transmission scales positively with the closeness of social 

interactions: the average per-contact risk is lowest for community exposures (including contacts 

in the public transportation system and at food and entertainment venues), intermediate for social 
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and extended family contacts, and highest in the household. The average transmission risk in the 

household is further elevated when intense physical distancing is enforced, and for contacts that 

last longer. These lines of evidence support that SARS-CoV-2 transmission is facilitated by close 

proximity, confined environment, and high frequency of contacts.  

Regression analysis indicates a higher risk of transmission when an individual is exposed to a 

SARS-CoV-2 patient around the time of symptom onset, in line with our reconstructed 

infectiousness profile. These epidemiological findings are in agreement with viral shedding studies 

(6, 37–40). We estimate that overall in Hunan, 63% of all transmission events were from pre-

symptomatic individuals, in concordance with other modeling studies (6, 7, 10, 12, 41). However, 

the estimated pre-symptomatic proportion is affected by case-based measures, including case 

isolation and contact quarantine. We estimate that the relative contribution of pre-symptomatic 

transmission drops to 52% in an uncontrolled scenario where case-based interventions are absent. 

Case isolation reduces the “effective” infectious period of SARS-CoV-2 infected individuals by 

blocking contacts with susceptible individuals. We observe that faster isolation significantly 

reduces cumulative contact rates (CCRs) across contact types (Fig. 2E).  We also observe shorter 

serial and generation intervals and a larger fraction of pre-symptomatic transmission when 

individuals are isolated faster (Fig. 3A-C). In contrast, population-level physical distancing 

measures have differential impacts on CCRs, decreasing CCRs for social and community contacts, 

while increasing CCRs in the household and family contacts. As a result, strict physical distancing 

confines the epidemic mostly to families and households (see also Fig. S7). The precise impact of 

physical distancing on transmission is difficult to separate from that of individual-based 

interventions. However, our analysis suggests that physical distancing changes the topology of the 

transmission network by affecting the number and duration of interactions. Interestingly, the 

topology of the household contact network is highly clustered (42), and theoretical studies have 

shown that high clustering hinders epidemic spread (43, 44). These higher-order topological 

changes could contribute to reducing transmission beyond the effects expected from an overall 

reduction in CCRs. In parallel, the effectiveness of physical distancing measures on reducing 

COVID-19 transmission has been demonstrated in empirical data from China (16, 45) and 

elsewhere (46). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.08.09.20171132doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.09.20171132


 

11 
 

We have explored the feasibility of SARS-CoV-2 epidemic control against two important 

metrics related to case isolation and contact quarantine: the timeliness of isolation and the infection 

detection rate (Fig. 3F). For a baseline transmission scenario compatible with the initial growth 

phase of the epidemic in Wuhan, we find that epidemic control solely relying on isolation and 

quarantine is difficult to achieve. Layering these interventions with moderate physical distancing 

makes control more likely over a range of plausible parameters - a situation that could be further 

improved by residual immunity from the first wave of SARS-CoV-2 activity (35, 36). Successful 

implementation of contact tracing requires a low-level of active infections in the community, as 

the number of contacts to be monitored is several folds the number of infections (~13 contacts 

were traced for each SARS-CoV-2 infected individual in Hunan). The timing of easing of 

lockdown measures should align with the capacities of testing and contact tracing efforts, relative 

to the number of active infections in the community. In parallel, technology-based approaches can 

also facilitate these efforts (7, 47).  

Overall, we find that case isolation and quarantine successfully blocked transmission to close 

contacts in Hunan, with an estimated 4.3% of transmission occurring after SARS-CoV-2 patients 

were isolated. In this setting, all SARS-CoV-2 infections were managed under medical isolation 

in dedicated hospitals regardless of clinical severity, while contacts were quarantined in designated 

medical observation centers. Self-regulated isolation and quarantine at home, however, may not 

be as effective and a higher proportion of onward transmission should be expected. 

Several caveats are worth noting. We could not evaluate the risk of transmission in schools, 

workplaces, conferences, prisons, or factories, as no contacts in these settings were reported in the 

Hunan dataset. Our study is likely underpowered to assess the transmission potential of 

asymptomatic individuals given the relatively small fraction of these infections in our data (13.5% 

overall and 22.1% of infections captured through contact tracing). There is no statistical support 

for decreased transmission from asymptomatic individuals (Fig. S3A), although we observe a 

positive, but non-significant gradient in average transmission risk with disease severity. Evidence 

from viral shedding studies is conflicting; viral load appears independent of clinical severity in 

some studies (6, 23, 38, 48) while others suggest faster viral clearance in asymptomatic individuals 

(49). Another limitation relates to changes in testing practices for contacts of primary cases; before 

February 7, testing of contacts was based on presence of symptoms. This may affect our estimates 

of age-specific susceptibility, as younger individuals are less likely to develop symptoms (50). 
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Overall, the contribution of asymptomatic infections to transmission remains debated but has 

profound implications on the feasibility of control through individual-based interventions. Careful 

serological studies combined with virologic testing in households and other controlled 

environments are needed to fully resolve the role of asymptomatic infections and viral shedding 

on transmission.  

In conclusion, detailed contact tracing data illuminate important heterogeneities in SARS-CoV-

2 transmission driven by biology and behavior, modulated by the impact of interventions. Crucially, 

and in contrast to SARS-CoV-1, the ability of SARS-CoV-2 to transmit during the host’s pre-

symptomatic phase makes it particularly difficult to achieve epidemic control (51). Our risk factor 

estimates can provide useful evidence to guide the design of more targeted and sustainable 

mitigation strategies, while our reconstructed transmission kinetics will help calibrate further 

modeling efforts.   
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Fig. 1. SARS-CoV-2 transmission chains. Top: One realization of the reconstructed transmission chains among 

1,178 SARS-CoV-2 infected individuals in Hunan province. Each node in the network represents a patient infected 

with SARS-CoV-2 and each link represents an infector-infectee relationship. The color of the node denotes the 

reporting prefecture of infected individuals. Bottom: Distribution of the number of secondary infections; blue bars 

represent the ensemble averaged across 100 stochastic samples of the reconstructed transmission chains. Orange bars 

represent the best fit of a negative binomial distribution to the ensemble average. Vertical lines indicate 95% 

confidence intervals across 100 samples (of both data and the models’ fitting results). Some confidence intervals are 

narrow and not visible on the plot. For sensitivity analysis, we also fit the distribution with geometric and Poisson 

distribution. Based on the Akaike information criterion, the negative binomial distribution fit the data the best (average 

AIC score for negative binomial distribution: 1902; for geometric distribution: 1981, for Poisson distribution: 2259).  
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Fig. 2. Heterogeneity in contact rates of SARS-CoV-2 cases and impact of interventions, by contact type. 

Columns from left to right represent community contacts (public transportation, food & entertainment), social contacts, 

extended family contacts, and household contacts. (A) Violin plots representing the distribution of per-contact 

transmission probability by contact type, adjusted for all other covariates in Fig. S3 (probability expressed in 

percentage, x-axis). (B) Complementary cumulative distribution function (CCDF, y axis) for duration of exposure (i.e. 

the probability that exposure is longer or equal to a certain value). Dashed vertical lines indicate average values. 

Household contacts last the longest, and as expected contact duration decreases as social ties loosen. (C) The 

distribution of the number of unique contacts (degree distribution) of the primary cases for each contact types. PMF 

on the y axis is acronym for probability mass function. The dashed vertical lines indicate average values. The 

dispersion parameter 𝑘 is calculated based on the relationship 𝜎! = "
#$"/&

, where 𝜇 and 𝜎! are mean and variance of 

the number of unique contacts. 𝑘 < 1 indicates over-dispersion. (D) Age distribution of SARS-CoV-2 case-contact 

pairs (contact matrices). (E) Rate ratios of negative binomial regression of the cumulative contact rates (CCRs) against 
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predictors including the infector’s age, sex, presence of fever/cough, Wuhan travel history, whether symptom onset 

occurred before social distancing was in place (before or after Jan. 25, 2020), and time from isolation to symptom 

onset.  CCRs represent the sum of relevant contacts over a one-week window centered at the date of the primary case’s 

symptom onset. Dots and lines indicate point estimates and 95% confidence interval of the rate ratios, numbers below 

the dots indicate the numerical value of the point estimates; Ref. stands for reference category; * indicates p-

value<0.05, ** indicates p-value<0.01, *** indicates p-value<0.001. 
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Fig. 3. (A) Violin plot of the generation interval distributions stratified by time from symptom onset to isolation/pre-

symptomatic quarantine, based on an ensemble of 100 realizations of the sampled transmission chains. (B) Same as 

A but for the serial interval distributions (C) Same as A but for the fraction of pre-symptomatic transmission, among 

all transmission events, with vertical line indicating 50% of pre-symptomatic transmission. Dots represent the mean 

and whiskers represents minimum and maximum. (D) Estimated average (over 100 realizations of sampled 

transmission chains) transmission risk of a SARS-CoV-2 infected individual since time of infection under four 

intervention scenarios: the red solid line represents an uncontrolled epidemic scenario modelled after the early 

epidemic dynamics in Wuhan before lockdown; the dashed lines represent scenarios where quarantine and case 

isolation are in place and mimic Phase I, II, and III of epidemic control in Hunan. The shapes of these curves match 

that of the generation interval distributions in each scenario while the areas under the curve are equal to the ratio of 

the baseline/effective basic reproduction numbers (𝑅'/𝑅'(s). (E) Same as in D but with time since symptom onset on 

the x-axis (colors are as in (D)). The vertical line represents symptom onset. (F) Reduction (percentage) in the basic 

reproduction number as a function of mean time from symptom onset (or from peak infectiousness for asymptomatic 

cases) to isolation τ)*+ (x-axis) and fraction of  SARS-CoV-2 infections being isolated (y-axis). The distribution of 

onset to isolation follows a normal distribution with mean 𝜏,-. and standard deviation of 2 days. The dashed lines 

indicate 30%, 40% and 50% reductions in R0 under interventons. (G) Effective basic reproduction number as a 

function of population-level reduction in contact rates (i.e. through physical distancing, expressed as a percentage, x-
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axis) and isolation rate (fraction of total infections detected and further isolated). We assume baseline basic 

reproduction number 𝑅' = 2.19, and a normal distribution for the distribution from onset to isolation with mean of 0 

days and standard deviation of 2 days. The dashed line represents the epidemic threshold 𝑅( = 1. The blue area 

indicates region below the epidemic threshold (namely, controlled epidemic) and the red area indicates region above 

the epidemic threshold. (H) Same as in G but assuming 𝑅' = 1.57 (a more optimistic estimate of R0 in Wuhan adjusted 

for reporting changes), and a normal distribution for the distribution from onset to isolation with mean of 2 days and 

standard deviation of 2 days. 
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Risk factors Odds ratio 95% CI 

Household contacts 

Before 01/25/2020 2.20*** (1.39, 3.49) 

After   01/25/2020 3.79*** (2.47, 5.79) 

Extended Family contacts 

Before 01/25/2020 1.00 Reference 

After   01/25/2020 0.94 (0.60, 1.46) 

Social contacts 

Before 01/25/2020 0.63 (0.37, 1.06) 

After   01/25/2020 0.41** (0.21, 0.78) 

Community contacts 

Before 01/25/2020 0.37** (0.19, 0.74) 

After   01/25/2020 0.2* (0.05, 0.71) 

Healthcare contacts 

Before 01/25/2020 0.15* (0.03, 0.68) 

After   01/25/2020 0.10* (0.01, 0.90) 

Duration of exposure (days) 1.10*** (1.05, 1.15) 

Symptom onset within exposure window (Yes) 1.49* (1.09, 2.04) 

Table 1: SARS-CoV-2 transmission risk in Hunan by contact type, duration of exposure, and whether the exposure 

window contains the date of symptom onset of the primary case - a period of intense viral shedding. Risk is further 

stratified by the date of implementation of social distancing interventions in Hunan, which is 01/25/2020. The 

regression model is adjusted for demographic characteristics of the cases and their contacts, clinical symptoms, and 

travel history. Details are provided in the Material and Methods, while the full results of the regression including 

additional risk factors are shown in Fig. S3. * indicates p-value<0.05, ** indicates p-value<0.01, *** indicates p-

value<0.001. 
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