Combined physical and cognitive training for older adults with and without cognitive impairment: A systematic review and network meta-analysis of randomized controlled

trials

Hanna Malmberg Gavelin^{1,2}, Christopher Dong¹, Ruth Minkov¹, Alex Bahar-Fuchs¹, Kathryn A

Ellis^{1,3,4}, Nicola T Lautenschlager^{1,5}, Maddison L Mellow⁶, Alexandra T Wade⁶, Ashleigh E

Smith⁶, Carsten Finke^{7,8}, Stephan Krohn^{7,8}, Amit Lampit^{1,7,8*}

In Press, Ageing Research Reviews

¹ Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia

² Department of Psychology, Umeå University, Umeå, Sweden

³ Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia

⁴ Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia

⁵ NorthWestern Mental Health, Melbourne Health, Melbourne, Victoria, Australia

⁶ Alliance for Research in Exercise Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia

⁷ Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany

⁸Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany

*Correspondence concerning this article should be addressed to Amit Lampit, amit.lampit@unimelb.edu.au.

2

Abstract

Combining physical exercise with cognitive training is a popular intervention in dementia prevention trials and guidelines. However, it remains unclear what combination strategies are most beneficial for cognitive and physical outcomes. We aimed to compare the efficacy of the three main types of combination strategies (simultaneous, sequential or exergaming) to either intervention alone or control in older adults. Randomized controlled trials of combined cognitive and physical training were included in multivariate and network meta-analyses. In cognitively healthy older adults and mild cognitive impairment, the effect of any combined intervention relative to control was small and statistically significant for overall cognitive (k=41, Hedges' g =0.22, 95% CI 0.14 to 0.30) and physical function (k=32, g=0.25, 95% CI 0.13 to 0.37). Simultaneous training was the most efficacious approach for cognition, followed by sequential combinations and cognitive training alone, and significantly better than physical exercise. For physical outcomes, simultaneous and sequential training showed comparable efficacy as exercise alone and significantly exceeded all other control conditions. Exergaming ranked low for both outcomes. Our findings suggest that simultaneously and sequentially combined interventions are efficacious for promoting cognitive alongside physical health in older adults, and therefore should be preferred over implementation of single-domain training.

Keywords: network meta-analysis, older adults, combined intervention, cognitive training, physical exercise, cognition

3

1 1. Introduction

2 As population ageing increases globally, cognitive impairment and dementia have 3 become a leading cause of disability (World Health Organization and Alzehimer's Disease 4 International, 2012). Modifiable risk factors such as physical and cognitive inactivity, depression, social isolation and poor cardiovascular health have been estimated to account for 5 about 40% of the risk for developing dementia across the lifespan (Livingston et al., 2020b, a) 6 7 and are recognized as important targets for non-pharmacological interventions aiming to prevent or delay cognitive decline. Multimodal intervention strategies have received particular interest, 8 9 with over a dozen ongoing trials testing the assumption that targeting multiple risk factors would lead to additive or even synergetic effects on preserving functional independence in older age 10 (Kivipelto et al., 2020). 11

Recent systematic reviews have supported the efficacy of cognitive training (Gavelin et 12 al., 2020; Hill et al., 2017; Lampit et al., 2014; Leung et al., 2015) and physical exercise (Falck 13 14 et al., 2019; Northey et al., 2018) on cognitive performance in older adults with and without 15 cognitive impairment. These interventions have also been recommended in clinical practice guidelines (e.g., for mild cognitive impairment; Petersen et al., 2018) and, increasingly, the 16 possibility of combining physical exercise with cognitively challenging activities has been 17 highlighted as a way to maintain both cognitive and physical health (Yang et al., 2019). 18 Previous systematic reviews and meta-analyses have reported cognitive benefits 19 20 following combined cognitive and physical interventions in older adults with or without 21 cognitive impairment (Gheysen et al., 2018; Karssemeijer et al., 2017; Stanmore et al., 2017; Zhu et al., 2016), suggesting efficacy over and above physical exercise alone, and comparable to 22

that of cognitive training. However, these meta-analyses mixed older with younger populations

It is made available under a CC-BY-NC-ND 4.0 International license .

4

(Stanmore et al., 2017) and randomized controlled trials (RCT) with other designs (Gheysen et
al., 2018; Zhu et al., 2016) or included a combination of cognitive training and other cognitionoriented treatments, such as cognitive stimulation or non-specific cognitive activities
(Karssemeijer et al., 2017). Furthermore, most meta-analyses have so far focused on cognitive
outcomes (Gheysen et al., 2018; Stanmore et al., 2017; Zhu et al., 2016) and the efficacy of
combined interventions on physical and everyday function in general, and compared to more
traditional physical exercise interventions in particular, is not yet established.

A key outstanding question in the field is how the efficacy of combined physical and 31 cognitive interventions is related to the mode of delivery. Combined interventions can be broadly 32 divided into sequential or simultaneous designs. Sequential designs deliver the intervention 33 modalities in separate sessions, usually during the same period (Ngandu et al., 2015) or, less 34 commonly, on separate periods throughout the course of the intervention (Heffernan et al., 35 2019). Simultaneous interventions are usually based on either delivery of cognitive training 36 while asking participants to exercise at the same time, or by using exergaming, i.e., physically 37 active videogames that include cognitively challenging tasks (see definitions under 2.3.3. Types 38 of interventions below). 39

While previous meta-analyses have provided some indications that simultaneous training leads to larger effects on cognition than those of sequential designs (Gheysen et al., 2018; Zhu et al., 2016), results have so far been inconclusive. Importantly, this question is difficult to ascertain in pairwise meta-analysis, since the relative efficacy of combined interventions is likely to be influenced by the type of control group activity (i.e., cognitive training or physical exercise alone, active or passive control), which varies considerably across studies (Gheysen et al., 2018; Zhu et al., 2016). In this context, network meta-analysis can be used to compare efficacy

5

47 estimates of the different delivery formats to single modality or other types of control conditions. Such an approach has been conducted in one previous systematic review (Bruderer-Hofstetter et 48 al., 2018); however, due to the large number of treatment nodes and relatively small number of 49 50 included studies, the precision of the effect estimates was limited and the quality of the evidence was rated as very low. Finally, the efficacy of exergaming in older adults is still unclear due to 51 the limitations noted above as well as a recent re-analysis of Stanmore et al. (2017), suggesting 52 53 considerably smaller effects and potential small study bias (Sala et al., 2019). 54 The aim of the current review is therefore twofold: (1) conduct pairwise meta-analysis to 55 investigate the efficacy of combined cognitive and physical training interventions on cognitive, 56 physical, psychosocial and functional outcomes in older adults across RCTs; and (2) apply

57 network meta-analysis to compare and rank the efficacy of the three main types of combined

58 intervention delivery formats (simultaneous, sequential and exergaming) on cognitive and

59 physical function relative to either intervention alone or inert control conditions.

60

61 **2. Method**

62 **2.1 Protocol and registration**

This work adheres to the Preferred Reporting Items for Systematic reviews and Meta Analyses (PRISMA) guidelines (Liberati et al., 2009) and PRISMA extension for network meta analysis (Hutton et al., 2015) and was prospectively registered with PROSPERO

66 (CRD42020143509).

67 2.2 Search strategy and study selection

We searched MEDLINE, Embase and PsycINFO from inception to 23 July 2019 to
identify RCTs examining the effects of combined cognitive and physical training on cognitive,

6

physical, psychosocial or functional outcomes (see Appendix A for the full search strategy). No restrictions on language or publication type were applied. Two independent reviewers (CD and MM or AW) conducted initial screening of titles and abstracts and assessed full-text versions of potentially relevant articles. Disagreements were resolved by a third reviewer (AL or HMG). The electronic search was complemented by hand-searching the references of included papers and previous reviews.

76 2.3 Eligibility criteria

77 **2.3.1 Types of studies**

78 Published, peer-reviewed reports of RCTs investigating the effects of a combined cognitive and physical exercise intervention on one or more cognitive, physical, psychosocial or 79 functional outcome in older adults were included. No restrictions on the type or size of 80 randomized trials were applied in order to ensure that all relevant literature was included. The 81 primary outcome was cognitive function; therefore, eligible studies needed to provide at least 82 one untrained cognitive outcome. Studies were included if they compared a combined 83 intervention with cognitive or physical training alone, a control intervention or a passive control 84 group. Randomized crossover trials were included, but only the first treatment phase was 85 considered for analysis to avoid the influence of potential carryover effects. 86

87 **2.3.2 Types of participants**

88 Studies were included if they focused on older adults and had a mean age of 60 years or 89 older. This included cognitively healthy older adults, people with subjective cognitive 90 complaints, mild cognitive impairment (MCI), dementia or Parkinson's disease, all are 91 populations for which the efficacy of cognitive training or physical exercise have been evaluated

It is made available under a CC-BY-NC-ND 4.0 International license .

7

92 in previous systematic reviews. Eligibility was confirmed by examining the study inclusion
93 criteria and baseline characteristics of the sample.

94 **2.3.3 Types of interventions**

95 Studies were included if they focused on interventions combining process-based cognitive training with structured physical exercise. Process-based cognitive training was 96 defined as repeated practice on tasks targeting one or several cognitive domains, as opposed to 97 explicit learning of strategies (Lustig et al., 2009). Physical exercise included any form of 98 structured physical activity, such as aerobic exercise, strength or functional (i.e., gait or balance) 99 100 training. Combined interventions could be delivered as (1) simultaneous training: cognitive 101 training and physical exercise delivered concurrently in a dual-task format; (2) sequential *training*: cognitive training and physical exercise delivered in separate sessions, either on the 102 103 same day or on different days; or (3) *exergaming*: physically active video games including 104 cognitively challenging tasks. Exergaming interventions were included if the games placed cognitive demands, such as requiring attention, processing speed, planning or decision making, 105 106 at a level commensurate with process-based cognitive training; pure exercise or sport games, such as yoga or balance exercises were excluded. To allow the inclusion of multicomponent 107 strategies, interventions including other components such as psychoeducation, strategy-based 108 109 cognitive training or diet were eligible as long as cognitive training and physical exercise were each provided for at least 20% of the total intervention time. Studies with interventions that 110 111 comprised more than 20% of one intervention but less than 20% of the other (e.g., Ngandu et al., 112 2015) were excluded.

113

It is made available under a CC-BY-NC-ND 4.0 International license .

8

115 **2.3.4 Types of controls**

116 Studies were included if they compared a combined intervention with physical exercise, 117 cognitive training, a sham intervention (e.g. health education, relaxation, stretching or non-118 specific cognitive activities such as data entry on a computer) or a passive control group (wait-

- 119 list, no-contact). In multi-arm studies, all eligible control conditions were included.
- 120 **2.3.5 Types of outcomes**

Outcomes included were change from baseline to post-intervention on measures of untrained cognitive outcomes (global or domain-specific), performance-based physical exercise outcomes (aerobic capacity, strength, mobility, balance or gait), psychosocial outcomes (neuropsychiatric symptoms, depression, quality of life) and functional outcomes (activities of daily living (ADL) or instrumental ADL).

126 **2.4 Data collection and coding**

Data were extracted by one reviewer (HMG or CD) and checked against the original 127 publication by another reviewer (SA). For each study, we extracted population, intervention and 128 129 control characteristics and results for each eligible outcome. Outcomes were recorded as mean and standard deviation for each condition and time-point (pre and post intervention). When 130 means and standard deviations were not available, data were entered as mean change and 131 standard deviation or mean differences and 95% confidence interval (CI). If data could not be 132 extracted from the study report, we contacted the authors and asked for missing group-level data. 133 134 For data extraction purposes, cognitive outcomes were classified by a neuropsychologist (HMG) 135 according to the Cattell-Horn-Carroll-Miyake taxonomy of cognitive domains described by Webb et al. (2018): (1) executive function; (2) short-term and working memory; (3) long-term 136 137 storage and retrieval; (4) processing speed; (5) visual processing; and (6) fluid reasoning.

138	Although this framework allows for further classification of cognitive outcomes into more
139	specific narrow abilities (e.g., short-term and working memory can be further subdivided into
140	high working memory, low working memory and short-term memory), we used the broad abilities
141	to ensure a sufficient number of studies within each category to allow for meaningful
142	interpretation. Cognitive screening instruments, such as the Mini-Mental State Examination,
143	were classified as global cognition (Hill et al., 2017; Lampit et al., 2014). Physical outcomes
144	were classified according to the following domains: (1) aerobic capacity; (2) strength; (3)
145	functional mobility; (4) gait; (5) balance; and (6) cognitive-motor outcomes (concurrent physical
146	and cognitive tasks), these classifications were made under the supervision of an exercise
147	physiologist (AS). For cognitive-motor outcomes, only the physical performance outcome (i.e.,
148	not cognitive task performance) was included. The classifications of outcomes by domain are
149	provided in Appendix B. Following the approach of previous meta-analyses (Gheysen et al.,
150	2018; Stanmore et al., 2017; Zhu et al., 2016), each combined intervention arm was classified
151	according to their mode of delivery as either simultaneous, sequential or exergaming training.
152	Comparison groups were classified as: cognitive training (cognitive training alone or in
153	combination with sham physical exercise, e.g., stretching), physical exercise (physical exercise
154	alone or in combination with sham cognitive training or other non-specific cognitive activities),
155	sham interventions (active control groups, e.g., sham physical exercise and/or sham cognitive
156	training, health education, non-specific cognitive activities) or passive control (wait-list, no-
157	contact). Study participants were classified as either cognitively healthy, MCI, dementia or
158	Parkinson's disease by examining the study inclusion criteria and the baseline characteristics of
159	the sample. Studies including participants with subjective cognitive complaints but no objective
160	cognitive impairment were classified as cognitively healthy. Classification of clinical

It is made available under a CC-BY-NC-ND 4.0 International license .

10

161 populations were based on the definitions provided by the study authors; for MCI this could 162 include diagnosis based on clinical assessment and/or cognitive cut-off scores. If a study included a cognitively or physically frail population without further specification of diagnosis 163 164 (e.g., people in long-term nursing homes), we classified the population based on the cognitive and functional status at baseline (Hill et al., 2017). 165 2.5 Risk of bias within studies 166 Two independent reviewers (CD and RM) assessed the risk of bias in individual studies 167 using the revised Cochrane risk-of-bias tool for randomized trials (ROB 2) (Sterne et al., 2019). 168

169 Disagreements were resolved by consulting a third reviewer (HMG or AL). Studies with high

170 risk of bias or some concerns in the domains bias due to missing outcome data or bias in

171 measurement of the outcome were considered as having a high risk of bias or some concerns,

172 respectively (Hill et al., 2017; Lampit et al., 2014).

173

174 **2.6 Data analysis**

175 Analyses were conducted using the R packages robumeta (Fisher et al., 2017), clubSandwich (Pustejovsky, 2020) and netmeta (Rücker et al., 2020a). Between-group 176 differences in change from baseline to post-intervention were converted to standardized mean 177 differences and calculated as Hedges' g with 95% CI. Pooling of effect estimates across studies 178 were conducted using random-effects models. Studies including participants with dementia and 179 Parkinson's disease were excluded from the pooled analyses due to an insufficient number of 180 identified studies available for analysis (k=2 for dementia and Parkinson's disease, respectively; 181 see 3.2 Characteristics of included studies). Instead, these studies were summarized narratively. 182

It is made available under a CC-BY-NC-ND 4.0 International license .

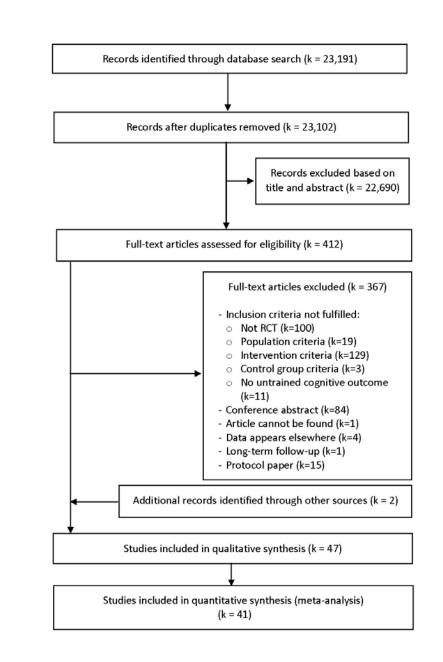
11

183	The analysis was conducted in two steps: First, pairwise meta-analysis was conducted
184	using robust variance estimation implemented in robumeta, accounting for the dependency
185	structure of effect estimates within studies (Hedges et al., 2010). Analyses were performed for
186	overall cognitive (Gheysen et al., 2018; Hill et al., 2017; Lampit et al., 2014; Stanmore et al.,
187	2017; Zhu et al., 2016), physical (Falck et al., 2019), psychosocial and functional outcomes (Hill
188	et al., 2017) as well as for each cognitive and physical subdomain separately. Heterogeneity
189	across studies was quantified using τ^2 and expressed as a proportion of overall observed variance
190	using the I^2 statistic (Borenstein et al., 2017). Prediction intervals were calculated to assess the
191	dispersion of true effects (Riley et al., 2011). Subgroup analyses based on pre-specified
192	categorical moderators (population group, intervention duration, supervision, risk of bias) were
193	conducted using mixed-effects meta-regression models. Small-study effect was investigated by
194	visually inspecting funnel plots of effect size vs standard error and formally tested using the
195	Egger's test (Egger et al., 1997; Sterne et al., 2011).
196	Second, random-effects network meta-analysis was performed using a frequentist
107	framework implemented in the netmeta package for \mathbf{R} . To examine the transitivity assumptions

197 framework, implemented in the netmeta package for R. To examine the transitivity assumptions, we created a table summarizing potential effect modifiers (population and design characteristics) 198 to explore whether these were similarly distributed across the different comparisons. The 199 200 geometry of the network was summarized in a network graph and league tables were created to 201 display the relative effect sizes of all available comparisons. Ranking of treatments were estimated using P-scores, representing the extent of certainty that an intervention is more 202 effective than another intervention, averaged over all treatment arms (Rucker and Schwarzer, 203 204 2015). Sensitivity analyses were conducted excluding trials with a high risk of bias, and by 205 conducting separate analyses for studies classified as cognitively healthy older adults and MCI.

It is made available under a CC-BY-NC-ND 4.0 International license .

12


206	The certainty of the evidence was investigated using the Confidence in Network Meta-Analysis
207	tool (Nikolakopoulou et al., 2020; Papakonstantinou et al., 2020), incorporating six domains:
208	within-study bias, reporting bias, indirectness, imprecision, heterogeneity and incoherence.
209	

210 **3. Results**

211 **3.1 Study selection**

212 After exclusion of duplicate search results, we screened 23,102 articles for eligibility, of 213 which 22.690 were excluded based on titles and abstracts. Consequently, 412 articles were assessed in full-text screening. Of these, 45 unique studies fulfilled inclusion criteria. A list of 214 the excluded studies (with reasons) is provided in Appendix C. Two additional eligible studies 215 were identified through manual search (Adcock et al., 2020; Rezola-Pardo et al., 2019). Thus, a 216 217 total of 47 studies fulfilled inclusion criteria (Fig. 1). Additionally, eight secondary outcome 218 articles were identified (Boa Sorte Silva et al., 2018a; Boa Sorte Silva et al., 2017; Eggenberger 219 et al., 2015b; Fraser et al., 2017; Hagovska and Nagyova, 2017; Hagovska and Olekszyova, 220 2016; Mavros et al., 2017; Middleton et al., 2018) and included along with other manuscripts from the same study. The authors of seven studies (Barban et al., 2017; Boa Sorte Silva et al., 221 2018b; Htut et al., 2018; Mavros et al., 2017; McDaniel et al., 2014; Middleton et al., 2018; Ten 222 223 Brinke et al., 2019) were contacted for data and four (Htut et al., 2018; Mavros et al., 2017; Middleton et al., 2018; Ten Brinke et al., 2019) provided data. 224

It is made available under a CC-BY-NC-ND 4.0 International license .

226

227 Fig. 1. PRISMA flow chart

228

229 **3.2 Characteristics of included studies**

The characteristics of the included studies are presented in Table 1. The included studies

encompassed 4,052 participants with mean age ranging between 65.0 and 87.2 years. The

majority of the studies included cognitively healthy older adults (k=30, n=2,866), two of which

233	(Barnes et al., 2013; Boa Sorte Silva et al., 2018b) included participants with subjective
234	cognitive complaints. Twelve studies included participants with MCI and one additional study
235	(Stanmore et al., 2019) included people living in assisted living facilities without severe
236	cognitive impairment. This study was classified as MCI for the purpose of the subgroup
237	analyses, giving a total of 13 studies ($n=932$) in this category. Two studies included participants
238	with Parkinson's disease without dementia (Pompeu et al., 2012; Song et al., 2018). One study
239	included people with dementia (Karssemeijer et al., 2019) and one included long-term nursing
240	home residents (Rezola-Pardo et al., 2019), which was classified as dementia and thus excluded
241	from the pooled analyses. Intervention duration ranged from four to 40 weeks (median = 12
242	weeks). Sixteen studies combined cognitive and physical training using a sequential design, in
243	which eight provided physical and cognitive training in separate sessions (Barnes et al., 2013;
244	Desjardins-Crepeau et al., 2016; Fabre et al., 2002; Maffei et al., 2017; McDaniel et al., 2014;
245	Romera-Liebana et al., 2018; Shatil, 2013; van het Reve and de Bruin, 2014), and eight
246	implemented the cognitive and physical training back-to-back within the same session (Barban et
247	al., 2017; Damirchi et al., 2018; Fiatarone Singh et al., 2014; Hagovska et al., 2016; Legault et
248	al., 2011; Linde and Alfermann, 2014; Rahe et al., 2015; Ten Brinke et al., 2019). Examples of
249	sequential training include separate sessions of aerobic and resistance training, and computerized
250	cognitive training (see Table 1 for details). Thirteen studies used a simultaneous design (Boa
251	Sorte Silva et al., 2018b; Combourieu Donnezan et al., 2018; Hiyamizu et al., 2012; Kitazawa et
252	al., 2015; Laatar et al., 2018; Leon et al., 2015; Mrakic-Sposta et al., 2018; Nishiguchi et al.,
253	2015; Norouzi et al., 2019; Park et al., 2019; Reigal and Mendo, 2014; Rezola-Pardo et al., 2019;
254	Shimada et al., 2018), such as learning complex stepping patterns, solving cognitive tasks while
255	simultaneously performing strength and balance exercises, or conducting computerized cognitive

256	training during aerobic exercise on bikes. Seventeen studies included exergaming interventions
257	(Adcock et al., 2020; Anderson-Hanley et al., 2018; Bacha et al., 2018; Barcelos et al., 2015;
258	Delbroek et al., 2017; Eggenberger et al., 2016; Gschwind et al., 2015; Htut et al., 2018; Hughes
259	et al., 2014; Karssemeijer et al., 2019; Maillot et al., 2012; Pompeu et al., 2012; Schattin et al.,
260	2016; Schoene et al., 2013; Schoene et al., 2015; Song et al., 2018; Stanmore et al., 2019),
261	examples include videogame dancing, cybercycling exergames, and commercial videogames
262	with cognitively challenging components. One study (Eggenberger et al., 2015a) included an
263	exergaming as well as a simultaneous intervention, while another (Rahe et al., 2015) included
264	two sequential training intervention arms, one of which also included motivational counselling.
265	The latter study was split into two separate studies for the network meta-analysis to allow for
266	inclusion of both sequential training arms in the analysis. Comparison conditions included
267	physical exercise ($k=29$), cognitive training ($k=13$), sham interventions ($k=14$) and passive
268	control ($k=19$). Ten studies (21%) had a high risk of bias, 17 (36%) had some concerns, and 20
269	(43%) had a low risk of bias (Appendix D).

270

271 **3.4 Pairwise meta-analysis**

272 **3.4.1 Cognitive function**

Across 43 studies and 491 effect estimates, the overall effect of combined interventions on cognitive function was moderate and statistically significant, Hedges' g = 0.34 (95% CI 0.14 to 0.55), with high heterogeneity ($\tau^2 = 0.29$, I² = 82%). The funnel plot revealed two conspicuous outliers, both reporting implausibly large *g* values of 1.74 (Laatar et al., 2018) and 4.52-5.54 (Leon et al., 2015) under high risk of bias. The studies were therefore removed from all further analysis. After removal of these outliers, heterogeneity was reduced, and the funnel plot showed no significant asymmetry ($\beta = 0.51$, p = 0.24, Appendix E). Across the remaining 41 studies and

280	482 effect estimates, the overall effect on cognitive outcomes was small and statistically
281	significant, $g = 0.22$ (95% CI 0.14 to 0.30, $\tau^2 = 0.08$, $I^2 = 56\%$, prediction interval -0.34 to 0.78).
282	The results of individual studies and comparisons are provided in Appendix F. There was no
283	statistically significant difference in effect estimates between studies classified as low, some
284	concerns or high risk of bias (Table 2).
285	The results of the moderator analyses for cognitive outcomes are shown in Table 2. A
286	statistically significant effect for was found for cognitively healthy older adults and for
287	participants with MCI, with no significant difference between the groups. There was no
288	significant difference in the efficacy of interventions that were 12 weeks or shorter compared to
289	interventions with a duration of > 12 weeks. Similarly, no evidence for statistically significant
290	subgroup difference was found for supervised training compared to unsupervised training,
291	however, because of the small number of studies with unsupervised training (i.e., df<4), these
292	results should be interpreted with caution. For the different cognitive domains, statistically
293	significant effect estimates were found for executive function, short-term and working memory,
294	long-term storage and retrieval, processing speed, fluid reasoning and global cognition, but not
295	for visual processing (Table 3).

It is made available under a CC-BY-NC-ND 4.0 International license .

17

Moderator	No. of studies	Summary effect				Test of moderation		
	(effect sizes)	Hedges' g	t	df	р	F	df	р
		(95% CI)						
Cognitive outcomes								
Population						0.32	18.1	0.58
Healthy	28 (363)	0.20 (0.12 to 0.29)	4.94	24.93	< 0.001			
MCI	13 (119)	0.26 (0.06 to 0.46)	2.94	9.81	0.02			
Duration						0.55	29.9	0.47
12 weeks or less	25 (247)	0.24 (0.13 to 0.36)	4.45	21.1	< 0.001			
>12 weeks	16 (235)	0.19 (0.08 to 0.30)	3.62	13.6	0.003			
Supervision						0.96	3.40	0.39
Supervised	37 (445)	0.23 (0.15 to 0.31)	5.54	31.86	< 0.001			
Unsupervised	4 (37)	0.14 (-0.14 to 0.42)	1.66	2.72	0.20			
Risk of Bias						0.14	17.6	0.87
Low	16 (223)	0.21 (0.12 to 0.30)	5.11	13.85	< 0.001			
Some concerns	17 (158)	0.24 (0.05 to 0.44)	2.71	14.98	0.02			
High	8 (101)	0.19 (0.04 to 0.33)	3.08	6.06	0.02			
Physical outcomes								
Population						0.66	10.2	0.44
Healthy	24 (240)	0.23 (0.08 to 0.38)	3.10	21.86	0.005			
MCI	8 (67)	0.32 (0.12 to 0.52)	3.84	6.36	0.008			
Duration						4.52	18.2	0.04
12 weeks or less	21 (187)	0.33 (0.17 to 0.48)	4.44	18.65	< 0.001			
>12 weeks	11 (120)	0.09 (-0.10 to 0.28)	1.07	9.01	0.31			
Supervision						0.65	3.78	0.47
Supervised	28 (255)	0.27 (0.13 to 0.40)	3.93	25.32	< 0.001			
Unsupervised	4 (52)	0.15 (-0.26 to 0.56)	1.20	2.82	0.32			
Risk of Bias						0.08	7.71	0.93
Low	12 (108)	0.28 (0.00 to 0.55)	2.23	10.43	0.05			
Some concerns	16 (151)	0.24 (0.09 to 0.39)	3.42	14.52	0.004			
High	4 (48)	0.20 (-0.19 to 0.60)	1.79	2.67	0.18			

Table 2. Moderator analyses of overall cognitive and physical outcomes.

297

298

It is made available under a CC-BY-NC-ND 4.0 International license .

18

300 3.4.2 Physical function

Thirty-two studies reporting 307 effect estimates were available for physical outcomes. The overall effect was small and statistically significant, g = 0.25 (95% CI 0.13 to 0.37), with moderate heterogeneity ($\tau^2 = 0.12$, I² = 63%, 95% prediction interval -0.46 to 0.96). The results of individual studies and comparisons are provided in Appendix G. There was no indication of funnel plot asymmetry ($\beta = 0.47$, p = 0.52, Appendix E). No statistically significant difference was found in effect estimates between studies classified as low, some concerns or high risk of bias (Table 2).

There was no statistically significant difference in the efficacy of combined interventions 308 on physical outcomes for cognitively healthy older adults compared to those with MCI. A 309 significant moderating effect was found for intervention duration, whereby a beneficial effect 310 311 was seen for interventions that were 12 weeks or shorter but not for interventions with > 12312 weeks duration. No significant moderating effect on physical outcomes was seen for training supervision; however, due to the small number of studies with unsupervised training, these 313 314 results should be interpreted with caution. Table 2 shows the full results from the moderator analyses of physical outcomes. For the physical subdomains, a statistically significant effect was 315 found for functional mobility, but not for strength, aerobic capacity, balance, gait, or cognitive-316 317 motor outcomes (Table 3).

318

319

320

321

It is made available under a CC-BY-NC-ND 4.0 International license .

19

Domain	No. of studies	Hedges' g (95% CI)	\mathbf{I}^2	τ^2
	(effect sizes)			
Cognitive outcomes				
Executive function	27 (113)	0.22 (0.13 to 0.30)	31%	0.03
Short-term and working memory	21 (75)	0.30 (0.05 to 0.55)	72%	0.18
Long-term storage and retrieval	18 (119)	0.17 (0.04 to 0.30)	47%	0.04
Processing speed	22 (109)	0.17 (0.07 to 0.27)	30%	0.03
Visual processing	6 (14)	0.11 (-0.18 to 0.40)	59%	0.12
Fluid reasoning	7 (25)	0.24 (0.02 to 0.46)	36%	0.03
Global cognition	15 (22)	0.30 (0.06 to 0.53)	70%	0.15
Physical outcomes				
Functional mobility	22 (83)	0.34 (0.16 to 0.52)	70%	0.15
Strength	9 (33)	0.17 (-0.10 to 0.44)	55%	0.07
Aerobic capacity	14 (39)	0.10 (-0.06 to 0.26)	13%	0.01
Balance	12 (24)	0.23 (-0.04 to 0.49)	62%	0.09
Gait	10 (41)	0.06 (-0.23 to 0.34)	60%	0.12
Cognitive-motor	14 (87)	0.19 (-0.01 to 0.39)	64%	0.12

Table 3. Meta-analyses of cognitive and physical domains.

324

325

326 **3.4.3 Psychosocial function**

327 Nine studies reporting 20 psychosocial effect estimates were available, six in cognitively healthy older adults and three in MCI. The results of individual studies and comparisons are 328 provided in Appendix H. The overall effect was small and statistically non-significant, g = 0.28329 (95% CI -0.16 to 0.72) with high heterogeneity ($\tau^2 = 0.24$, $I^2 = 81\%$, prediction interval -0.97 to 330 1.53). Visual inspection of the funnel plot revealed one outlier (Hagovska et al., 2016) (see 331 Appendix E), reporting an effect estimate of g = 1.80. A sensitivity analysis after removal of the 332 outlier revealed a negligible but statistically significant effect, g = 0.10 (95% CI 0.01 to 0.20) 333 with no heterogeneity ($\tau^2 = 0.00$, $I^2 = 0\%$). 334

It is made available under a CC-BY-NC-ND 4.0 International license .

20

3.4.4 Functional abilities 336

337	Only two trials were identified that reported functional outcomes (Fiatarone Singh et al.,
338	2014; Hagovska et al., 2016) and data were therefore not pooled in meta-analysis. Both studies
339	included participants with MCI. Improvements following combined interventions were reported
340	for ADL (Hagovska and Nagyova, 2017) but not for instrumental ADL (Fiatarone Singh et al.,
341	2014; Hagovska et al., 2016). One additional study (Gschwind et al., 2015) reported no
342	significant benefit in general health and disability in healthy older adults.
343	
344	3.4.5 Studies in dementia or Parkinson's disease
345	The results for dementia ($k=2$) and Parkinson's disease ($k=2$) are provided in Appendix I,
346	showing no significant benefits on overall cognitive, physical or psychosocial function in the
347	individual studies and comparisons. For dementia, Karssemeijer et al. (2019) reported
348	improvements in psychomotor speed following an exergaming intervention compared to active
349	control, but not compared to physical exercise alone. No differences between the groups were
350	found in working memory, executive function or episodic memory. Rezola-Pardo et al. (2019)
351	reported no additional benefits of simultaneous training compared to physical exercise alone on a
352	range of cognitive, physical and psychosocial outcomes in people living in long-term nursing
353	homes. In Parkinson's disease, two studies reported no cognitive or physical benefits of
354	exergaming compared to physical exercise (Pompeu et al., 2012) or passive control (Song et al.,
355	2018).
356	
357	3.5 Network meta-analysis
358	One study (Htut et al., 2018) was excluded from the network meta-analysis due to
359	inconsistent treatment estimates and variances. Visual inspection of potential effect modifiers

It is made available under a CC-BY-NC-ND 4.0 International license .

360	showed that these were similarly distributed across the network of included comparisons
361	(Appendix J), suggesting that the transitivity assumption was plausible. Four studies used
362	unsupervised training, all of which compared exergaming with passive control (Adcock et al.,
363	2020; Gschwind et al., 2015; Schoene et al., 2013; Schoene et al., 2015). These studies were
364	therefore downgraded to moderate indirectness in the grading of the certainty of the evidence.
365	Figure 2 visualizes the well-connected network structure for both cognitive (Fig. 2a) and
366	physical (Fig. 2b) outcomes, indicating a high amount of direct evidence for the various
367	treatment comparisons. The most frequently examined comparisons were between sequential
368	training, physical exercise, cognitive training and sham intervention, as well as between
369	exergaming and passive control.
370	
371	
372	

It is made available under a CC-BY-NC-ND 4.0 International license .

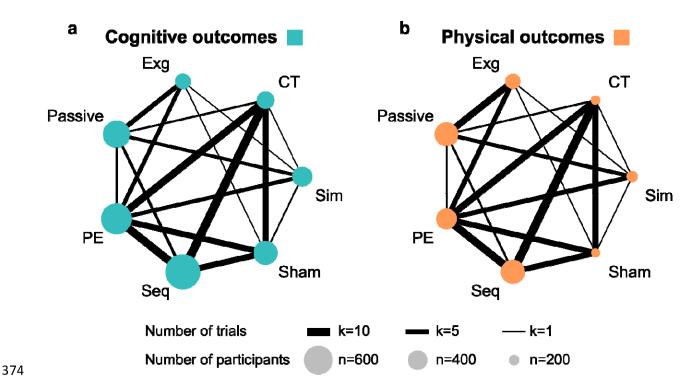


Fig. 2. Network plot for (a) cognitive outcomes and (b) physical outcomes. The width of the
lines represents the number of studies comparing each pair of treatments. The size of the circle
represents the sample size in each arm. CT = cognitive training. Exg = exergaming. Passive =
passive control. PE = physical exercise. Seq = sequential training. Sham = sham intervention.
Sim = simultaneous training.

380

381 **3.5.1 Cognitive function**

Network meta-analysis for cognitive outcomes included 41 studies, 28 in cognitively healthy older adults and 13 in MCI. The results are shown in Table 4. Indirect evidence was obtained for four comparisons for which direct evidence was unavailable (exergaming vs cognitive training, exergaming vs sequential training, sham intervention vs passive control, and sequential vs simultaneous training, Fig 2a). All conditions except sham interventions were significantly more efficacious for cognitive function than passive control (*g* range 0.18 to 0.43).

388	Simultaneous and sequential training were significantly more efficacious for cognitive function
389	than physical exercise ($g = 0.24$ and 0.15, respectively) and sham intervention ($g = 0.31$ and
390	0.22, respectively). A statistically significant benefit was also found for simultaneous training
391	relative to exergaming ($g = 0.25$). No significant differences were found between the three types
392	of combined interventions compared to cognitive training alone (g range -0.14 to 0.11). The
393	certainty of the evidence is shown in Appendix K. Confidence ratings were moderate or high for
394	the majority of the comparisons, with the exception of low certainty of the evidence due to
395	within study bias and imprecision for the comparisons of exergaming vs sequential training,
396	cognitive training and sham interventions; and simultaneous training vs sequential training and
397	cognitive training.

Table 4. Relative effect estimates for the contrasts between the different intervention and control
arms on cognitive function (below diagonal) and physical function (above diagonal). Statistically
significant effects are shown in bold.

Simultaneous	0.01	0.23	0.33	0.12	0.35	0.44
	[-0.22; 0.24]	[-0.01; 0.47]	[0.07; 0.59]	[-0.08; 0.32]	[0.08; 0.62]	[0.23; 0.66]
0.09	Sequential	0.22	0.32	0.11	0.34	0.43
[-0.06; 0.25]		[-0.004; 0.44]	[0.13; 0.51]	[-0.05; 0.27]	[0.13; 0.55]	[0.24; 0.63]
0.25	0.16	Exergaming	0.10	-0.11	0.12	0.21
[0.06; 0.45]	[-0.02; 0.33]		[-0.16; 0.36]	[-0.32; 0.09]	[-0.15; 0.39]	[0.04; 0.38]
0.11	0.02	-0.14	Cognitive	-0.21	0.02	0.11
[-0.06; 0.28]	[-0.11; 0.14]	[-0.34; 0.06]	training	[-0.41; -0.01]	[-0.20; 0.24]	[-0.13; 0.36]
0.24	0.15	-0.01	0.13	Physical exercise	0.23	0.32
[0.10; 0.38]	[0.03; 0.26]	[-0.18; 0.16]	[-0.003; 0.26]		[0.02; 0.44]	[0.13; 0.52]
0.31	0.22	0.06	0.20	0.07	Sham	0.09
[0.17; 0.46]	[0.09; 0.35]	[-0.13; 0.25]	[0.07; 0.34]	[-0.05; 0.20]		[-0.16; 0.35]
0.43	0.34	0.18	0.32	0.19	0.12	Passive
[0.27; 0.60]	[0.21; 0.47]	[0.03; 0.33]	[0.16; 0.49]	[0.05; 0.34]	[-0.04; 0.28]	

It is made available under a CC-BY-NC-ND 4.0 International license .

405 3.5.2 Physical function

406	The network meta-analysis for physical outcomes included 32 studies, 24 in cognitively
407	healthy older adults and eight in MCI. Indirect evidence was calculated for the same four
408	comparisons as above for which direct evidence was unavailable. Simultaneous training,
409	sequential training, exergaming and physical exercise were all significantly more efficacious for
410	physical function than passive control (g range 0.21 to 0.44, Table 2). Simultaneous training,
411	sequential training and physical exercise were significantly more efficacious for physical
412	function than cognitive training (g range 0.21 to 0.33) and sham intervention (g range 0.23 to
413	0.35). Certainty of the evidence was low or very low for the majority of the comparisons, mainly
414	due to within-study bias, imprecision and heterogeneity, with the exception of high certainty for
415	the comparison between sequential training and passive control and moderate certainty for the
416	comparison between simultaneous training and passive control; and physical exercise and
417	passive control (Appendix K).

418

419 **3.5.3 Ranking of interventions**

Figure 3 shows the relative rankings of the interventions with passive control as the reference treatment. For cognitive function, simultaneous training ranked best (P-score 0.96, Hedges' g 0.43) followed by sequential training (P-score 0.78, Hedges' g 0.34) and cognitive training (P-score 0.73, Hedges' g 0.32). For physical function, simultaneous training ranked best (P-score 0.90, Hedges' g 0.44), followed by sequential training (P-score 0.89, Hedges' g 0.43) and physical exercise (P-score 0.67, Hedges' g 0.32).

It is made available under a CC-BY-NC-ND 4.0 International license .

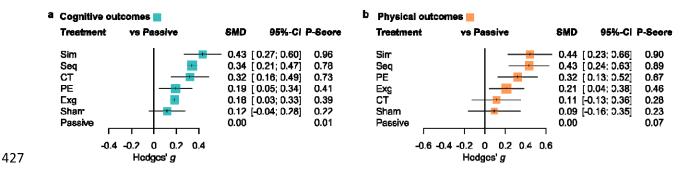


Fig. 3. Forest plot showing the relative ranking and effect estimate of interventions with passive
control as reference for overall (a) cognitive and (b) physical outcomes. CT = cognitive training.
Exg = exergaming. Passive = passive control. PE = physical exercise. Seq = sequential training.
Sham = sham intervention. Sim = simultaneous training.

432

433 **3.5.4 Sensitivity analyses**

The results from the sensitivity analyses are shown in Appendix L. The first sensitivity analysis excluded studies with a high risk of bias. In the second sensitivity analysis, we performed separate analyses for studies with cognitively healthy older adults and MCI. Overall, results were highly convergent to the main analysis, although the small number of studies including participants with MCI (k=13 for cognitive outcomes and k=8 for physical outcomes) reduced the precision of effect estimates.

441 **4. Discussion**

Across 41 RCTs of narrowly defined combined cognitive training and physical exercise
interventions, we found that in cognitively healthy older adults and those with MCI,
simultaneous and sequential training lead to comparable cognitive benefits as cognitive training
alone, while their efficacy on physical function is similar to that of physical exercise. Thus,
although combined physical and cognitive interventions do not seem to induce additive cognitive

It is made available under a CC-BY-NC-ND 4.0 International license .

26

447 effects beyond that of cognitive training, their physical efficacy make these a compelling strategy 448 for maintaining cognitive alongside physical health in late life. Given the average dose of 449 simultaneous training was substantially lower than that of sequential designs (mean total training 450 hours: 33 [range 8 to 72] and 60 [range 21 to 252], respectively) with comparable efficacy, the former might be considered as a more feasible option in clinical and community settings. 451 Conversely, our results reveal small effect estimates and lower relative rankings for exergaming 452 453 and thus do not support the efficacy of such interventions, at least at this stage. 454 4.1 Interpretation of results and comparison with previous research 455

Our results provide a significant update to the current understanding of the effects of 456 combined cognitive and physical training. We confirm the positive effects of combined 457 458 interventions on cognition reported in previous meta-analyses (Gheysen et al., 2018; Stanmore et al., 2017; Zhu et al., 2016) and extend these findings by showing benefits also for overall 459 460 physical function. Cognitive gains were found across most cognitive domains, whereas for 461 physical function, a statistically significant effect was only observed for functional mobility, which was also the most frequently investigated outcome category. The overall cognitive and 462 physical benefits were similar for cognitively healthy older adults and those with MCI and were 463 not substantially influenced by bias within or across studies. Cognitive effect estimates did not 464 depend on training duration; however, for physical outcomes, significant benefits were only 465 observed for shorter (≤ 12 weeks) interventions. No evidence for a moderating effect of training 466 supervision was found, although this should be interpreted with caution given that the majority 467 of the included studies involved supervised training. Moreover, moderate heterogeneity was 468 469 observed in several of the domain-specific pairwise meta-analyses; therefore, a more detailed

It is made available under a CC-BY-NC-ND 4.0 International license .

27

investigation of potential effect modifiers, such as training content, dose, frequency and
intensity, might be warranted to outline the intervention and design characteristics that could
benefit specific cognitive and physical abilities.

473 Conversely, we did not find robust evidence that combined interventions improve psychosocial function, nor did we identify enough studies reporting on functional outcomes to 474 synthesize the results in a pooled analysis. Although a statistically significant effect was 475 476 observed for psychosocial function after outlier removal, the effect size was small and likely not 477 of clinical relevance. Previous systematic reviews have reported mixed results for psychosocial and functional outcomes (Bruderer-Hofstetter et al., 2018; Karssemeijer et al., 2017; Zhu et al., 478 2016). The efficacy of combined interventions on everyday function and well-being therefore 479 warrants further investigation and likely requires more consistent inclusion of these outcomes in 480 481 primary trials in order to examine the extent to which these interventions can improve a wider range of clinically meaningful endpoints (Gavelin et al., 2020). Moreover, the number of 482 identified studies for dementia and Parkinson's disease was too small to allow for reliable 483 484 pooling of the data. Based on the limited evidence available the observed benefits on cognitive, physical and psychosocial function for these populations appear to be more modest, however, the 485 heterogeneous intervention and control conditions included across a small set of studies limits 486 firm conclusions. 487

The results from the network meta-analysis showed that the cognitive effects of simultaneous and sequential training exceeded all control conditions apart from cognitive training alone, and that simultaneous training was likely to be the most beneficial approach. Systematic reviews indicate that both physical (Firth et al., 2018) and cognitive training (van Balkom et al., 2020) lead to positive neurobiological changes with potential therapeutic

It is made available under a CC-BY-NC-ND 4.0 International license .

493	relevance. The therapeutic premise of combined interventions is that physical and cognitive
494	activities might influence brain plasticity through distinct and complementary pathways,
495	whereby physical exercise induces physiological changes (e.g., upregulation of brain-derived
496	neurotrophic factor, stimulation of hippocampal neurogenesis) which, in turn, facilitates the
497	experience-dependent neuroplastic effects of cognitive engagement (Fissler et al., 2013;
498	Kempermann et al., 2010). Due to the transient release of neurotrophic factors following physical
499	exercise (Knaepen et al., 2010), it has been suggested that the physical and cognitive activity
500	should be conducted in close temporal proximity to achieve maximal benefit (Fissler et al.,
501	2013), with potential order effect (Nilsson et al., 2020). This provides a potential mechanistic
502	account for the observed cognitive benefits of simultaneous training, but the evidence base is still
503	inconclusive and likely dependent on exercise intensity. Therefore, the optimal combination
504	method remains an open question in the field, warranting head-to-head trials aiming to optimise
505	efficacy and adherence while taking into account the feasibility of practical implementation.
506	Moreover, our results confirm that both simultaneous and sequential training augment the
507	cognitive effects of physical exercise alone. While this is consistent with findings from previous
508	meta-analyses (Gheysen et al., 2018; Zhu et al., 2016), the current network meta-analysis
509	focusing specifically on RCTs and with moderate confidence ratings for the relevant
510	comparisons provides more robust evidence on the benefits of enriching physical exercise with
511	structured cognitive challenge in order to maximize cognitive gains.
512	For physical function, the results from the network meta-analysis showed comparable
513	efficacy of simultaneous training, sequential training and physical exercise alone. This suggests
514	that combining physical exercise with cognitive training, even in a simultaneous design, does not
515	come at the cost of reduced efficacy of the physical intervention component. In contrast, the

516	cognitive and physical benefits of exergaming appear to be smaller than those of simultaneous
517	and sequential training. One potential explanation for this observation is that the cognitive and
518	physical demands of exergaming might be lower compared to more traditional cognitive and
519	physical training. Our results contrast the medium-sized cognitive effect found for active
520	videogames by Stanmore et al. (2017) and are closer to those reported in a re-analysis by Sala et
521	al. (2019). While gamification of health interventions, such as exergaming, may facilitate
522	intervention design characteristics that motivate behaviour change (Johnson et al., 2016),
523	ensuring that the cognitive and physical demands of exergaming interventions match those of
524	more traditional physical exercise and cognitive training interventions seems imperative.
525	From a clinical and practical perspective, the cognitive and physical improvements
526	observed following simultaneous training are encouraging, since this is a time- and resource-
527	effective approach for targeting multiple risk factors for cognitive and functional decline.
528	Sequential physical and cognitive training interventions generally require high-frequency
529	training, which may induce stress and fatigue reactions that counteract training effects (Lampit et
530	al., 2014; Zhu et al., 2016). Additionally, it has been suggested that simultaneous training may
531	have positive effects on training enjoyment, as compared to sequential training (McEwen et al.,
532	2018) and physical exercise (Eggenberger et al., 2015a), although this issue needs further
533	clarification. Based on the results from the sensitivity analyses, we found no evidence to suggest
534	that simultaneous training is less feasible or efficacious for cognition in MCI compared to
535	cognitively healthy older adults, indicating that this approach can be successfully implemented
536	also for those with mildly impaired cognition. An important avenue for future research is to
537	delineate the specific intervention characteristics of simultaneous training, such as physical and

It is made available under a CC-BY-NC-ND 4.0 International license .

30

cognitive training content, dose and frequency that are the most important for training

539 effectiveness, to inform practical implementation.

540

541 **4.2 Strengths and limitations**

To the best of our knowledge, this is the first systematic review and multivariate meta-542 analysis of RCTs investigating combined cognitive physical and cognitive training across a wide 543 range of outcomes of relevance for health and functional independence in older age, thus 544 providing a comprehensive synthesis of the current evidence-base for combined interventions. 545 546 Moreover, our use of a network meta-analytical approach facilitates simultaneous treatment comparisons and improves precision of the effect size estimates (Salanti, 2012) and the current 547 review is substantially larger than the previous network meta-analysis in the field (Bruderer-548 549 Hofstetter et al., 2018). This allows firmer conclusions regarding the comparative effectiveness 550 and relative rankings of the different types of combined interventions, and evaluation of the confidence in the findings. Nevertheless, some limitations should be addressed. First, although 551 552 we used stringent inclusion criteria to ensure that the interventions were reasonably similar across studies, the included treatments nevertheless consisted of a variety of physical exercise 553 (e.g., aerobic, strength, mobility and balance) and cognitive training (e.g., computerized or non-554 555 computerized, targeting single or multiple cognitive domains, videogames) elements. This 556 suggests that further dismantling of the specific cognitive and physical components that make up an effective combined intervention should be explored; this could be achieved through 557 558 component network meta-analysis (Rücker et al., 2020b). Nevertheless, there was no substantial 559 statistical heterogeneity or inconsistency in the results of the network meta-analyses and the 560 certainty of the evidence was moderate to high for most comparisons of cognitive outcomes. In

31

561 contrast, the confidence in the results of the network meta-analysis for physical outcomes was 562 low to very low for several of the comparisons, mainly owing to concerns regarding imprecision in the effect estimates and within-study bias. Thus, while these initial results are encouraging, the 563 564 low certainty of the evidence for physical outcomes suggests that the relative treatment estimates may change as a consequence of future, high-quality research. Second, we did not identify 565 enough studies for dementia and Parkinson's disease to allow for reliable pooling of the data. 566 Consequently, further research is needed to establish the potential benefits and comparative 567 efficacy of combined interventions for individuals with more prominent cognitive and/or 568 physical impairment. Third, investigation of potential effect modifiers such as exercise type, 569 intensity or training frequency was not feasible under the network meta-analysis framework due 570 to insufficient number of studies within each node. Although a larger meta-analysis of physical 571 572 exercise did not find evidence to support exercise modalities as a mediator of cognitive outcomes (Falck et al., 2019), such effects are likely and would be informative for future research and 573 practice in the field. Additionally, the relevance of intervention settings and provision of social 574 575 support should be explored; these considerations might be particularly relevant for individuals with cognitive and functional impairment. Fourth, trials that recruited community dwelling 576 elderly participants did not always provide information on global cognitive status (e.g., Mini-577 578 Mental State Examination scores), and the methods for defining MCI varied across studies. Thus, some heterogeneity within these groups is likely. Future trials should make efforts to describe the 579 cognitive status of participants and use established diagnostic criteria for MCI. Finally, this 580 meta-analysis was restricted to investigation of post-intervention effects and the effects of 581 combined interventions in the medium-long term should be explored. 582

It is made available under a CC-BY-NC-ND 4.0 International license .

32

584 4.3 Conclusions

Combined cognitive and physical training, delivered either simultaneously or 585 sequentially, is efficacious in promoting both cognitive and physical health in older age, at least 586 587 in the short term. These benefits were observed in cognitively healthy older adults, as well as for people with MCI. Simultaneous training showed comparable cognitive effects as sequential 588 training and cognitive training alone, while also achieving similar physical improvements as 589 590 physical exercise, suggesting this is a resource-effective approach for targeting multiple dementia risk factors. Exergaming interventions might incorporate elements from simultaneous 591 training in game design to augment their cognitive and physical efficacy. More research is 592 needed to establish whether cognitive and physical improvements following combined 593 interventions translate into improved everyday function and well-being, particularly so for 594 595 individuals with cognitive and functional impairment, as well as what specific components make up an effective combined intervention and what regimens are needed in order to maintain long-596 term gains. 597

598

Acknowledgements: We thank Sahar Aghajari for help with data entry and the authors of
primary studies for providing data and advice. MLM was funded by a scholarship from
Dementia Australia. ATW is funded by a grant from the Australian National Health and Medical
Research Council (NHMRC GNT1171313). AL is funded by a CR Roper Fellowship from the
University of Melbourne.

604 *Declarations of interest:* None

It is made available under a CC-BY-NC-ND 4.0 International license .

605 **References**

606 Adcock, M., Fankhauser, M., Post, J., Lutz, K., Zizlsperger, L., Luft, A.R., Guimaraes, V., Schattin, A., 607 de Bruin, E.D., 2020. Effects of an in-home multicomponent exergame training on physical 608 functions, cognition, and brain volume of older adults: a randomized controlled trial. Frontiers in 609 Medicine 6, 321. 610 Anderson-Hanley, C., Barcelos, N.M., Zimmerman, E.A., Gillen, R.W., Dunnam, M., Cohen, B.D., 611 Yerokhin, V., Miller, K.E., Haves, D.J., Arciero, P.J., Maloney, M., Kramer, A.F., 2018. The 612 Aerobic and Cognitive Exercise Study (ACES) for community-dwelling older adults with or at-613 risk for mild cognitive impairment (MCI): neuropsychological, neurobiological and neuroimaging 614 outcomes of a randomized clinical trial. Front. Aging Neurosci. 10, 76. 615 Bacha, J.M.R., Gomes, G.C.V., de Freitas, T.B., Viveiro, L.A.P., da Silva, K.G., Bueno, G.C., Varise, E.M., Torriani-Pasin, C., Alonso, A.C., Luna, N.M.S., D'Andrea Greve, J.M., Pompeu, J.E., 616 617 2018. Effects of Kinect Adventures games versus conventional physical therapy on postural 618 control in elderly people: a randomized controlled trial. Games for Health Journal 7, 24-36. 619 Barban, F., Annicchiarico, R., Melideo, M., Federici, A., Lombardi, M.G., Giuli, S., Ricci, C., Adriano, 620 F., Griffini, I., Silvestri, M., Chiusso, M., Neglia, S., Arino-Blasco, S., Perez, R.C., Dionyssiotis, Y., Koumanakos, G., Kovaceic, M., Montero-Fernandez, N., Pino, O., Bove, N., Cortes, U., 621 622 Barrue, C., Cortes, A., Levene, P., Pantelopoulos, S., Rosso, R., Serra-Rexach, J.A., Sabatini, 623 A.M., Caltagirone, C., 2017. Reducing fall risk with combined motor and cognitive training in 624 elderly fallers. Brain Sciences 7. 625 Barcelos, N., Shah, N., Cohen, K., Hogan, M.J., Mulkerrin, E., Arciero, P.J., Cohen, B.D., Kramer, A.F., 626 Anderson-Hanley, C., 2015. Aerobic and Cognitive Exercise (ACE) pilot study for older adults: 627 executive function improves with cognitive challenge while exergaming. J. Int. Neuropsychol. 628 Soc. 21, 768-779.

629	Barnes, D.E.,	Santos-Modesitt,	W., Poelke,	G., Kramer,	A.F., Castro,	С.,	, Middleton, L.E., Yaf	fe, K.,
-----	---------------	------------------	-------------	-------------	---------------	-----	------------------------	---------

- 630 2013. The Mental Activity and eXercise (MAX) trial: A randomized controlled trial to enhance
 631 cognitive function in older adults. JAMA Internal Medicine 173, 797-804.
- Boa Sorte Silva, N.C., Gill, D.P., Gregory, M.A., Bocti, J., Petrella, R.J., 2018a. Multiple-modality
- exercise and mind-motor training to improve mobility in older adults: a randomized controlled
 trial. Exp. Gerontol. 103, 17-26.
- Boa Sorte Silva, N.C., Gill, D.P., Owen, A.M., Liu-Ambrose, T., Hachinski, V., Shigematsu, R., Petrella,
- R.J., 2018b. Cognitive changes following multiple-modality exercise and mind-motor training in
- older adults with subjective cognitive complaints: The M4 study. PLoS One 13, e0196356.
- Boa Sorte Silva, N.C., Gregory, M.A., Gill, D.P., Petrella, R.J., 2017. Multiple-modality exercise and
- 639 mind-motor training to improve cardiovascular health and fitness in older adults at risk for
- 640 cognitive impairment: a randomized controlled trial. Arch. Gerontol. Geriatr. 68, 149-160.
- Borenstein, M., Higgins, J.P., Hedges, L.V., Rothstein, H.R., 2017. Basics of meta-analysis: I(2) is not an
 absolute measure of heterogeneity. Res Synth Methods 8, 5-18.
- Bruderer-Hofstetter, M., Rausch-Osthoff, A.K., Meichtry, A., Munzer, T., Niedermann, K., 2018.
- Effective multicomponent interventions in comparison to active control and no interventions on
- 645 physical capacity, cognitive function and instrumental activities of daily living in elderly people
- 646 with and without mild impaired cognition A systematic review and network meta-analysis.
- 647 Ageing Research Reviews 45, 1-14.
- 648 Combourieu Donnezan, L., Perrot, A., Belleville, S., Bloch, F., Kemoun, G., 2018. Effects of
- simultaneous aerobic and cognitive training on executive functions, cardiovascular fitness and
 functional abilities in older adults with mild cognitive impairment. Mental Health and Physical
 Activity 15, 78-87.
- Damirchi, A., Hosseini, F., Babaei, P., 2018. Mental training enhances cognitive function and BDNF
 more than either physical or combined training in elderly women with MCI: a small-scale study.
 Am. J. Alzheimers Dis. Other Demen. 33, 20-29.

655	Delbroek, T., Vermeylen, W., Spildooren, J., 2017. The effect of cognitive-motor dual task training with
656	the biorescue force platform on cognition, balance and dual task performance in institutionalized
657	older adults: a randomized controlled trial. J Phys Ther Sci 29, 1137-1143.
658	Desjardins-Crepeau, L., Berryman, N., Fraser, S.A., Vu, T.T.M., Kergoat, M.J., Li, K.Z.H., Bosquet, L.,
659	Bherer, L., 2016. Effects of combined physical and cognitive training on fitness and
660	neuropsychological outcomes in healthy older adults. Clin. Interv. Aging 11, 1287-1299.
661	Eggenberger, P., Schumacher, V., Angst, M., Theill, N., de Bruin, E.D., 2015a. Does multicomponent
662	physical exercise with simultaneous cognitive training boost cognitive performance in older
663	adults? A 6-month randomized controlled trial with a 1-year follow-up. Clin. Interv. Aging 10,
664	1335-1349.
665	Eggenberger, P., Theill, N., Holenstein, S., Schumacher, V., de Bruin, E.D., 2015b. Multicomponent
666	physical exercise with simultaneous cognitive training to enhance dual-task walking of older
667	adults: a secondary analysis of a 6-month randomized controlled trial with 1-year follow-up. Clin.
668	Interv. Aging 10, 1711-1732.
669	Eggenberger, P., Wolf, M., Schumann, M., de Bruin, E.D., 2016. Exergame and balance training
670	modulate prefrontal brain activity during walking and enhance executive function in older adults.
671	Front. Aging Neurosci. 8, 66.
672	Egger, M., Davey Smith, G., Schneider, M., Minder, C., 1997. Bias in meta-analysis detected by a simple,
673	graphical test. BMJ 315, 629-634.
674	Fabre, C., Chamari, K., Mucci, P., Masse-Biron, J., Prefaut, C., 2002. Improvement of cognitive function
675	by mental and/or individualized aerobic training in healthy elderly subjects. Int. J. Sports Med.
676	23, 415-421.
677	Falck, R.S., Davis, J.C., Best, J.R., Crockett, R.A., Liu-Ambrose, T., 2019. Impact of exercise training on
678	physical and cognitive function among older adults: a systematic review and meta-analysis.
679	Neurobiol. Aging 79, 119-130.

- 680 Fiatarone Singh, M.A., Gates, N., Saigal, N., Wilson, G.C., Meiklejohn, J., Brodaty, H., Wen, W., Singh,
- 681 N., Baune, B.T., Suo, C., Baker, M.K., Foroughi, N., Wang, Y., Sachdev, P.S., Valenzuela, M.,
- 682 2014. The Study of Mental and Resistance Training (SMART) study-resistance training and/or
- 683 cognitive training in mild cognitive impairment: a randomized, double-blind, double-sham
- 684 controlled trial. J. Am. Med. Dir. Assoc. 15, 873-880.
- Firth, J., Stubbs, B., Vancampfort, D., Schuch, F., Lagopoulos, J., Rosenbaum, S., Ward, P.B., 2018.
- Effect of aerobic exercise on hippocampal volume in humans: a systematic review and meta-analysis. Neuroimage 166, 230-238.
- Fisher, Z., Tipton, E., Zhipeng, H., 2017. robumeta: Robust variance meta regression. R package version
 2.0.
- Fissler, P., Kuster, O., Schlee, W., Kolassa, I.T., 2013. Novelty interventions to enhance broad cognitive
 abilities and prevent dementia: synergistic approaches for the facilitation of positive plastic
 change. Prog. Brain Res. 207, 403-434.
- 693 Fraser, S.A., Li, K.Z.-H., Berryman, N., Desjardins-Crépeau, L., Lussier, M., Vadaga, K., Lehr, L., Vu,
- M., Tuong, T., Bosquet, L., 2017. Does combined physical and cognitive training improve dualtask balance and gait outcomes in sedentary older adults? Front. Hum. Neurosci. 10, 688.
- 696 Gavelin, H.M., Lampit, A., Hallock, H., Sabates, J., Bahar-Fuchs, A., 2020. Cognition-Oriented
- Treatments for Older Adults: a Systematic Overview of Systematic Reviews. Neuropsychol. Rev.
 30, 167-193.
- 699 Gheysen, F., Poppe, L., DeSmet, A., Swinnen, S., Cardon, G., De Bourdeaudhuij, I., Chastin, S., Fias, W.,
- 2018. Physical activity to improve cognition in older adults: can physical activity programs
- enriched with cognitive challenges enhance the effects? A systematic review and meta-analysis.
 International Journal of Behavioral Nutrition and Physical Activity 15.
- 703 Gschwind, Y.J., Eichberg, S., Ejupi, A., de Rosario, H., Kroll, M., Marston, H.R., Drobics, M., Annegarn,
- J., Wieching, R., Lord, S.R., Aal, K., Vaziri, D., Woodbury, A., Fink, D., Delbaere, K., 2015.

705	ICT-based system to predict and prevent falls (iStoppFalls): results from an international
706	multicenter randomized controlled trial. Eur. Rev. Aging Phys. Act. 12, 10.
707	Hagovska, M., Nagyova, I., 2017. The transfer of skills from cognitive and physical training to activities
708	of daily living: a randomised controlled study. European journal of ageing 14, 133-142.
709	Hagovska, M., Olekszyova, Z., 2016. Impact of the combination of cognitive and balance training on gait,
710	fear and risk of falling and quality of life in seniors with mild cognitive impairment. Geriatrics
711	and Gerontology International 16, 1043-1050.
712	Hagovska, M., Takáč, P., Dzvonik, O., 2016. Effect of a combining cognitive and balanced training on
713	the cognitive, postural and functional status of seniors with a mild cognitive deficit in a
714	randomized, controlled trial. Eur. J. Phys. Rehabil. Med. 52, 101-109.
715	Hedges, L.V., Tipton, E., Johnson, M.C., 2010. Robust variance estimation in meta-regression with
716	dependent effect size estimates. Res Synth Methods 1, 39-65.
717	Heffernan, M., Andrews, G., Fiatarone Singh, M.A., Valenzuela, M., Anstey, K.J., Maeder, A.J., McNeil,
718	J., Jorm, L., Lautenschlager, N.T., Sachdev, P.S., Ginige, J.A., Hobbs, M.J., Boulamatsis, C.,
719	Chau, T., Cobiac, L., Cox, K.L., Daniel, K., Flood, V.M., Guerrero, Y., Gunn, J., Jain, N.,
720	Kochan, N.A., Lampit, A., Mavros, Y., Meiklejohn, J., Noble, Y., O'Leary, F., Radd-Vagenas, S.,
721	Walton, C.C., Maintain Your Brain Collaborative, T., Brodaty, H., 2019. Maintain Your Brain:
722	Protocol of a 3-Year Randomized Controlled Trial of a Personalized Multi-Modal Digital Health
723	Intervention to Prevent Cognitive Decline Among Community Dwelling 55 to 77 Year Olds. J.
724	Alzheimers Dis. 70, S221-S237.
725	Hill, N.T., Mowszowski, L., Naismith, S.L., Chadwick, V.L., Valenzuela, M., Lampit, A., 2017.
726	Computerized cognitive training in older adults with mild cognitive impairment or dementia: A
727	systematic review and meta-analysis. Am. J. Psychiatry 174, 329-340.
728	Hiyamizu, M., Morioka, S., Shomoto, K., Shimada, T., 2012. Effects of dual task balance training on dual
729	task performance in elderly people: a randomized controlled trial. Clin. Rehabil. 26, 58-67.

It is made available under a CC-BY-NC-ND 4.0 International license .

- Htut, T.Z.C., Hiengkaew, V., Jalayondeja, C., Vongsirinavarat, M., 2018. Effects of physical, virtual
- reality-based, and brain exercise on physical, cognition, and preference in older persons: a
- randomized controlled trial. Eur. Rev. Aging Phys. Act. 15, 10.
- Hughes, T.F., Flatt, J.D., Fu, B., Butters, M.A., Chang, C.C.H., Ganguli, M., 2014. Interactive video
- gaming compared with health education in older adults with mild cognitive impairment: A
 feasibility study. Int. J. Geriatr. Psychiatry 29, 890-898.
- Hutton, B., Salanti, G., Caldwell, D.M., Chaimani, A., Schmid, C.H., Cameron, C., Ioannidis, J.P., Straus,
- 737 S., Thorlund, K., Jansen, J.P., Mulrow, C., Catala-Lopez, F., Gotzsche, P.C., Dickersin, K.,
- Boutron, I., Altman, D.G., Moher, D., 2015. The PRISMA extension statement for reporting of
- 739 systematic reviews incorporating network meta-analyses of health care interventions: checklist
- and explanations. Ann. Intern. Med. 162, 777-784.
- Johnson, D., Deterding, S., Kuhn, K.A., Staneva, A., Stoyanov, S., Hides, L., 2016. Gamification for
 health and wellbeing: A systematic review of the literature. Internet Interventions 6, 89-106.
- 743 Karssemeijer, E.G.A., Aaronson, J.A., Bossers, W.J., Smits, T., Olde Rikkert, M.G.M., Kessels, R.P.C.,
- 2017. Positive effects of combined cognitive and physical exercise training on cognitive function
- 745 in older adults with mild cognitive impairment or dementia: A meta-analysis. Ageing Research
 746 Reviews 40, 75-83.
- 747 Karssemeijer, E.G.A., Aaronson, J.A., Bossers, W.J.R., Donders, R., Olde Rikkert, M.G.M., Kessels,

R.P.C., 2019. The quest for synergy between physical exercise and cognitive stimulation via
 exergaming in people with dementia: a randomized controlled trial. Alzheimers Research &

750 Therapy 11, 3.

140.

- Kempermann, G., Fabel, K., Ehninger, D., Babu, H., Leal-Galicia, P., Garthe, A., Wolf, S.A., 2010. Why
 and how physical activity promotes experience-induced brain plasticity. Front. Neurosci. 4, 189.
- 753 Kitazawa, K., Showa, S., Hiraoka, A., Fushiki, Y., Sakauchi, H., Mori, M., 2015. Effect of a dual-task
- net-step exercise on cognitive and gait function in older adults. J. Geriatr. Phys. Ther. 38, 133-
- 755

756	Kivipelto, M., Mangialasche, F., Snyder, H.M., Allegri, R., Andrieu, S., Arai, H., Baker, L., Belleville, S.,
757	Brodaty, H., Brucki, S.M., Calandri, I., Caramelli, P., Chen, C., Chertkow, H., Chew, E., Choi,
758	S.H., Chowdhary, N., Crivelli, L., Torre, R., Du, Y., Dua, T., Espeland, M., Feldman, H.H.,
759	Hartmanis, M., Hartmann, T., Heffernan, M., Henry, C.J., Hong, C.H., Hakansson, K., Iwatsubo,
760	T., Jeong, J.H., Jimenez-Maggiora, G., Koo, E.H., Launer, L.J., Lehtisalo, J., Lopera, F.,
761	Martinez-Lage, P., Martins, R., Middleton, L., Molinuevo, J.L., Montero-Odasso, M., Moon,
762	S.Y., Morales-Perez, K., Nitrini, R., Nygaard, H.B., Park, Y.K., Peltonen, M., Qiu, C., Quiroz,
763	Y.T., Raman, R., Rao, N., Ravindranath, V., Rosenberg, A., Sakurai, T., Salinas, R.M., Scheltens,
764	P., Sevlever, G., Soininen, H., Sosa, A.L., Suemoto, C.K., Tainta-Cuezva, M., Velilla, L., Wang,
765	Y., Whitmer, R., Xu, X., Bain, L.J., Solomon, A., Ngandu, T., Carrillo, M.C., 2020. World-Wide
766	FINGERS Network: A global approach to risk reduction and prevention of dementia. Alzheimer's
767	& dementia : the journal of the Alzheimer's Association 16, 1078-1094.
768	Knaepen, K., Goekint, M., Heyman, E.M., Meeusen, R., 2010. Neuroplasticity - exercise-induced
769	response of peripheral brain-derived neurotrophic factor: a systematic review of experimental
770	studies in human subjects. Sports Med. 40, 765-801.
771	Laatar, R., Kachouri, H., Borji, R., Rebai, H., Sahli, S., 2018. Combined physical-cognitive training
772	enhances postural performances during daily life tasks in older adults. Exp. Gerontol. 107, 91-97.
773	Lampit, A., Hallock, H., Valenzuela, M., 2014. Computerized cognitive training in cognitively healthy
774	older adults: a systematic review and meta-analysis of effect modifiers. PLoS Med. 11, e1001756.
775	Legault, C., Jennings, J.M., Katula, J.A., Dagenbach, D., Gaussoin, S.A., Sink, K.M., Rapp, S.R., Rejeski,
776	W.J., Shumaker, S.A., Espeland, M.A., Group, SP.S., 2011. Designing clinical trials for
777	assessing the effects of cognitive training and physical activity interventions on cognitive
778	outcomes: the Seniors Health and Activity Research Program Pilot (SHARP-P) study, a
779	randomized controlled trial. BMC Geriatr. 11, 27.
780	Leon, J., Urena, A., Bolanos, M.J., Bilbao, A., Ona, A., 2015. A combination of physical and cognitive
781	exercise improves reaction time in persons 61-84 years old. J. Aging Phys. Act. 23, 72-77.

782	Leung, I.H., Walton, C.C., Hallock, H., Lewis, S.J., Valenzuela, M., Lampit, A., 2015. Cognitive training
783	in Parkinson disease: A systematic review and meta-analysis. Neurology 85, 1843-1851.
784	Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gotzsche, P.C., Ioannidis, J.P., Clarke, M.,
785	Devereaux, P.J., Kleijnen, J., Moher, D., 2009. The PRISMA statement for reporting systematic
786	reviews and meta-analyses of studies that evaluate health care interventions: explanation and
787	elaboration. PLoS Med. 6, e1000100.
788	Linde, K., Alfermann, D., 2014. Single versus combined cognitive and physical activity effects on fluid
789	cognitive abilities of healthy older adults: a 4-month randomized controlled trial with follow-up.
790	J. Aging Phys. Act. 22, 302-313.
791	Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C., Burns, A.,
792	Cohen-Mansfield, J., Cooper, C., Costafreda, S.G., Dias, A., Fox, N., Gitlin, L.N., Howard, R.,
793	Kales, H.C., Kivimaki, M., Larson, E.B., Ogunniyi, A., Orgeta, V., Ritchie, K., Rockwood, K.,
794	Sampson, E.L., Samus, Q., Schneider, L.S., Selbaek, G., Teri, L., Mukadam, N., 2020a. Dementia
795	prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet.
796	Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C., Burns, A.,
797	Cohen-Mansfield, J., Cooper, C., Costafreda, S.G., Dias, A., Fox, N., Gitlin, L.N., Howard, R.,
798	Kales, H.C., Kivimaki, M., Larson, E.B., Ogunniyi, A., Orgeta, V., Ritchie, K., Rockwood, K.,
799	Sampson, E.L., Samus, Q., Schneider, L.S., Selbaek, G., Teri, L., Mukadam, N., 2020b. Dementia
800	prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413-446.
801	Lustig, C., Shah, P., Seidler, R., Reuter-Lorenz, P.A., 2009. Aging, training, and the brain: a review and
802	future directions. Neuropsychol. Rev. 19, 504-522.
803	Maffei, L., Picano, E., Andreassi, M., Angelucci, A., Baldacci, F., Baroncelli, L., Begenisic, T., Bellinvia,
804	P., Berardi, N., Biagi, L., 2017. Randomized trial on the effects of a combined physical/cognitive
805	training in aged MCI subjects: the Train the Brain study. Sci. Rep. 7, 39471.
806	Maillot, P., Perrot, A., Hartley, A., 2012. Effects of interactive physical-activity video-game training on
807	physical and cognitive function in older adults. Psychol. Aging 27, 589-600.

	41
808	Mavros, Y., Gates, N., Wilson, G.C., Jain, N., Meiklejohn, J., Brodaty, H., Wen, W., Singh, N., Baune,
809	B.T., Suo, C., Baker, M.K., Foroughi, N., Wang, Y., Sachdev, P.S., Valenzuela, M., Fiatarone
810	Singh, M.A., 2017. Mediation of cognitive function improvements by strength gains after
811	resistance training in older adults with mild cognitive impairment: outcomes of the study of
812	mental and resistance training. J. Am. Geriatr. Soc. 65, 550-559.
813	McDaniel, M.A., Binder, E.F., Bugg, J.M., Waldum, E.R., Dufault, C., Meyer, A., Johanning, J., Zheng,
814	J., Schechtman, K.B., Kudelka, C., 2014. Effects of cognitive training with and without aerobic
815	exercise on cognitively demanding everyday activities. Psychol. Aging 29, 717-730.
816	McEwen, S.C., Siddarth, P., Abedelsater, B., Kim, Y., Mui, W., Wu, P., Emerson, N.D., Lee, J.,
817	Greenberg, S., Shelton, T., Kaiser, S., Small, G.W., Merrill, D.A., 2018. Simultaneous Aerobic
818	Exercise and Memory Training Program in Older Adults with Subjective Memory Impairments.
819	J. Alzheimers Dis. 62, 795-806.
820	Middleton, L.E., Ventura, M.I., Santos-Modesitt, W., Poelke, G., Yaffe, K., Barnes, D.E., 2018. The
821	Mental Activity and eXercise (MAX) trial: effects on physical function and quality of life among
822	older adults with cognitive complaints. Contemp. Clin. Trials 64, 161-166.
823	Mrakic-Sposta, S., Di Santo, S.G., Franchini, F., Arlati, S., Zangiacomi, A., Greci, L., Moretti, S.,
824	Jesuthasan, N., Marzorati, M., Rizzo, G., Sacco, M., Vezzoli, A., 2018. Effects of combined
825	physical and cognitive virtual reality-based training on cognitive impairment and oxidative stress
826	in MCI patients: a pilot study. Front. Aging Neurosci. 10, 282.
827	Ngandu, T., Lehtisalo, J., Solomon, A., Levalahti, E., Ahtiluoto, S., Antikainen, R., Backman, L.,
828	Hanninen, T., Jula, A., Laatikainen, T., Lindstrom, J., Mangialasche, F., Paajanen, T., Pajala, S.,
829	Peltonen, M., Rauramaa, R., Stigsdotter-Neely, A., Strandberg, T., Tuomilehto, J., Soininen, H.,
830	Kivipelto, M., 2015. A 2 year multidomain intervention of diet, exercise, cognitive training, and

- 831 vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people
- (FINGER): a randomised controlled trial. Lancet 385, 2255-2263.

It is made available under a CC-BY-NC-ND 4.0 International license .

- 833 Nikolakopoulou, A., Higgins, J.P.T., Papakonstantinou, T., Chaimani, A., Del Giovane, C., Egger, M.,
- 834 Salanti, G., 2020. CINeMA: An approach for assessing confidence in the results of a network
- meta-analysis. PLoS Med. 17, e1003082.
- 836 Nilsson, J., Ekblom, O., Ekblom, M., Lebedev, A., Tarassova, O., Moberg, M., Lovden, M., 2020. Acute
- 837 increases in brain-derived neurotrophic factor in plasma following physical exercise relates to
 838 subsequent learning in older adults. Sci. Rep. 10, 4395.
- 839 Nishiguchi, S., Yamada, M., Tanigawa, T., Sekiyama, K., Kawagoe, T., Suzuki, M., Yoshikawa, S., Abe,
- 840 N., Otsuka, Y., Nakai, R., Aoyama, T., Tsuboyama, T., 2015. A 12-week physical and cognitive
- 841 exercise program can improve cognitive function and neural efficiency in community-dwelling

older adults: a randomized controlled trial. J. Am. Geriatr. Soc. 63, 1355-1363.

- Norouzi, E., Vaezmosavi, M., Gerber, M., Puhse, U., Brand, S., 2019. Dual-task training on cognition and
 resistance training improved both balance and working memory in older people. The Physician
 and Sportsmedicine 47, 471-478.
- Northey, J.M., Cherbuin, N., Pumpa, K.L., Smee, D.J., Rattray, B., 2018. Exercise interventions for
- 847 cognitive function in adults older than 50: a systematic review with meta-analysis. Brittish
 848 Journal of Sports Medicine 52, 154-160.
- Papakonstantinou, T., Nikolakopoulou, A., Higgins, J.P., Egger, M., Salanti, G., 2020. CINeMA:
- 850 Software for semiautomated assessment of the confidence in the results of network
 851 meta analysis. Campbell Systematic Reviews 16, e1080.
- Park, H., Park, J.H., Na, H.R., Hiroyuki, S., Kim, G.M., Jung, M.K., Kim, W.K., Park, K.W., 2019.
- Combined intervention of physical activity, aerobic exercise, and cognitive exercise intervention
 to prevent cognitive decline for patients with mild cognitive impairment: a randomized controlled
 clinical study. J 8, 940.
- 856 Petersen, R.C., Lopez, O., Armstrong, M.J., Getchius, T.S.D., Ganguli, M., Gloss, D., Gronseth, G.S.,
- 857 Marson, D., Pringsheim, T., Day, G.S., Sager, M., Stevens, J., Rae-Grant, A., 2018. Practice
- guideline update summary: Mild cognitive impairment. Neurology 90, 126-135.

- Pompeu, J.E., Mendes, F.A., Silva, K.G., Lobo, A.M., Oliveira Tde, P., Zomignani, A.P., Piemonte, M.E.,
- 860 2012. Effect of Nintendo Wii-based motor and cognitive training on activities of daily living in
- patients with Parkinson's disease: a randomised clinical trial. Physiotherapy 98, 196-204.
- Pustejovsky, J., 2020. clubSandwich: Cluster-robust (sandwich) variance estimators with small-sample
 corrections. R package version 0.4.2.
- Rahe, J., Becker, J., Fink, G.R., Kessler, J., Kukolja, J., Rahn, A., Rosen, J.B., Szabados, F., Wirth, B.,
- Kalbe, E., 2015. Cognitive training with and without additional physical activity in healthy older
 adults: Cognitive effects, neurobiological mechanisms, and prediction of training success. Front.
 Aging Neurosci. 7, 187.
- Reigal, R., Mendo, A.H., 2014. Efectos de un programa cognitivo-motriz sobre la función ejecutiva en
 una muestra de personas mayores. RICYDE. Revista Internacional de Ciencias del Deporte 10,
 206-220.
- 871 Rezola-Pardo, C., Arrieta, H., Gil, S.M., Zarrazquin, I., Yanguas, J.J., Lopez, M.A., Irazusta, J.,
- 872 Rodriguez-Larrad, A., 2019. Comparison between multicomponent and simultaneous dual-task
- 873 exercise interventions in long-term nursing home residents: the Ageing-ONDUAL-TASK
- randomized controlled study. Age Ageing 48, 817-823.
- Riley, R.D., Higgins, J.P., Deeks, J.J., 2011. Interpretation of random effects meta-analyses. BMJ 342,
 d549.
- 877 Romera-Liebana, L., Orfila, F., Segura, J.M., Real, J., Fabra, M.L., Moller, M., Lancho, S., Ramirez, A.,
- 878 Marti, N., Cullell, M., Bastida, N., Martinez, D., Gine, M., Cendros, P., Bistuer, A., Perez, E.,
- Fabregat, M.A., Foz, G., 2018. Effects of a primary care-based multifactorial intervention on
- physical and cognitive function in frail, elderly individuals: a randomized controlled trial.
- Journals of Gerontology: Medical Sciences 73, 1688-1674.
- Rücker, G., Krahn, U., König, J., Efthimiou, O., Schwarzer, G., 2020a. netmeta: Network meta-analysis
 using frequentist methods. R package. Version 1.2-1.

- Rücker, G., Petropoulou, M., Schwarzer, G., 2020b. Network meta-analysis of multicomponent
 interventions. Biom J 62, 808-821.
- Rucker, G., Schwarzer, G., 2015. Ranking treatments in frequentist network meta-analysis works without
 resampling methods. BMC Med. Res. Methodol. 15, 58.
- Sala, G., Tatlidil, K.S., Gobet, F., 2019. Still no evidence that exergames improve cognitive ability: A
 commentary on Stanmore et al. (2017). Neurosci. Biobehav. Rev.
- 890 Salanti, G., 2012. Indirect and mixed-treatment comparison, network, or multiple-treatments meta-
- analysis: many names, many benefits, many concerns for the next generation evidence synthesis
 tool. Research Synthesis Methods 3, 80-97.
- 893 Schattin, A., Arner, R., Gennaro, F., de Bruin, E.D., 2016. Adaptations of prefrontal brain activity,
- executive functions, and gait in healthy elderly following exergame and balance training: A
 randomized-controlled study. Front. Aging Neurosci. 8, 278.
- Schoene, D., Lord, S.R., Delbaere, K., Severino, C., Davies, T.A., Smith, S.T., 2013. A randomized
- controlled pilot study of home-based step training in older people using videogame technology.
 PLoS One 8, e57734.
- Schoene, D., Valenzuela, T., Toson, B., Delbaere, K., Severino, C., Garcia, J., Davies, T.A., Russell, F.,
- 900 Smith, S.T., Lord, S.R., 2015. Interactive cognitive-motor step training improves cognitive risk
- factors of falling in older adults a randomized controlled trial. PLoS One 10, e0145161.
- 902 Shatil, E., 2013. Does combined cognitive training and physical activity training enhance cognitive
- abilities more than either alone? A four-condition randomized controlled trial among healthyolder adults. Front. Aging Neurosci. 5, 8.
- Shimada, H., Makizako, H., Doi, T., Park, H., Tsutsumimoto, K., Verghese, J., Suzuki, T., 2018. Effects
 of combined physical and cognitive exercises on cognition and mobility in patients with mild
 cognitive impairment: a randomized clinical trial. J. Am. Med. Dir. Assoc. 19, 584-591.
- 908 Song, J., Paul, S.S., Caetano, M.J.D., Smith, S., Dibble, L.E., Love, R., Schoene, D., Menant, J.C.,
- 909 Sherrington, C., Lord, S.R., Canning, C.G., Allen, N.E., 2018. Home-based step training using

910	videogame technology in people with Parkinson's disease: A single-blinded randomised
911	controlled trial. Clin. Rehabil. 32, 299-311.

- 912 Stanmore, E., Mavroeidi, A., de Jong, L.D., Skelton, D.A., Sutton, C.J., Benedetto, V., Munford, L.A.,
- 913 Meekes, W., Bell, V., Todd, C., 2019. The effectiveness and cost-effectiveness of strength and
- balance Exergames to reduce falls risk for people aged 55 years and older in UK assisted living
- facilities: a multi-centre, cluster randomised controlled trial. BMC Med. 17, 49.
- 916 Stanmore, E., Stubbs, B., Vancampfort, D., de Bruin, E.D., Firth, J., 2017. The effect of active video
- 917 games on cognitive functioning in clinical and non-clinical populations: A meta-analysis of
- 918 randomized controlled trials. Neurosci. Biobehav. Rev. 78, 34-43.
- 919 Sterne, J.A., Savovic, J., Page, M.J., Elbers, R.G., Blencowe, N.S., Boutron, I., Cates, C.J., Cheng, H.Y.,
- 920 Corbett, M.S., Eldridge, S.M., Emberson, J.R., Hernan, M.A., Hopewell, S., Hrobjartsson, A.,
- 921 Junqueira, D.R., Juni, P., Kirkham, J.J., Lasserson, T., Li, T., McAleenan, A., Reeves, B.C.,
- 922 Shepperd, S., Shrier, I., Stewart, L.A., Tilling, K., White, I.R., Whiting, P.F., Higgins, J.P.T.,
- 2019. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366, 14898.
- 924 Sterne, J.A., Sutton, A.J., Ioannidis, J.P., Terrin, N., Jones, D.R., Lau, J., Carpenter, J., Rucker, G.,
- Harbord, R.M., Schmid, C.H., Tetzlaff, J., Deeks, J.J., Peters, J., Macaskill, P., Schwarzer, G.,
- 926 Duval, S., Altman, D.G., Moher, D., Higgins, J.P., 2011. Recommendations for examining and
- 927 interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 343,928 d4002.
- Ten Brinke, L.F., Best, J.R., Chan, J.L.C., Ghag, C., Erickson, K.I., Handy, T.C., Liu-Ambrose, T., 2019.
 The effects of computerized cognitive training with and without physical exercise on cognitive
 function in older adults: an 8-week randomized controlled trial. J. Gerontol. A Biol. Sci. Med.
 Sci. 04, 755-763.
- van Balkom, T.D., van den Heuvel, O.A., Berendse, H.W., van der Werf, Y.D., Vriend, C., 2020. The
 Effects of Cognitive Training on Brain Network Activity and Connectivity in Aging and
 Neurodegenerative Diseases: a Systematic Review. Neuropsychol. Rev. 30, 267-286.

It is made available under a CC-BY-NC-ND 4.0 International license .

- van het Reve, E., de Bruin, E.D., 2014. Strength-balance supplemented with computerized cognitive
- training to improve dual task gait and divided attention in older adults: a multicenter randomized-

938 controlled trial. BMC Geriatr. 14, 134.

- Webb, S.L., Loh, V., Lampit, A., Bateman, J.E., Birney, D.P., 2018. Meta-Analysis of the Effects of
- 940 Computerized Cognitive Training on Executive Functions: a Cross-Disciplinary Taxonomy for
- 941 Classifying Outcome Cognitive Factors. Neuropsychol. Rev. 28, 232-250.
- 942 World Health Organization and Alzehimer's Disease International, 2012. Dementia: a public health

943 priority. World Health Organization, Geneva, p. 112.

- Yang, C., Moore, A., Mpofu, E., Dorstyn, D., Li, Q., Yin, C., 2019. Effectiveness of combined cognitive
- and physical interventions to enhance functioning in older adults with mild cognitive impairment:
- a systematic review of randomized controlled trials. Gerontologist.
- Zhu, X.Y., Yin, S.F., Lang, M.J., He, R.Q., Li, J., 2016. The more the better? A meta-analysis on effects
 of combined cognitive and physical intervention on cognition in healthy older adults. Ageing

949 Research Reviews 31, 67-79.

950

Table 1. Characteristics of Included Studies

Study	Population	n	Age	% female	MMSE (or equivalent)	Cognitive Intervention Component	Physical Intervention Component	Combination method	Supervision	Dur ation	Sessions / week	Session length (min)	Dose (hrs)	Comparison group(s)	Country
Adcock et al. (2020)	Cognitively healthy	31	73.9	52	29.05	Step-based cognitive exercises	Tai Chi, dancing, step training	Exergaming	Unsupervised	16	3	30	24	Passive control	Switzerland
Anderson- Hanley et al. (2018)	MCI	13	78.1	50	21.8 (MoCA)	Cybercycling exergame	Cycling	Exergaming	Supervised	24	4	45	72	PE: Cycling with scenic bike tour	USA
Bacha et al. (2018)	Cognitively healthy	46	68	34	23.00 (MoCA)	Kinect Adventure games	Kinect Adventure games	Exergaming	Supervised	7	2	60	14	PE: Balance and strength	Brazil
Barban et al. (2017)	Cognitively healthy (at risk of falls)	481	75	65	≥20	Multidomain CCT	Motor training	Sequential	Supervised	12	2	60 (CT: 30, PE: 30)	24	CT: Multidomain CCT PE: Motor training Sham: Data entry on computer	Italy, Greece, Spain, Serbia
Barcelos et al. (2015)	MCI	17	85.1	56	22.6 (MoCA)	Cybercycling exergame	Cycling	Exergaming	Supervised	12	2-5	20 - 45	18	PE: Cycling with scenic bike tour	USA, Ireland
Barnes et al. (2013)	Cognitively healthy (cognitive complaints)	126	73.4	63	28.34 (3MS) ^a	Multidomain CCT	Aerobic and strength	Sequential	Supervised	12	6 (CT:3, PE: 3)	60	72	CT: Multidomain CCT + stretching PE: Aerobic and strength training + educational DVDs Sham: Educational DVDs + stretching	Brazil Italy, Greece, Spain, Serbia USA, Ireland USA
Boa Sorte Silva et al. (2018b)	Cognitively healthy (cognitive complaints)	127	67.5	45	29.1	Square- stepping exercise, memorizing complex stepping patterns	Aerobic, resistance and stepping training	Simultaneous	Supervised	24	3	60	72	PE: Aerobic, resistance and balance	Canada
Combourieu Donnezan et al. (2018)	MCI	69	76.7	Nr	27.78	Multidomain CCT	Aerobic training on bikes	Simultaneous	Supervised	12	2	60	24	CT: Multidomain CCT PE: Aerobic training on bikes Passive control	France
Damirchi et al. (2018)	MCI	44	68.3	100	23.43	Multidomain CCT	Aerobic exercise, muscular strength and movements	Sequential	Supervised	8	3	60 (CT: 30, PE: 30) - 120 (CT: 60, PE: 60)	36	CT: Multidomain CCT PE: Aerobic and strength Passive control	Iran

medRxiv preprint doi: https://doi.org/10.1101/2020.08.08.20170654; this version posted November 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

Delbroek et al. (2017)	MCI	17	87.2	65	17.25 (MoCA)	BioRescue platform training memory, attention and dual tasking	Balance and weight bearing	Exergaming	Supervised	6	2	18-30	5	Passive control	Belgium
Desjardins- Crepeau et al. (2016)	Cognitively healthy	76	72.4	70	28.89	Single domain CCT (dual task)	Treadmill walking and resistance training	Sequential	Supervised	12	3 (CT: 1, PE: 2)	60	36	CT: Single domain CCT + Stretching/toning PE: Aerobic/resistance + computer lessons Sham: Stretching/toning + computer lessons	Canada
Eggenberger et al. (2015a)	Cognitively healthy	71	78.9	65	28.23	Group 1: Videogame dancing Group 2: Verbal memory training	Group 1: Videogame dancing Group 2: Treadmill walking Both groups: strength and balance	Group 1: Exergaming Group 2: Simultaneous	Supervised	26	2	60	52	PE: Treadmill walking, strength and balance	Switzerland Australia
Eggenberger et al. (2016)	Cognitively healthy	33	74.9	64	26.24 (MoCA)	Videogame dancing	Videogame dancing	Exergaming	Supervised	8	3	30	12	PE: Balance and stretching	Switzerland
Fabre et al. (2002)	Cognitively healthy	32	65.9	84	Nr	Multidomain CT	Aerobic exercise	Sequential	Supervised	8	3 (CT: 1, PE: 2)	CT: 90 PE: 60	28	CT: Multidomain CT PE: Aerobic exercise Sham: Leisure activities	France
Fiatarone Singh et al. (2014)	MCI	100	70.1	68	27	Multidomain CCT	Progressive resistance training	Sequential	Supervised	26	2	100 (PE: 50, CT: 50)	86	CT: Multidomain CCT + stretching PE: Progressive resistance training + documentaries Sham: Documentaries + stretching	Australia 6
Gschwind et al. (2015)	Cognitively healthy	153	74.7	61	Nr	iStoppFalls exergame with additional cognitive tasks in higher levels (semantic and working memory)	Strength and balance	Exergaming	Unsupervised	16	3	60	48	Passive control: Education booklet	Germany, Spain, Australia

Hagovska et al. (2016)	MCI	80	67	49	26.4	Multidomain CCT with cognitive- motor elements	Dynamic balance training	Sequential	Supervised	10	9 (CT: 2, PE: 7)	30	45	PE: Dynamic balance training	Slovak Republic
Hiyamizu et al. (2012)	Cognitively healthy	36	72	72	Nr	Cognitive tasks (calculation task, visual search task, verbal fluency task)	Strength and balance	Simultaneous	Supervised	12	2	60	24	PE: Strength and balance	Japan
Htut et al. (2018)	Cognitively healthy	84	75.8	44	25.2	X-box 360 games	X-box 360 games	Exergaming	Supervised	8	3	30	12	PE: Strength and balance training Sham: Board and card games Passive control	Thailand tr. made ava
Hughes et al. (2014)	MCI	20	77.4	70	27.2	Nintendo Wii games	Nintendo Wii games	Exergaming	Supervised	24	1	90	36	Sham: Health education	USA ab
Karssemeijer et al. (2019)	Dementia	101	79.2	46	22.9	Bicycle exergame with cognitive tasks targeting inhibition, switching and processing speed	Cycling	Exergaming	Supervised	12	3	30-50	24	PE: Cycling Sham: Relaxation and flexibility	Thailand Trimade available USA ble Netherlands der a CC-ND A Japan Ditermational Tunisia all
Kitazawa et al. (2015)	Cognitively healthy	60	76.4	55	Nr	Dual-task net- step exercise (learning step sequences)	Net-step exercise	Simultaneous	Supervised	8	1	60	8	Passive control	Japan D
Laatar et al. (2018)	Cognitively healthy	24	66.9	Nr	Nr	Cognitive tasks (objects manipulation, calculations, visual searching, naming, memory, visual imaginary) during exercise	Balance- strength exercises	Simultaneous	Supervised	24	3	60	72	PE: Balance- strength exercises	Tunisia al license al
Legault et al. (2011)	Cognitively healthy	67	76.4	51	28.41 (3MSE) ^a	Single domain CCT (memory)	Aerobic and flexibility	Sequential	Supervised	16	2	105 (CT: 45, PE: 60)	56	CT: Single domain CCT PE: Aerobic and flexibility Sham: Health education	USA
Leon et al. (2015)	Cognitively healthy	138	71.3	77	Nr	Cognitive tasks	Strength, resistance and	Simultaneous	Supervised	12	2	60	24	PE: strength, resistance and	Spain

						(stimulus processing, decision- making, and movement programming) during exercise	aerobic							aerobic Passive control	
Linde and Alfermann (2014)	Cognitively healthy	55	67.1	59	Nr	Multidomain CT	Aerobic and strength	Sequential	Supervised	16	2 (Combin ed: 1, PE: 1)	60 - 90 (CT: 30, PE: 60)	40	CT: Multidomain CT PE: Aerobic and strength Passive control	Germany
Maffei et al. (2017)	MCI	113	74.5	49	25.6	Multidomain CT (paper and pencil and computerized tasks)	Aerobic, strength and flexibility	Sequential	Supervised	28	6 (CT: 3, PE: 3)	CT: 120 PE:: 60	252	Passive control	Italy Is made available
Maillot et al. (2012)	Cognitively healthy	32	73.5	84	28.97	Nintendo Wii games	Nintendo Wii games	Exergaming	Supervised	12	2	60	24	Passive control	France
McDaniel et al. (2014)	Cognitively healthy	79	65	64	29	Multidomain CT	Aerobic exercise	Sequential	Supervised	24 (PE: 24, CT: 8)	6 (CT: 3, PE: 3)	60	96	CT: Multidomain CT PE: Aerobic exercise Sham: Low- intensity exercise, health education	Italy Trance USA CCC
Mrakic-Sposta et al. (2018)	MCI	10	73.3	60	23	Virtual reality training including cycling, crossing roads and shopping	Virtual reality training including cycling, crossing roads and shopping	Simultaneous	Supervised	6	3	45	13.5	Passive control	Italy 2
Nishiguchi et al. (2015)	Cognitively healthy	48	73.2	46	27.6	Cognitive tasks (verbal fluency, cognitive- motor tasks) during exercise	Strength and stepping exercise	Simultaneous	Supervised	12	1	90	18	Passive control	Japan 5
Norouzi et al. (2019)	Cognitively healthy	60	68.3	0	26.3	Cognitive tasks (matching, arithmetic, counting, remembering) during exercise	Resistance	Simultaneous	Supervised	4	3	60-80	14	PE: Motor-motor dual task training Sham: Group discussions	Iran
Park et al. (2019)	MCI	49	71.6	69	24.5	Cognitive tasks (word games, numerical	Aerobic and balance	Simultaneous	Supervised	24	1	110	44	Passive control	Korea

	1		-				1								1
						calculations, memory span) during exercise									
Pompeu et al. (2012)	Parkinson's disease	32	67.4	33	26.80 (MoCA)	Nintendo Wii games	Nintendo Wii games and global exercises	Exergaming	Supervised	7	2	60	14	PE: Balance training	Brazil
Rahe et al. (2015)	Cognitively healthy	68	68.4	68	Nr	Group 1: Multidomain CT Group 2: Multidomain CT + counseling	Multicompon ent physical activity (strength, flexibility, coordination, endurance, aerobic)	Sequential	Supervised	7	2	90 (PE: 20; CT: 70)	21	CT: Multidomain CT	Germany
Reigal and Mendo (2014)	Cognitively healthy	57	66.1	100	Nr	Cognitive tasks (focusing on executive function, attention, cognitive- motor tasks) during exercise	Aerobic exercise	Simultaneous	Supervised	20	2	75	50	PE: Aerobic exercise	Spain Spain Spain
Rezola-Pardo et al. (2019)	Long-term nursing home residents ^b	68	85.1	67	12.8 (MoCA)	Cognitive tasks (attention, executive function, semantic memory) during exercise	Strength and balance	Simultaneous	Supervised	12	2	60	24	PE: Strength and balance	Spain C
Romera- Liebana et al. (2018)	Cognitively healthy (frail)	352	77.3	75	26.5 (MEC-35) ^a	Multidomain CT	Multicompon ent physical activity (aerobic, strength and balance)	Sequential	Supervised	12 (PE: 6 CT: 6)	2	PE: 60 CT: 90	30	Passive control	Spain 5
Schattin et al. (2016)	Cognitively healthy	27	80	44	28.7	Videogame dancing	Videogame dancing	Exergaming	Supervised	8	3	30	12	PE: Balance training	Switzerland
Schoene et al. (2013)	Cognitively healthy	32	77.9	Nr	28.85	Exergame step pad training	Exergame step pad training	Exergaming	Unsupervised	8	3	15-20	8	Passive control	Australia
Schoene et al. (2015)	Cognitively healthy	81	81.5	67	Nr	Exergame step pad training	Exergame step pad training	Exergaming	Unsupervised	16	3	20	16	Passive control: Health advice	Australia

Shatil (2013)	Cognitively healthy	122	79.8	69	>24	Multidomain CCT	Aerobic and strength	Sequential	Supervised	16	6 (CT: 3, PE: 3)	CT: 40 PE: 45	68	CT: Multidomain CT PE: Aerobic and strength Sham: Book club	USA
Shimada et al. (2018)	MCI	308	71.6	50	26.7	Dual-task "cognicize" training	Aerobic, strength and balance	Simultaneous	Supervised	40	1	90	60	Sham: Health education	Japan
Song et al. (2018)	Parkinson's disease	53	66.6	60	28.48	Exergame step pad training	Exergame step pad training	Exergaming	Unsupervised	12	3	15	9	Passive control	Australia
Stanmore et al. (2019)	People living in assisted living facilities ^c	92	77.8	78	Nr	Exergames	Exergames implementing strength, balance, coordination and flexibility	Exergaming	Supervised	12	3	10	6	Passive control	UK
Ten Brinke et al. (2019)	Cognitively healthy	117	72.2	60	28.6	Multidomain CCT	Brisk walk	Sequential	Supervised	8	6	60 (PE: 15, CT: 45)	48	CT: Multidomain CCT Sham: Sham CT + sham PE + health education	Canada
van het Reve and de Bruin (2014)	Cognitively healthy	151	81.5	70	27.65	Single domain CCT (attention)	Strength and balance	Sequential	Supervised	12	5 (CT: 3, PE: 2)	CT: 10 PE: 40	22	PE: Strength and balance	Switzerland
^a Conve	erted to a 0-3	0 scale	e												97-N0
^b Classi	fied as deme	ntia													bo. hination
^c Classif	fied as mild c	cognit	ive imp	pairment											Jintern
Note. C	CT = compu	terize	d cogn	itive train	ning. CT =	cognitive tra	aining. MCI =	= mild cognit	ive impairme	nt. ME	C-35 = M	lini-Exami	nation	Cognitive of Lo	bo.
MMSE	= Mini-Men	tal Sta	ate Exa	minatior	n. MoCA =	Montreal C	ognitive Asse	essment. PE =	= physical exe	ercise. 3	3MSE = N	Modified N	lini-Me	ental State Exan	nination

Appendix

- Appendix A. Search strategy
- Appendix B. Classification of cognitive and physical outcomes
- Appendix C. List of excluded studies
- Appendix D. Risk of bias within individual studies
- Appendix E. Funnel plots for cognitive, physical and psychosocial outcomes
- Appendix F. Results of individual studies and comparisons: Overall cognition
- Appendix G. Results of individual studies and comparisons: Physical outcomes
- Appendix H. Results of individual studies and comparisons: Psychosocial outcomes
- Appendix I. Results of individual studies and comparisons: Dementia and Parkinson's disease
- Appendix J. Distribution of potential effect modifiers
- Appendix K. CINeMA grading of the certainty of the evidence
- Appendix L. Sensitivity analyses

It is made available under a CC-BY-NC-ND 4.0 International license .

Appendix A. Search strategy (Ovid)

- 1. (cognitive training or brain training or attention training or reasoning training or memory training or mental training or mental skills training or neurocognitive training).mp
- 2. (cognitive exercise or brain exercise or memory exercise or attention exercise or reasoning exercise).mp
- 3. (cognitive stimulation or memory stimulation or memory enhanc\$ or cognitive enhanc\$).mp
- 4. (cognitive rehabilitat\$ or cognitive remediation or cognitive restructur\$).mp
- 5. (cognitive activit\$ or mental activit\$).mp
- 6. (speed and processing and training).mp
- 7. (mnemonic\$ or method of loci).mp
- 8. (video game\$ or videogame\$ or wii or computer game\$ or virtual reality).mp
- 9. (cognitive intervention\$ or neurocognitive intervention\$ or neuropsychological intervention\$).mp
- 10. exercis\$.mp
- 11. sport\$.mp
- 12. exp Exercise/
- 13. exp Physical fitness/
- 14. (aerobic exercis\$ or aerobic train\$ or aerobic fitness or aerobic program\$).mp
- 15. (resistance exercis\$ or resistance train\$ or anaerobic exercis\$ or anaerobic train\$ or resistance program\$).mp
- 16. (physical or aerobic or endurance or cardiorespiratory or cardiovascular or resistance or strength).mp
- 17. (bicycl\$ or bike rid\$ or bicycle rid\$).mp
- 18. (multimodal or multidomain or multicomponent or multi-modal or multi-domain or multicomponent or dual task or dual-task or tai chi or taiji or tai chi chuan or danc\$).mp
- 19. (exergam\$ or active video game\$ or active videogame\$ or kinect or active play or interactive video).mp
- 20. (cognitive adj2 physical).mp
- 21. (cognition or cognitive or memory or executive function\$ or executive control or attention or visuospatial or processing speed or language).mp
- 22. (older adults or elder\$ or senior\$ or adult\$ or older or ag?ing).mp
- 23. (mild cognitive impairment or mildly cognitively impaired or Parkins\$ or dement\$ or alzheimer\$).mp
- 24. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9
- 25. 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17
- 26. 22 or 23
- 27. 24 and 25
- 28. 18 or 19 or 20
- 29. (27 or 28) and 21 and 26

Appendix B. Classification of cognitive and physical outcomes

COGNITIVE OUTCOMES

COG	NITIVE OUTCOMES
Executive Functions	Processing Speed
1-Back	Age concentration test A
2-Back	Age concentration test B
Attention Network Test, conflict	Attention Network Test, alert (ms)
Attentional Network Test executive	Attention Network Test, orient (ms)
Avoiding Distracters	Attention Network Test, reaction time (ms)
Baddeley DT-Dual task index	Attentional Matrices
Brief Test of Attention	Baddeley DT (Xs)
Color trails	Cancellation
Dimensional Change Card Sort	d2 Test of attention
Divided Attention	Decision time: simple and choice RT
EFT congruent RT	Digit symbol coding
EFT incongruent RT	Digit-symbol substitution test
Flanker task	Divided attention MA upper channel
Go/No-go	Divided attention RT lower channel
Inhibition	DRT(A) number of correct reactions
Set-shifting	DRT(N) number of incorrect reactions
•	
Shifting Streege Color Words	Hand RT
Stroop Color-Words	Movement time: simple and choice RT
Task switching test	Number comparison
TMT B	Pattern comparison processing speed test
	Sensor-based Hand Reaction Time
Short-Term and Working Memory	Simple RT
Auditory Working Memory	Speed of visual-spatial IP
Babcock short story immediate	Stroop Colors
Benton Visual Retention Test	Stroop Words
Corsi test forward	Symbol Digits Modalities Test
Digit Span backwards	Symbol search
Digit span forwards	Symbol-Digit Substitution Test
Executive control	Tapping Test
Global Visual Memory	TMT A
List sorting working memory test	UFOV divided attention
Logical Memory I - WMS	UFOV processing speed
Mental control (WMS)	UFOV selective attention
Paired-Associates	
RCFT immediate recall	Visual Processing
Self-ordered pointing task	Copy of drawings with programming elements
Spatial span	Copy of freehand drawings
Visual reproductions (WMS)	Direction headings
	Mental rotation
Global Cognition	RCFT copy
ADAS-Cog	Spatial relations (LPS 50+)
Addenbrooke's Cognitive Examination	Visual Scanning
CAMCI total	r isuai Scanning
DemTect Cognitive status	Fluid Doosoning
MMSE	Fluid Reasoning
	Cooking Breakfast Task Letter Sets
MoCA	
TDAS total score	Matrix Reasoning Test
	Raven Coloured Progressive Matrices
	Reasoning (LPS 50+)
	Units Martt conde test

Rule Shift cards test WAIS-III Matrices

It is made available under a CC-BY-NC-ND 4.0 International license .

4

Long-Term Storage and Retrieval Babcock short story delayed COWAT DemTect Verbal memory delayed DemTect Verbal memory immediate Designaiton of famous people's names Evocation of words Hopkins Verbal Learning Task - delayed recall Hopkins Verbal Learning Task - immediate recall List learning memory sum from ADAS-Cog Location learning test displacement score delayed recall Logical Memory II - WMS Medium-term verbal memory Memory for Health Information Naming Oral reading recognition test Picture sequence memory test Picture vocabulary test RAVLT - delayed recall RAVLT - immediate recall **RAVLT** recognition Story recall Verbal designation of images Verbal fluency - category Verbal fluency - letter Virtual week

WAIS-III Similarities Verbal abstraction of word pairs

PHYSICAL OUTCOMES

Aerobic capacity

6 min walk test 6 min step test Max O2 pulse Senior fitness test 2 min stepping test VO2 max

Balance

Berg balance scale BESTest Total score Coordinated stability SPPB extended balance test Maximum balance range, anterior-posterior Mini-BESTest Tandem stance SPPB adapted balance test Sway Tinetti balance Unipedal Stance Test

Cognitive-motor

10 m walking time, dual-tasking (s) Cadence Dual-task Choice stepping movement time Choice stepping reaction time Dual task walking Dual task Cycle time variability Dual task Gait speed Dual task Step length Gait speed Dual task iTUG dual task Sensor-based Stepping Reaction Time Simple Reaction Time Foot Stride Length Dual task walking Sway Length of Center of gravity, Stroop task Unipedal Stance Test with eyes open, dual task condition Walk speed (m/s), 0-back Walk speed (m/s), 1-back

<u>Strength</u>

Arm curls Chest press Handgrip strength Hip abduction Knee extension Leg press Seated row

It is made available under a CC-BY-NC-ND 4.0 International license .

-	
~	,

Gait	Functional mobility
Cadence	10 m walking time
Cycle duration, walking	4-meter walk
Cycle time variability	5 Chair rises
Functional gait assessment (FGA)	5TSTS (times)
Gait adaptability test (GAT) accuracy (cm)	8-Foot up and go
Gait adaptability test (GAT) velocity (cm/s)	Back scratch
Gait speed	Chair sit and reach
Step length	Chair stand
Step length variability	Functional reach
Tinetti gait	Functional Stretching
Walking speed (m/s)	iTUG
	Get up and go test
	Senior fitness test 30s chair rises
	Sensor-based chair stand test
	Short physical performance battery
	Sit & reach
	Sit to standing time
	Timed up and go

PSYCHOSOCIAL OUTCOMES

Geriatric Depression Scale Short Form-12 European Quality of Life 5 Dimensions 9-item Patient Health Questionnaire The quality of life test Medical Outcome Study Short Form-8 Anxiety and Depression Goldberg Scale de Jong Gierveld Loneliness Scale Quality of Life Alzheimer's Disease scale VAS Fatigue

FUNCTIONAL OUTCOMES

Bristol Activities of Daily Living Scale Functional Activites Questionnaire Bayer Activities of Daily Living

6

Appendix C. List of excluded studies. (Note: a study could be ineligible for multiple reasons but appear only once in this table.)

Authors	Year	Title	Exclusion reason
Tang, H.	2012	Non-drug therapies against dementia: Physical exercises or mental training or both?	Conference abstract
Thom, J.; Cooney, J.; Nelis, S.; Hindle, J.; Nixon, J.; Jones, I.; Whitaker, C.; Clare, L.	2014	Behaviour change to promote healthy ageing in over 1950s: Physical activity, function and health results from the Agewell trial	Conference abstract
Solomon, A.; Ngandu, T.; Ahtiluoto, S.; Jula, A.; Laatikainen, T.; Rauramaa, R.; Strandberg, T.; Tuomilehto, J.; Soininen, H.; Kivipelto, M.	2012	Results and experiences from scandinavianmulti-domain intervention trials (drs extra and finger)	Conference abstract
Solomon, A.; Levalahti, E.; Antikainen, R.; Laatikainen, T.; Soininen, H.; Strandberg, T.; Tuomilehto, J.; Kivipelto, M.; Ngandu, T.	2018	Effects of a Multidomain Lifestyle Intervention on Overall Risk for Dementia: The Finger Randomized Controlled Trial	Conference abstract
Thunborg, C.; Sindi, S.; Faxen, G.; Storskog, T.; Soininen, H.; Hartmann, T.; Andrieu, S.; Solomon, A.; Kivipelto, M.	2017	Multimodal lifestyle and nutritional intervention in prodromal Alzheimer's disease: Mind-Admini pilot trial	Conference abstract
Tsapanou, A.; Margioti, L.; Beratis, I.; Papatriantafyllou, J.; Kamtsadeli, V.; Nika, A.; Tsilikopoulou, G.; Kalfakis, N.; Sakka, P.; Bamidis, P.; Papageorgiou, S. G.	2011	Cognitive and physical training for the prevention of cognitive decline in the elderly: Preliminary data of the Long Lasting Memories European project	Conference abstract
Preminger, S.; Sarfaty, S.; Lemor, B.; Blumenfeld, B.; Maoz, S.	2016	Cognitive benefits of combining cognitive training with physical activity in computerized training of executive functions	Conference abstract
Eichberg, S.	2013	Different Effects of Different Physical Training Programs on Cognitive Function in Older Men	Conference abstract
Gregory, M. A.; Gill, D. P.; De Cruz, A.; Petrella, R. J.	2016	Dual-task gait training and aerobic exercise training improves cognition in older adults with early indications of cognitive impairment	Conference abstract
Kanemaru, A.; Kato, T.; Sugawara, Y.; Kawaji, Y.; Honda, T.; Itakura, A.; Hiraoka, T.; Makita, A.; Nakajima, R.; Yamazaki, R.; Ota, T.; Kanemaru, K.	2018	The Short-Term Effect of the Rehabilitation Program of Physical and Cognitive Rec-Xercise (Repcrec) for the Elderly with Mild Cognitive Impairment	Conference abstract
Karssemeijer, E. G. A.; Aaronson, J. A.; Olde Rikkert, M. G. M.; Kessels, R. P. C.	2018	A Randomized Controlled Trial on the Effect of Exergaming and Single Aerobic Training on Cognitive Functioning in Older Adults with Dementia	Conference abstract
Karssemeijer, E. G. A.; Olde Rikkert, M. G. M.	2017	A randomized controlled trial on the effect of physical and combined physical and cognitive dual-task training on frailty in early stage dementia patients	Conference abstract
Santos, G.; Ortega, L.; Yassuda, M.; Forlenza, O.; Nunes, P.	2011	The effects of a multiprofessional cognitive and functional rehabilitation program for patients with Alzheimer's disease and mild cognitive impairment	Conference abstract
Rosenberg, A.; Solomon, A.; Ngandu, T.; Levalahti, E.; Laatikainen, T.; Paajanen, T.; Hanninen, T.; Antikainen, R.; Strandberg, T.; Soininen, H.; Kivipelto, M.	2017	Multidomain lifestyle intervention benefits a large elderly population at risk for cognitive decline: Subgroup analyses of the Finnish geriatric intervention study to prevent cognitive impairment and disability (FINGER)	Conference abstract
Rosenberg, A.; Solomon, A.; Turunen, H.; Ngandu, T.; Levalahti, E.; Laatikainen, T.; Paajanen, T.; Hanninen, T.; Antikainen, R.; Strandberg, T.; Soininen, H.; Kivipelto, M.	2016	Influence of apoe, age, sex, education and baseline cognition on intervention effects on cognition in the finnish geriatric intervention study to prevent cognitive impairment and disability (FINGER)	Conference abstract
Kato, T.; Kanemaru, A.; Sugawara, Y.; Kawaji, Y.; Hiraoka, T.; Honda, T.; Nakajima, R.; Makita, A.; Itakura, A.; Yamazaki, R.; Ohta, T.	2017	A combination intervention (cognitive training and physical exercise) could improve or maintain cognitive functioning in MCI subjects	Conference abstract
Gary, R.; Waldrop-Valverde, D.; Paul, S.	2017	Exercise and cognitive re-training as a strategy to improve cognitive outcomes in heart failure	Conference abstract
Franco-Martin, M.; Gonzalez Palau, F.; Ruiz, Y.; Vargas, E.; Solis, A.; G. Mellado J; Toribio, J. M.; Losada, R.; Gomez, P.; Bueno, Y.; Bartolome, L.	2011	Usability of a cognitive (Gradior) and physical training program based in new software technologies in patients with mild dementia, mild cognitive impairment and healthy elderly people: Long Lasting Memories preliminary findings	Conference abstract
Cleverley, M.; Walker, Z.; Dannhauser, T.	2012	Engaging patients at high risk of dementia in multimodal cognitive health promoting activities: The thinkingfit study	Conference abstract
Kivipelto, M.	2016	Lifestyle interventiontoprevent cognitive impairment	Conference abstract

It is made available under a CC-BY-NC-ND 4.0 International license .

7

Kivipelto, M.; Ngandu, T.; Lehtisalo, J.; Hanninen, T.; Jula, A.; Laatikainen, T.; Lindstrom, J.; Paajanen, T.; Pajala, S.; Peltonen, M.; Stigsdotter-Neely, A.; Levalahti, E.; Strandberg, T. E.; Tuomilehto, J.; Soininen, H.	2014	A multidomain two-year randomized controlled trial to prevent cognitive impairment - The FINGER study	Conference abstract
Kuh, D.	2012	A life course approach to physical capability: Findings from the HALCyon research programme	Conference abstract
Lam, L.; Fung, A.	2012	Interim findings of a randomized controlled trial of leisure activity intervention on preservation of cognitive function in Chinese older adults with mild cognitive impairment	Conference abstract
Kanemaru, A.; Kato, T.; Sugawara, Y.; Kawaji, Y.; Hiraoka, T.; Honda, T.; Nakajima, R.; Makita, A.; Itakura, A.; Yamazaki, R.; Ota, T.; Kanemaru, K.	2017	An intervention study of a rehabilitation program using physical and cognitive recxercise for mild cognitive impairment	Conference abstract
Kanemaru, A.; Kato, T.; Sugawara, Y.; Kawaji, Y.; Hiraoka, T.; Honda, T.; Nagajima, R.; Makita, A.; Itakura, A.; Yamazaki, R.; Ota, T.	2017	The effects of the intervention using physical exercise and cognitive training on the mental status of the elderly with mild cognitive impairment or mild dementia	Conference abstract
Han, M. I.; Shin, M. O.; Lee, K. H.	2018	Effects of a Manualized, Group-Based Cognitive Training on Cognitive Performance in Community-Dwelling Elderly	Conference abstract
Gregory, M. A.; Gill, D. P.; Morton, H.; De Cruz, A.; Gonzalez, L.; Petrella, R.	2014	The effects of mind-motor and aerobic exercise on cognition and mobility in older adults with cognitive impairment but not dementia	Conference abstract
McCulloch, K.; Giuliani, C.; Shubert, T.; Hartman, M.	2010	Community-based group exercise program with dualtask training components improves balance during dual-task conditions in ambulatory older adults	Conference abstract
Middleton, L. E.; Poelke, G.; Santos, W. M.; Yaffe, K.; Barnes, D. E.; Goodson, W.	2012	Impact of a 12-week exercise intervention on non-cognitive outcomes in sedentary elders with cognitive complaints or mild cognitive impairment: Findings from the max trial	Conference abstract
Middleton, L.; Santos, W. M.; Poelke, G.; Yaffe, K.; Barnes, D.	2012	Aerobic exercise versus stretching and toning: Changes in physical function and mediation of cognitive effects in the max trial	Conference abstract
Ngandu, T.; Lehtisalo, J.; Solomon, A.; Coley, N.; Antikainen, R.; Hanninen, T.; Lindstrom, J.; Laatikainen, T.; Paajanen, T.; Pajala, S.; Peltonen, M.; Strandberg, T.; Tuomilehto, J.; Soininen, H.; Kivipelto, M.	2017	The impact of adherence to multidomain lifestyle intervention on cognition: the finnish geriatric intervention study to prevent cognitive impairment and disability (FINGER)	Conference abstract
Ortega, L.; Yassuda, M.; Nunes, P.; Aprahamian, I.; Santos, F.; Santos, G.; Brum, P.; Borges, S.; Oliveira, A.; Chaves, G.; Ciasca, E.; Ferreira, R.; De Paula, V.; Takeda, O.; Mirandez, R.; Falcao, D.; Cachioni, M.; Forlenza, O.	2011	The effects of a multiprofessional cognitive and functional rehabilitation program for patients with mild Alzheimer's disease	Conference abstract
Parfitt, G.; Corlis, M.; Penington, A.; Post, D.	2017	Evaluation of an implementation project: Improving cognitive and functional capacity of older people with dementia in residential aged care through an exercise prescription approach	Conference abstract
Park, K. W.; Park, J. H.; Park, H.; Choi, S. H.; Jeong, M. K.	2016	Effects of multi-task exercise program on cognitive and physical function in patients with mild cognitive impairment: A randomized controlled trial	Conference abstract
Scioli-Salter, E. R.; White, K. B.; Ashare, A.; Andrade, G.; Iannuccilli, M.; Soscia, J.; White, W. T.	2017	The effect of endurance exercise and activation coaching on cognition and mood in a population of older adults at risk for dementia	Conference abstract
Gregory, M. A.; Gill, D. P.; De Cruz, A.; Shigematsu, R.; Petrella, R. J.	2015	A multiple-modality exercise program plus dual-task training improved mobility but did not impact vascular health in active older adults without dementia	Conference abstract
Gill, D. P.; Gregory, M. A.; Liu-Ambrose, T.; Hachinski, V.; Zou, G. Y.; Fitzgerald, C.; Shigematsu, R.; De Cruz, A.; Petrella, R. J.	2014	A randomized controlled trial to examine combined multiple- modality and mind-motor exercise on cognitive functioning in community-dwelling older adults: A pilot study	Conference abstract
Gill, D.; Koblinsky, N.; Gregory, M.; Morton, H.; Fitzgerald, C.; Petrella, R.	2013	Preliminary findings from a 6-month randomized controlled trial of combined dual-task gait training and aerobic exercise in older adults with cognitive impairment but no dementia	Conference abstract
Weicker, J.; Hudl, N.; Marichal, E.; Muller, K.; Lepsien, J.; Trapp, S.; Frisch, S.; Thone- Otto, A.	2013	Training of workingmemory in healthy elderly subjects-a randomized controlled trial	Conference abstract
Young, J.; Watt, P.; Tabet, N.; Rusted, J.	2013	Are there cognitive benefits fromlongterm high-intensity exercise in older adults?	Conference abstract
Youn Youn Hong, S.; Park, Y.	2018	Effects of a Senior Center Based Multi-Intervention on Physical and Cognitive Function in Elders with Mci	Conference abstract

Wu, C. Y.; Yeh, T. T.; Hu, Y. T.; Chang, K. C.	2018	The beneficial effects of sequential combination of cognitive training and aerobic exercise in stroke patients with cognitive decline	Conference abstract
Wall, K. M.; Stark, J.; Karla-Lall, A.; Schillaci, A.; Christian, H.; Doty, C.; McLaren, E.; Saulnier, T.; Cohen, B. D.; Anderson-Hanley, C.	2018	Biomarkers and components of the interactive physical and cognitive exercise system (iPACESTM v2.0) for mild cognitive impairment (MCI): Cortisol, dehydroepiandrosterone (Dhea-S), and insulin-like growth factor (IGF1)	Conference abstract
Viscogliosi, C.; Desrosiers, J.; Gauthier, P.; Beauchemin, R.	2000	Impact of a multi-strategic group program on the level of daily life functioning of elderly persons with mild cognitive deficits living at home. [French]	Conference abstract
Vellas, B.; Carrie, I.; Guyonnet, S.; Touchon, J.; Dantoine, T.; Dartigues, J. F.; Cufi, M. N.; Bordes, S.; Gasnier, Y.; Robert, P.; Bories, L.; Rouaud, O.; Desclaux, F.; Sudres, K.; Bonnefoy, M.; Pesce, A.; Fougere, B.; Delrieu, J.; Faisant, C.; Lala, F.; Dupuy, C.; Cantet, C.; Coley, N.; Belleville, S.; Willis, S. L.; Weiner, M. W.; Jean Ousset, P.; Andrieu, S.	2015	MAPT (multi-domain Alzheimer's prevention trial): Results at 36 months	Conference abstract
Doniger, G. M.; Plotnik, M.; Bahar-Fuchs, A.; Gottlieb, A.; Tkachov, A.; Bahat, Y.; Sharon, H.; Ben-Gal, O.; Zeilig, G.; Beeri, M. S.	2017	Virtual reality-based cognitivemotor training for middle-aged adults at high ad risk: Study design and baseline characteristics from a randomized controlled trial	Conference abstract
Fotuhi, M.; Pradhan, D.; Trullinger, M.; Riloff, T.	2015	High impact of a brain fitness program in improving cognitive function and brain activity in elderly with mild cognitive impairment	Conference abstract
Edwards, J. D.; Xu, H.; Clark, D.; Ross, L. A.; Unverzagt, F. W.	2016	The active study: What we have learned and what is next? cognitive training reduces incident dementia across ten years	Conference abstract
Dominguez, J. C.; Del Moral, C.; De Guzman, M. F. P.; Dominguez, J. V. D.; Dominguez-Awao, J. K.; Domingo, J.; Natividad, B. P.; Decena, J.; Citron, R. L. B.; Villaruel, S. G.; Yabut, M. J.; Reandelar, M.	2017	A community-based ballroom dance intervention "indak" improved cognition among elderly with mild cognitive impairment	Conference abstract
Daffner, K. R.; Feng, N. C.; Ryan, E.; Kidane, M.; Tusch, E. S.; Carlsson, R.; Mohammed, A. H.; Hakansson, K.	2017	The feasibility of a home-based, subject-controlled, interactive physical exercise program to promote cognitive health in older adults	Conference abstract
Coley, N.; Ngandu, T.; Cantet, C.; Lehtisalo, J.; Vellas, B.; Kivipelto, M.; Andrieu, S.	2017	Adherence to multidomain interventions for the prevention of Alzheimer's disease: Data from the MAPT and finger trials	Conference abstract
Bondoc, S.; Hewitt, P.; Frey, N.; McQuide, B.; Johnson, A.	2011	The effect of wii-based interventions on physical, cognitive and social functioning among pre-frail elderly persons	Conference abstract
Bherer, L.	2012	Enhancing cognitive performances in older adults at risk of cognitive decline: The benefits of exercise training and cognitive stimulation. [French, English]	Conference abstract
Bamidis, P.; Frantzidis, C.; Kyrillidou, A.; Ladas, A.; Grigoriadou, E.; Billis, A.; Konstantinidis, E.; Zilidou, V.; Mouzakidis, C.; Semertzidou, A.; Karagianni, M.; Vivas, A.; Tsolaki, M.	2011	Cognitive training, physical exercise and information technology: Neuroscientific challenges and first evidence from the LLM project	Conference abstract
Bahar-Fuchs, A.; Cherbuin, N.; Rebok, G.; Herath, P.; Anstey, K.	2013	The body, brain, life program: Baseline characteristics of an online multidomain intervention to reduce the risk of Alzheimer's disease	Conference abstract
Ang, J. O.; Dominguez, J. C.; Del Moral, C.; Decena, J. M.; Natividad, B. P.	2015	Development and compliance to a community-based intervention for mci	Conference abstract
Silva, N. C. B. S.; Gill, D. P.; Gregory, M. A.; De Cruz, A.; Petrella, R. J.	2016	The efficacy of a multi-modality exercise program combined with mind motortask training for older adults at risk of cognitive impairment on usual and dual-task gait: A randomized controlled trial	Conference abstract
Realdon, O.; Rossetto, F.; Nalin, M.; Baroni, I.; Romano, M.; Catania, F.; Mancastroppa, S.; Frontini, D.; Bandini, S.; Nemni, R.; Mantovani, F.; Baglio, F.	2016	Experienced usability and adherence to treatment in a technology-enhanced continuum of care program with respect to usual care in MCI and outpatients with Alzheimer: The ability program	Conference abstract
Trushkova-Zhuravleva, N.; Zelano, G.	2016	Combined training of motor coordination and working memory exercises is an effective tool to improve cognitive functions in the elderly	Conference abstract
Ploughman, M.; Eskes, G. A.; Kelly, L. P.; Kirkland, M. C.; Devasahayam, A. J.; Wallack, E. M.; Abraha, B.; Hasan, S. M. M.; Downer, M. B.; Wilson, G. C.; Skene,	2018	Combining aerobic exercise and cognitive training in chronic stroke; enhanced cognition predicted by IGF-1	Conference abstract

It is made available under a CC-BY-NC-ND 4.0 International license .

9

E.; Sharma, I.; Chaves, A. R.; Curtis, M. E.; Robertson, G. S.; Moore, C.; McCarthy, J.; MacKay-Lyons, M.			
Ng, T. P.; Lim, L. M.; Niti, M.; Nyunt, M. S. Z.; Feng, L.; Gwee, X.; Ling, A.; Tan, B. Y.; Chan, G.; Khoo, S. M. C.; Ann, S.; Yap, P.;	2014	Effects of nutritional, physical, cognitive interventions on cognitive outcomes in the Singapore frailty intervention trial (S- FIT)	Conference abstract
Yap, K. B.		, ,	
Cuesta-Vargas, A.; Bedoya-Belmonte, J.; Bueno-Caro, E.; Diaz-Caro, E.; Gonzalez- Sanchez, M.; Ortega-Nunez, G.; Rodriguez- Gonzalez, M.; Galan-Mercant, A.	2016	Effectiveness of a multicomponent physical training integrated into a multimodal primary care program in hyperfrailty older: A randomized clinical trial-study power-aging	Conference abstract
Combourieu, L.; Perrot, A.; Bloch, F.; Seux, M. L.; Kemoun, G.	2014	Effect of three different trainings on executive function and gait speed in MCI old adults	Conference abstract
Caciula, M. C.; Horvat, M.; Croce, R.	2015	High-frequency exercise improves executive function in individuals with Parkinson's disease	Conference abstract
Bruno, R.; Del Turco, S.; Stea, F.; Iannarella, R.; Ghiadoni, L.; Taddei, S.; Tognoni, G.; Maffei, L.; Berardi, N.; Picano, E.; Sicari, R.	2014	Effect of combined cognitive exercise training on vascular and cognitive function in patients with mild cognitive impairment: The "train the brain" study	Conference abstract
Bruno, M. R.; Sicari, R.; Stea, F.; Ghiadoni, L.; Taddei, S.; Ungar, A.; Bonuccelli, U.; Tognoni, G.; Gargani, L.; D'Angelo, G.; Pratali, L.; Berardi, N.; Maffei, L.; Picano, E.	2017	Effect of a multimodality training on cognitive and vascular function in MCI patients with or without hypertension: The train the brain-mind the vessel study	Conference abstract
Bittner, D. M.; Bittner, V.; Hausmann, J.; Reinhold, D.; Machts, J.; Westphal, S.; Heinze, H. J.; Schott, B.; Kaufmann, J.;	2013	Training Intervention Improves Memory in Mild Cognitive Impairment and Healthy Controls, but Plasma BDNF Acts Differentially	Conference abstract
Muller, N. J. Binder, J.; Zollig, J.; Martin, M.; Eschen, A.; Merillat, S.; Rocke, C.; Jancke, L.	2013	A Comparison of Multi-Domain and Single-Domain Cognitive Trainings in Old Age	Conference abstract
Pompeu, J. E.; Silva, K. G.; Freitas, T. B.; Nuvolini, R. A.; Dona, F.; Torriani-Pasin, C.; Ganaca, F. F.; Ferraz, H. B.	2016	Effect of European physiotherapy guideline for Parkinson's disease and Microsoft Kinect adventures games training on postural control, cognition and quality of life: Randomized clinical trial	Conference abstract
Rehfeld, K.; Hokelmann, A.; Lehmann, W.; Blaser, P.	2013	The Impact of a Sportive Dance Program on Cognitive Skills (Fluid Intelligence, General Intelligence and Working Memory) in Elderly	Conference abstract
Fernandez-Del-Olmo, M.; Sanchez-Molina, Ja; Fernandez-Lago, H.; Morenilla-Burlo, L.; Gomez-Varela, J.; Fogelson, N.	2018	Effects of computerized cognitive training, with and without concurrent exercise, on executive functions in Parkinson's disease	Conference abstract
Fujibayashi, M.; Nishiwaki, M.; Ogawa, N.; Nanayama, C.	2019	The effect of exercise intervention depends on cognitive level	Conference abstract
Hung, J. W.; Chou, C. X.; Wu, W. C.; Hsieh, Y. W.; Yu, M. Y.; Chen, P. C.	2017	Comparing effects of two exergaming systems and traditional weight shifting training on executive and balance functions in patients with chronic stroke-a randomized control trial	Conference abstract
Katula, J. A.	2011	Physical activity, cognitive training, and cognitive functioning in older adults: The seniors health and activity research program	Conference abstract
Bourkel, E.; Hubsch, G.; Federspiel, C.; Steinmetz, J. P.	2017	The influence of cognitive and mobility training programmes on cognitive functioning among healthy elderly people and people with MCI	Conference abstract
Bherer, L.	2013	Benefits of Exercise Training Intervention on Attentional Control and Quality of Life in Healthy and Frail Older Adults	Conference abstract
Bherer, L.	2011	Physical exercise and cognitive training for attentional control in older adults	Conference abstract
Anonymous,	2012	'Mental exercise' boosts cognitive function in dementia	Conference abstract
Schumacher, V.; Theill, N.; Martin, M.	2013	Improving Cognitive Performance and Motor-Cognition Adaptability of Older Adults Using an Integrative Motor- Cognitive Training Approach	Conference abstract
Wang, L.; Denny, K.; Bergman, S. R.; Potter, G.; Steffens, D.	2012	Neural mechanisms of wii fit plus: Reducing depressive symptoms and improving cognition in older adults	Conference abstract
Yesilyaprak, S. S.; Senduran, M.; Tomruk, M.; Altin, O.; Algun, Z. C.	2014	The effects of exercises performed with virtual reality system on balance and fall risk in the elderly. [Turkish, English]	Conference abstract
Barbosa, A. R.; Guimaraes, A. V.	2015	Effects of exergames on cognitive performance and functional fitness in older adults: A pilot study	Conference abstract
Shah, T.; Verdile, G.; Sohrabi, H.; Martins, R.	2012	Physical activity and cognitive stimulation improve cognition and alter levels of plasma beta-amyloid in healthy elderly	Conference abstract
Simonetto, M.; Dong, C.; Gutierrez, C. M.; Wright, C. B.; Loewenstein, D.; Sacco, R.	2018	Gender disparities in cognitive, motor and mood outcomes: Preliminary data from the bugher foundation's combined aerobic	Conference abstract

L.; Koch, S.; Rundek, T.		and resistance exercise training (CARET) program and cognitive training intervention (CTI) study	
Gschwind, Y. J.; Schoene, D.; Lord, S. R.; Ejupi, A.; Valenzuela, T.; Aal, K.; Woodbury, A.; Delbaere, K.	2015	The effect of sensor-based exercise at home on functional performance associated with fall risk in older people - a comparison of two exergame interventions	Data appears elsewhere
Vermeylen, W.; Delbroek, T.; Spildooren, J.	2016	Effects of cognitive-motor dual task training with the Bio Rescue force platform on cognition, balance and dual task performance in institutionalized older adults	Data appears elsewhere
Hagovska, M.; Olekszyova, Z.	2016	Relationships between balance control and cognitive functions, gait speed, and activities of daily living	Data appears elsewhere
Heath, M.; Shellington, E.; Titheridge, S.; Gill, D. P.; Petrella, R. J.	2017	A 24-week multi-modality exercise program improves executive control in older adults with a self-reported cognitive complaint: Evidence from the antisaccade task	Data appears elsewhere
Preiss, M.; Waidingerova, I.; Steinova, D.	2012	Subjective effectivity of memory training and physical exercises in seniors - 6-month follow-up. [Czech]	Full text not available
Kalbe, E.; Roheger, M.; Paluszak, K.; Meyer, J.; Becker, J.; Fink, G. R.; Kukolja, J.; Rahn, A.; Szabados, F.; Wirth, B.; Kessler, J.	2018	Effects of a Cognitive Training With and Without Additional Physical Activity in Healthy Older Adults: A Follow-Up 1 Year After a Randomized Controlled Trial	Long-term follow-up
van Santen, J.; Droes, R. M.; Bosmans, J. E.; Blanson Henkemans, O. A.; van Bommel, S.; Hakvoort, E.; Valk, R.; Scholten, C.; Wiersinga, J.; van Straten, A.; Meiland, F.	2019	The (cost-) effectiveness of exergaming in people living with dementia and their informal caregivers: protocol for a randomized controlled trial	Protocol paper
Smith, G.; Chandler, M.; Locke, D. E.; Fields, J.; Phatak, V.; Crook, J.; Hanna, S.; Lunde, A.; Morris, M.; Graff-Radford, M.; Hughes, C. A.; Lepore, S.; Cuc, A.; Caselli, M.; Hurst, D.; Wethe, J.; Francone, A.; Eilertsen, J.; Lucas, P.; Hoffman Snyder, C.; Kuang, L.; Becker, M.; Dean, P.; Diehl, N.; Lofquist, M.; Vanderhook, S.; Myles, D.; Cochran, D.	2017	Behavioral Interventions to Prevent or Delay Dementia: Protocol for a Randomized Comparative Effectiveness Study	Protocol paper
Pothier, K.; Soriano, G.; Lussier, M.; Naudin, A.; Costa, N.; Guyonnet, S.; Piau, A.; Ousset, P. J.; Nourhashemi, F.; Vellas, B.; de Souto Barreto, P.	2018	A web-based multidomain lifestyle intervention with connected devices for older adults: research protocol of the eMIND pilot randomized controlled trial	Protocol paper
Gregory, M. A.; Gill, D. P.; Shellington, E. M.; Liu-Ambrose, T.; Shigematsu, R.; Zou, G.; Shoemaker, K.; Owen, A. M.; Hachinski, V.; Stuckey, M.; Petrella, R. J.	2016	Group-based exercise and cognitive-physical training in older adults with self-reported cognitive complaints: The Multiple- Modality, Mind-Motor (M4) study protocol	Protocol paper
Mc Master, M.; Clare, L.; Kim, S.; Torres, S.; Anstey, K. J.	2017	A protocol for a randomised controlled trial of multidomain dementia risk reduction for mild cognitive impairment	Protocol paper
McMaster, M.; Kim, S.; Clare, L.; Torres, S. J.; D'Este, C.; Anstey, K. J.	2018	Body, brain, life for cognitive decline (BBL-CD): Protocol for a multidomain dementia risk reduction randomized controlled trial for subjective cognitive decline and mild cognitive impairment	Protocol paper
Nouchi, R.; Taki, Y.; Takeuchi, H.; Hashizume, H.; Nozawa, T.; Sekiguchi, A.; Nouchi, H.; Kawashima, R.	2012	Beneficial effects of short-term combination exercise training on diverse cognitive functions in healthy older people: study protocol for a randomized controlled trial	Protocol paper
Salmoirago-Blotcher, E.; DeCosta, J.; Harris, K.; Breault, C.; Dunsiger, S.; Santos, C.; Snyder, P.	2018	Exploring synergistic effects of aerobic exercise and mindfulness training on cognitive function in older adults: Protocol for a pilot randomized controlled trial	Protocol paper
Best, J. R.; Eng, J. J.; Davis, J. C.; Hsiung, R.; Hall, P. A.; Middleton, L. E.; Graf, P.; Goldsmith, C. H.; Liu-Ambrose, T.	2018	Study protocol for Vitality: A proof-of-concept randomised controlled trial of exercise training or complex mental and social activities to promote cognition in adults with chronic stroke	Protocol paper
Beishon, L.; Evley, R.; Panerai, R. B.; Subramaniam, H.; Mukaetova-Ladinska, E.; Robinson, T.; Haunton, V.	2019	Effects of brain training on brain blood flow (The Cognition and Flow Study - CogFlowS): Protocol for a feasibility randomised controlled trial of cognitive training in dementia	Protocol paper
Rodriguez-Larrad, A.; Arrieta, H.; Rezola, C.; Kortajarena, M.; Yanguas, J. J.; Iturburu, M.; Susana, M. G.; Irazusta, J.	2017	Effectiveness of a multicomponent exercise program in the attenuation of frailty in long-term nursing home residents: study protocol for a randomized clinical controlled trial	Protocol paper
Yeh, T. T.; Chang, K. C.; Wu, C. Y.; Lee, Y. Y.; Chen, P. Y.; Hung, J. W.	2018	Effects and mechanism of the HECT study (hybrid exercise- cognitive trainings) in mild ischemic stroke with cognitive decline: fMRI for brain plasticity, biomarker and behavioral analysis	Protocol paper
Sipila, S.; Tirkkonen, A.; Hanninen, T.; Laukkanen, P.; Alen, M.; Fielding, R. A.; Kivipelto, M.; Kokko, K.; Kulmala, J.; Rantanen, T.; Sihvonen, S. E.; Sillanpaa, E.; Stigsdotter-Neely, A.; Tormakangas, T.	2018	Promoting safe walking among older people: the effects of a physical and cognitive training intervention vs. physical training alone on mobility and falls among older community-dwelling men and women (the PASSWORD study): design and methods of a randomized controlled trial	Protocol paper

Witlox, L.; Schagen, S. B.; De Ruiter, M. B.; Geerlings, M. I.; Peeters, P. H. M.; Koevoets, E. W.; Van Der Wall, E.; Stuiver, M.; Sonke, G.; Velthuis, M. J.; Palen, J. A.	2019	Effect of physical exercise on cognitive function and brain measures after chemotherapy in patients with breast cancer (PAM study): Protocol of a randomised controlled trial	Protocol paper
M. V. D.; Jobsen, J. J.; May, A. M.; Monninkhof, E. M. Yeh, T. T.; Wu, C. Y.; Hsieh, Y. W.; Chang, K. C.; Lee, L. C.; Hung, J. W.; Lin, K. C.;	2017	Synergistic effects of aerobic exercise and cognitive training on cognition, physiological markers, daily function, and quality of	Protocol paper
Teng, C. H.; Liao, Y. H.		life in stroke survivors with cognitive decline: Study protocol for a randomized controlled trial	
Monteiro-Junior, R. S.; Figueiredo, L. F. D. S.; Maciel-Pinheiro, P. D. T.; Abud, E. L. R.; Engedal, K.; Barca, M. L.; Nascimento, O. J. M.; Laks, J.; Deslandes, A. C.	2017	Virtual Reality-Based Physical Exercise With Exergames (PhysEx) Improves Mental and Physical Health of Institutionalized Older Adults	Control group not eligible
Schattin, A.; Baier, C.; Mai, D.; Klamroth- Marganska, V.; Herter-Aeberli, I.; de Bruin, E. D.	2019	Effects of exergame training combined with omega-3 fatty acids on the elderly brain: a randomized double-blind placebo- controlled trial	Control group not eligible
Gill, D. P.; Gregory, M. A.; Zou, G.; Liu- Ambrose, T.; Shigematsu, R.; Hachinski, V.; Fitzgerald, C.; Petrella, R. J.	2016	The Healthy Mind, Healthy Mobility Trial: A Novel Exercise Program for Older Adults	Control group not eligible
Choi, W.; Lee, S.	2019	Virtual Kayak Paddling Exercise Improves Postural Balance, Muscle Performance, and Cognitive Function in Older Adults with Mild Cognitive Impairment: A Randomized Controlled Trial	Intervention not eligible
Eleni, P.; Fotini, K.; Christina, A.; Evaggelia, B.; Aikaterini, S.; Stavros, Z.; Georgia, B.; Despoina, L.; Evdokia, N.; Maria, V.; Fani, O.; Nefeli, M.; Myrto, Z.; Christos, M.; Magda, T.	2017	Use it more and keep it alive: A Longitudinal Randomized Controlled Trial in people with Mild Cognitive Impairment	Intervention not eligible
Brown, D. R.; Wang, Y.; Ward, A.; Ebbeling, C. B.; Fortlage, L.; Puleo, E.; Benson, H.; Rippe, J. M.	1995	Chronic psychological effects of exercise and exercise plus cognitive strategies	Intervention not eligible
Lam, L. C. W.; Chau, R. C. M.; Wong, B. M. L.; Fung, A. W. T.; Tam, C. W. C.; Leung, G. T. Y.; Kwok, T. C. Y.; Leung, T. Y. S.; Ng, S. P.; Chan, W. M.	2012	A 1-Year Randomized Controlled Trial Comparing Mind Body Exercise (Tai Chi) With Stretching and Toning Exercise on Cognitive Function in Older Chinese Adults at Risk of Cognitive Decline	Intervention not eligible
Lam, L.; Fung, A.; Chan, W.	2013	A one year randomized controlled trial of structured lifestyle activity intervention on cognitive function in Chinese older adults with very mild cognitive deficits	Intervention not eligible
Hernandez, S. S.; Coelho, F. G.; Gobbi, S.; Stella, F. Vigano, G.; Squassoni, N.; Pancaldi, L.; Evangelisti, E.; Balzarolo, C.	2010 2012	[Effects of physical activity on cognitive functions, balance and risk of falls in elderly patients with Alzheimer's dementia] Wii gaming system for the rehabilitation in nursing home residents suffering from motor and mild to moderate cognitive	Intervention not eligible Intervention not eligible
Venturelli, M.; Sollima, A.; Ce, E.; Limonta, E.; Bisconti, A. V.; Brasioli, A.; Muti, E.; Esposito, F.	2016	impairment Effectiveness of Exercise- and Cognitive-Based Treatments on Salivary Cortisol Levels and Sundowning Syndrome Symptoms in Patients with Alzheimer's Disease	Intervention not eligible
Rosenberg, A.; Ngandu, T.; Rusanen, M.; Antikainen, R.; Backman, L.; Havulinna, S.; Hanninen, T.; Laatikainen, T.; Lehtisalo, J.; Levalahti, E.; Lindstrom, J.; Paajanen, T.; Peltonen, M.; Soininen, H.; Stigsdotter- Neely, A.; Strandberg, T.; Tuomilehto, J.; Solomon, A.; Kivipelto, M.	2018	Multidomain lifestyle intervention benefits a large elderly population at risk for cognitive decline and dementia regardless of baseline characteristics: The FINGER trial	Intervention not eligible
Park, J. E.; Jeon, S. Y.; Kim, S. A.; Kim, J. H.; Kim, S. H.; Lee, K. W.; Hwang, Y. J.; Jung, G.; Suk, H. W.; Park, S.; Lee, D. Y.	2019	A Multidomain Intervention for Modifying Lifestyle Habits Reduces the Dementia Risk in Community-Dwelling Older Adults: A Single-Blinded Randomized Controlled Pilot Study	Intervention not eligible
Mirelman, A.; Rochester, L.; Maidan, I.; Del Din, S.; Alcock, L.; Nieuwhof, F.; Rikkert, M. O.; Bloem, B. R.; Pelosin, E.; Avanzino, L.; Abbruzzese, G.; Dockx, K.; Bekkers, E.; Giladi, N.; Nieuwboer, A.; Hausdorff, J. M.	2016	Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): a randomised controlled trial	Intervention not eligible
Ordnung, M.; Hoff, M.; Kaminski, E.; Villringer, A.; Ragert, P.	2017	No overt effects of a 6-week exergame training on sensorimotor and cognitive function in older adults. A preliminary investigation	Intervention not eligible
Okamura, H.; Otani, M.; Shimoyama, N.; Fujii, T.	2018	Combined Exercise and Cognitive Training System for Dementia Patients: A Randomized Controlled Trial	Intervention not eligible
Lam, L. C. W.; Chau, R. C. M.; Wong, B. M. L.; Fung, A. W. T.; Lui, V. W. C.; Tam,	2011	Interim follow-up of a randomized controlled trial comparing Chinese style mind body (Tai Chi) and stretching exercises on	Intervention not eligible

C. C. W.; Leung, G. T. Y.; Kwok, T. C. Y.; Chiu, H. F. K.; Ng, S.; Chan, W. M.		cognitive function in subjects at risk of progressive cognitive decline	
Kattenstroth, J. C.; Kalisch, T.; Holt, S.; Tegenthoff, M.; Dinse, H. R.	2013	Six months of dance intervention enhances postural, sensorimotor, and cognitive performance in elderly without affecting cardio-respiratory functions	Intervention not eligible
Bae, S.; Lee, S.; Jung, S.; Makino, K.; Harada, K.; Shinkai, Y.; Chiba, I.; Shimada, H.	2019	The effect of a multicomponent intervention to promote community activity on cognitive function in older adults with mild cognitive impairment: A randomized controlled trial	Intervention not eligible
Tabei, K. I.; Satoh, M.; Ogawa, J. I.; Tokita, T.; Nakaguchi, N.; Nakao, K.; Kida, H.; Tomimoto, H.	2017	Physical exercise with music reduces gray and white matter loss in the frontal cortex of elderly people: The mihama-kiho scan project	Intervention not eligible
Prick, A. E.; de Lange, J.; Scherder, E.; Twisk, J.; Pot, A. M.	2017	The Effects of a Multicomponent Dyadic Intervention With Physical Exercise on the Cognitive Functioning of People With Dementia: A Randomized Controlled Trial	Intervention not eligible
Law, L. L. F.; Barnett, F.; Yau, M. K.; Gray, M. A.	2014	Effects of functional tasks exercise on older adults with cognitive impairment at risk of Alzheimer's disease: A randomised controlled trial	Intervention not eligible
Hu, J. P.; Guo, Y. H.; Wang, F.; Zhao, X. P.; Zhang, Q. H.; Song, Q. H.	2014	Exercise improves cognitive function in aging patients	Intervention not eligible
Hsieh, C. C.; Lin, P. S.; Hsu, W. C.; Wang, J. S.; Huang, Y. C.; Lim, A. Y.; Hsu, Y. C.	2019	The effectiveness of a virtual reality-based tai chi exercise on cognitive and physical function in older adults with cognitive impairment	Intervention not eligible
Nouchi, R.; Taki, Y.; Takeuchi, H.; Sekiguchi, A.; Hashizume, H.; Nozawa, T.; Nouchi, H.; Kawashima, R.	2014	Four weeks of combination exercise training improved executive functions, episodic memory, and processing speed in healthy elderly people: Evidence from a randomized controlled trial	Intervention not eligible
Park, J.; Yim, J. E.	2016	A new approach to improve cognition, muscle strength, and postural balance in community-dwelling elderly with a 3-D virtual reality Kayak program	Intervention not eligible
Anderson-Hanley, C.; Maloney, M.; Barcelos, N.; Striegnitz, K.; Kramer, A.	2017	Neuropsychological Benefits of Neuro-Exergaming for Older Adults: A Pilot Study of an Interactive Physical and Cognitive Exercise System (iPACES)	Intervention not eligible
Yokoyama, H.; Okazaki, K.; Imai, D.; Yamashina, Y.; Takeda, R.; Naghavi, N.; Ota, A.; Hirasawa, Y.; Miyagawa, T.	2015	The effect of cognitive-motor dual-task training on cognitive function and plasma amyloid beta peptide 42/40 ratio in healthy elderly persons: a randomized controlled trial	Intervention not eligible
Wollesen, B.; Mattes, K.; Schulz, S.; Bischoff, L. L.; Seydell, L.; Bell, J. W.; von Duvillard, S. P.	2017	Effects of dual-task management and resistance training on gait performance in older individuals: A randomized controlled trial	Intervention not eligible
Young, D. K.	2018	Multicomponent intervention combining a cognitive stimulation group and tai chi to reduce cognitive decline among community- dwelling older adults with probable dementia: A multi-center, randomized controlled trial	Intervention not eligible
Suzuki, T.; Shimada, H.; Makizako, H.; Doi, T.; Yoshida, D.; Tsutsumimoto, K.; Anan, Y.; Uemura, K.; Lee, S.; Park, H.	2012	Effects of multicomponent exercise on cognitive function in older adults with amnestic mild cognitive impairment: A randomized controlled trial	Intervention not eligible
Suzuki, T.; Shimada, H.; Makizako, H.; Doi, T.; Yoshida, D.; Ito, K.; Shimokata, H.; Washimi, Y.; Endo, H.; Kato, T.	2013	A Randomized Controlled Trial of Multicomponent Exercise in Older Adults with Mild Cognitive Impairment	Intervention not eligible
Rehfeld, K.; Luders, A.; Hokelmann, A.; Lessmann, V.; Kaufmann, J.; Brigadski, T.; Muller, P.; Muller, N. G.	2018	Dance training is superior to repetitive physical exercise in inducing brain plasticity in the elderly	Intervention not eligible
Anderson-Hanley, C.; Arciero, P. J.; Westen, S. C.; Nimon, J.; Zimmerman, E.	2012	Neuropsychological benefits of stationary bike exercise and a cybercycle exergame for older adults with diabetes: An exploratory analysis	Intervention not eligible
Anderson-Hanley, C.; Arciero, P. J.; Brickman, A. M.; Nimon, J. P.; Okuma, N.; Westen, S. C.; Merz, M. E.; Pence, B. D.; Woods, J. A.; Kramer, A. F.; Zimmerman, E. A.	2012	Exergaming and older adult cognition: A cluster randomized clinical trial	Intervention not eligible
Yoon, D. H.; Kang, D.; Kim, H. J.; Kim, J. S.; Song, H. S.; Song, W.	2017	Effect of elastic band-based high-speed power training on cognitive function, physical performance and muscle strength in older women with mild cognitive impairment	Intervention not eligible
Yoon, D. H.; Lee, J. Y.; Song, W.	2018	Effects of Resistance Exercise Training on Cognitive Function and Physical Performance in Cognitive Frailty: A Randomized Controlled Trial	Intervention not eligible
Walsh, J. N.; Manor, B.; Hausdorff, J.; Novak, V.; Lipsitz, L.; Gow, B.; Macklin, E. A.; Peng, C. K.; Wayne, P. M.	2015	Impact of short- and long-term Tai Chi mind-body exercise training on cognitive function in healthy adults: Results from a hybrid observational study and randomized trial	Intervention not eligible
Sugano, K.; Yokogawa, M.; Yuki, S.; Dohmoto, C.; Yoshita, M.; Hamaguchi, T.;	2012	Effect of cognitive and aerobic training intervention on older adults with mild or no cognitive impairment: a derivative study	Intervention not eligible

Yanase, D.; Iwasa, K.; Komai, K.; Yamada, M.		of the nakajima project	
Beck, Cornelia; Fausett, Jennifer Kleiner; Krukowski, Rebecca A.; Cornell, Carol E.; Prewitt, T.; Lensing, Shelly; Bursac, Zoran; Felix, Holly C.; Love, ShaRhonda; McDougall, Graham; West, Delia Smith	2013	A randomized trial of a community-based cognitive intervention for obese senior adults	Intervention not eligible
Gobbi, L. T. B.; Lahr, J.; Santos, P. C. R.; Pelicioni, P. H. S.; Batistela, R. A.; Rodrigues, M. M. L.; Hernandes, F.; Beretta, S.; Zampier, V.	2014	Physical exercise can improve cognitive functions in Parkinson's disease	Intervention not eligible
Klusmann, V.; Evers, A.; Schwarzer, R.; Dimeo, F. C.; Reischies, F. M.; Heuser, I.	2009	Complex mental and physical activity in older women maintains episodic memory and working memory: A 6-month randomized controlled tria	Intervention not eligible
Klusmann, V.; Evers, A.; Schwarzer, R.; Schlattmann, P.; Reischies, F. M.; Heuser, I.; Dimeo, F. C.	2010	Complex mental and physical activity in older women and cognitive performance: a 6-month randomized controlled trial	Intervention not eligible
Jansen, P.; Dahmen-Zimmer, K.	2012	Effects of cognitive, motor, and karate training on cognitive functioning and emotional well-being of elderly people	Intervention not eligible
Monteiro-Junior, R. S.; da Silva Figueiredo, L. F.; Maciel-Pinheiro, P. T.; Abud, E. L. R.; Braga, A. E. M. M.; Barca, M. L.; Engedal, K.; Nascimento, O. J. M.; Deslandes, A. C.; Laks, J.	2017	Acute effects of exergames on cognitive function of institutionalized older persons: a single-blinded, randomized and controlled pilot study	Intervention not eligible
Gajewski, P. D.; Falkenstein, M.	2018	ERP and behavioral effects of physical and cognitive training on working memory in aging: A randomized controlled study	Intervention not eligible
Frantzidis, C. A.; Ladas, A. K. I.; Vivas, A. B.; Tsolaki, M.; Bamidis, P. D.	2014	Cognitive and physical training for the elderly: Evaluating outcome efficacy by means of neurophysiological synchronization	Intervention not eligible
Fissler, P.; Muller, H. P.; Kuster, O. C.;	2017	No evidence that short-term cognitive or physical training	Intervention
Laptinskaya, D.; Thurm, F.; Woll, A.; Elbert, T.; Kassubek, J.; von Arnim, C. A. F.; Kolassa, I. T.		programs or lifestyles are related to changes in white matter integrity in older adults at risk of dementia	not eligible
Gavelin, H. M.; Boraxbekk, C. J.; Stenlund,	2015	Effects of a process-based cognitive training intervention for	Intervention
T.; Jarvholm, L. S.; Neely, A. S. Goghari, Vina M.; Lawlor-Savage, Linette	2018	patients with stress-related exhaustion Self-perceived benefits of cognitive training in healthy older	not eligible Intervention
Galindo Munoz, J. S.; Morillas-Ruiz, J. M.; Gallego, M. G.; Diaz Soler, I.; Del Carmen Barbera Ortega, M.; Martinez, C. M.; Morante, J. J. H.	2019	adults Cognitive training therapy improves the effect of hypocaloric treatment on subjects with overweight/obesity: A randomised clinical trial	not eligible Intervention not eligible
Kim, G. H.; Jeon, S.; Im, K.; Kwon, H.; Lee, B. H.; Kim, G. Y.; Jeong, H.; Han, N. E.; Seo, S. W.; Cho, H.; Noh, Y.; Park, S. E.; Kim, H.; Hwang, J. W.; Yoon, C. W.; Kim, H. J.; Ye, B. S.; Chin, J. H.; Kim, J. H.; Suh, M. K.; Lee, J. M.; Kim, S. T.; Choi, M. T.; Kim, M. S.; Heilman, K. M.; Jeong, J. H.; Na, D. L.	2015	Structural brain changes after traditional and robot-assisted multi-domain cognitive training in community-dwelling healthy elderly	Intervention not eligible
Jirayucharoensak, S.; Israsena, P.; Pan- Ngum, S.; Hemrungrojn, S.; Maes, M.	2019	A game-based neurofeedback training system to enhance cognitive performance in healthy elderly subjects and in patients with amnestic mild cognitive impairment	Intervention not eligible
Jelcic, N.; Agostini, M.; Meneghello, F.; Busse, C.; Parise, S.; Galano, A.; Tonin, P.; Dam, M.; Cagnin, A.	2014	Feasibility and efficacy of cognitive telerehabilitation in early Alzheimer's disease: A pilot study	Intervention not eligible
Huang, Kuo-Ting	2018	Moving with presence: A virtual reality-based exergames intervention to improve the executive functions of adults aged 50 and older	Intervention not eligible
Marusic, U.; Giordani, B.; Moffat, S. D.; Petric, M.; Dolenc, P.; Pisot, R.; Kavcic, V.	2018	Computerized cognitive training during physical inactivity improves executive functioning in older adults	Intervention not eligible
Hardy, J. L.; Nelson, R. A.; Thomason, M. E.; Sternberg, D. A.; Katovich, K.; Farzin, F.; Scanlon, M.	2015	Enhancing Cognitive Abilities with Comprehensive Training: A Large, Online, Randomized, Active-Controlled Trial	Intervention not eligible
Mozolic, J. L.; Long, A. B.; Morgan, A. R.; Rawley-Payne, M.; Laurienti, P. J.	2011	A cognitive training intervention improves modality-specific attention in a randomized controlled trial of healthy older adults	Intervention not eligible
Nozawa, T.; Taki, Y.; Kanno, A.; Akimoto, Y.; Ihara, M.; Yokoyama, R.; Kotozaki, Y.; Nouchi, R.; Sekiguchi, A.; Takeuchi, H.; Miyauchi, C. M.; Ogawa, T.; Goto, T.;	2015	Effects of Different Types of Cognitive Training on Cognitive Function, Brain Structure, and Driving Safety in Senior Daily Drivers: A Pilot Study	Intervention not eligible

Sunda, T.; Shimizu, T.; Tozuka, E.; Hirose, S.; Nanbu, T.; Kawashima, R.			
Ross, L. A.; Sprague, B. N.; Phillips, C. B.; O'Connor, M. L.; Dodson, J. E.	2018	The Impact of Three Cognitive Training Interventions on Older Adults' Physical Functioning Across 5 Years	Intervention not eligible
Goghari, Vina M.; Lawlor-Savage, Linette	2017	Comparison of cognitive change after working memory training and logic and planning training in healthy older adults	Intervention not eligible
Amjad, I.; Toor, H.; Niazi, I. K.; Pervaiz, S.; Jochumsen, M.; Shafique, M.; Haavik, H.; Ahmed, T.	2019	Xbox 360 Kinect Cognitive Games Improve Slowness, Complexity of EEG, and Cognitive Functions in Subjects with Mild Cognitive Impairment: A Randomized Control Trial	Interventior not eligible
Walton, C. C.; Kavanagh, A.; Downey, L. A.; Lomas, J.; Camfield, D. A.; Stough, C.	2015	Online cognitive training in healthy older adults: A preliminary study on the effects of single versus multi-domain training	Intervention not eligible
Varshney, S.; McCall, W.; Tampi, R.; Varshney, U.	2019	Dementia: A Cognitive Disability and Role of Non-	Intervention not eligible
Varshney, O. Vanoh, D.; Shahar, S.; Razali, R.; Ali, N. M.; Manaf, Z. A.; Noah, S. A. M.; Nur, A. M.	2019	 Pharmacological Intervention Alzhatv in Cognitive Remediation The Effectiveness of a Web-Based Health Education Tool, WESIHAT 2.0, among Older Adults: A Randomized Controlled Trial 	Intervention not eligible
Edwards, J. D.; Valdes, E. G.; Peronto, C.; Castora-Binkley, M.; Alwerdt, J.; Andel, R.; Lister, J. J.	2015	The Efficacy of InSight Cognitive Training to Improve Useful Field of View Performance: A Brief Report	Intervention not eligible
Finn, M.; McDonald, S.	2011	Computerised cognitive training for older persons with mild cognitive impairment: A pilot study using a randomised controlled trial design	Intervention not eligible
Cuc, A. V.; Locke, D. E. C.; Duncan, N.; Fields, J. A.; Snyder, C. H.; Hanna, S.; Lunde, A.; Smith, G. E.; Chandler, M.	2017	A pilot randomized trial of two cognitive rehabilitation interventions for mild cognitive impairment: caregiver outcomes	Intervention not eligible
Bergamaschi, S.; Arcara, G.; Calza, A.; Villani, D.; Orgeta, V.; Mondini, S.	2013	One-year repeated cycles of cognitive training (CT) for Alzheimer's disease	Intervention not eligible
Belleville, Sylvie; Hudon, Carol; Bier, Nathalie; Brodeur, Catherine; Gilbert, Brigitte; Grenier, Sebastien; Ouellet, Marie- Christine; Viscogliosi, Chantal; Gauthier, Serge	2018	MEMO+: Efficacy, durability and effect of cognitive training and psychosocial intervention in individuals with mild cognitive impairment	Intervention not eligible
Barnes, D. E.; Yaffe, K.; Belfor, N.; Jagust, W. J.; DeCarli, C.; Reed, B. R.; Kramer, J. H.	2009	Computer-based cognitive training for mild cognitive impairment: Results from a pilot randomized, controlled trial	Intervention not eligible
Bahar-Fuchs, A.; Barendse, M. E. A.; Bloom, R.; Ravona-Springer, R.; Heymann, A.; Dabush, H.; Bar, L.; Slater, S.; Rassovsky, Y.; Beeri, M. S.	2019	Computerized cognitive training for older adults at higher dementia risk due to diabetes: findings from a randomized controlled trial	Intervention not eligible
Zimmermann, R.; Gschwandtner, U.; Benz, N.; Hatz, F.; Schindler, C.; Taub, E.; Fuhr, P.	2014	Cognitive training in Parkinson disease: Cognition-specific vs nonspecific computer training	Intervention not eligible
Ngandu, T.; Lehtisalo, J.; Solomon, A.; Levalahti, E.; Ahtiluoto, S.; Antikainen, R.; Backman, L.; Hanninen, T.; Jula, A.; Laatikainen, T.; Lindstrom, J.; Mangialasche, F.; Paajanen, T.; Pajala, S.; Peltonen, M.; Rauramaa, R.; Stigsdotter- Neely, A.; Strandberg, T.; Tuomilehto, J.; Soininen, H.; Kivipelto, M.	2015	A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial	Intervention not eligible
Reuter, I.; Mehnert, S.; Sammer, G.; Oechsner, M.; Engelhardt, M.	2012	Efficacy of a multimodal cognitive rehabilitation including psychomotor and endurance training in parkinsons disease	Intervention not eligible
Padala, K. P.; Padala, P. R.; Lensing, S. Y.; Dennis, R. A.; Bopp, M. M.; Parkes, C. M.; Garrison, M. K.; Dubbert, P. M.; Roberson, P. K.; Sullivan, D. H.	2017	Efficacy of Wii-Fit on Static and Dynamic Balance in Community Dwelling Older Veterans: A Randomized Controlled Pilot Trial	Intervention not eligible
Matz, K.; Teuschl, Y.; Firlinger, B.; Dachenhausen, A.; Keindl, M.; Seyfang, L.; Tuomilehto, J.; Brainin, M.	2015	Multidomain lifestyle interventions for the prevention of cognitive decline after ischemic stroke randomized trial	Intervention not eligible
De Souto Barreto, P.; Rolland, Y.; Cesari, M.; Dupuy, C.; Andrieu, S.; Vellas, B.	2018	Effects of multidomain lifestyle intervention, omega-3 supplementation or their combination on physical activity levels in older adults: Secondary analysis of the Multidomain Alzheimer Preventive Trial (MAPT) randomised controlled trial	Intervention not eligible
Suwardianto, H.; Prasetyo, A.; Utami, R. S.	2018	Effects of physical-cognitive therapy (PCT) on criticaly ill patients in intensive care unit	Intervention not eligible
Small, G. W.; Silverman, D. H. S.; Siddarth, P.; Ercoli, L. M.; Miller, K. J.; Lavretsky, H.; Wright, B. C.; Bookheimer, S. Y.; Barrio, J. R.; Phelps, M. E.	2006	Effects of a 14-day healthy longevity lifestyle program on cognition and brain function	Intervention not eligible

It is made available under a CC-BY-NC-ND 4.0 International license .

15

Ng, T. P.; Ling, L. H. A.; Nyunt, M. S. Z.; Feng, L.; Niti, M.; Tan, B. Y.; Chan, G.; Khoo, S. A.; Chan, S. M.; Yap, P.; Yap, K.	2018	Cognitive Effects of Multi-Domain Interventions Among Pre- Frail and Frail Community-Living Older Persons: Randomized Controlled Trial	Intervention not eligible
B. Rand, D.; Eng, J. J.; Liu-Ambrose, T.;	2010	Feasibility of a 6-month exercise and recreation program to	Intervention
Tawashy, A. E.	2010	improve executive functioning and memory in individuals with chronic stroke	not eligible
Kim, M. J.; Han, C. W.; Min, K. Y.; Cho, C. Y.; Lee, C. W.; Ogawa, Y.; Mori, E.; Kohzuki, M.	2016	Physical Exercise with Multicomponent Cognitive Intervention for Older Adults with Alzheimer's Disease: A 6-Month Randomized Controlled Trial	Intervention not eligible
Mastel-Smith, B.; Duke, G.; He, Z.	2019	A Pilot Randomized Controlled Trial Examining the Effects of Tai Chi and Electronic Tablet Use on Older Adults' Cognition and Health	Intervention not eligible
Matz-Costa, C.; Lubben, J.; Lachman, M. E.; Lee, H.; Choi, Y. J.	2018	A Pilot Randomized Trial of an Intervention to Enhance the Health-Promoting Effects of Older Adults' Activity Portfolios: The Engaged4Life Program	Intervention not eligible
McEwen, S. C.; Siddarth, P.; Abedelsater, B.; Kim, Y.; Mui, W.; Wu, P.; Emerson, N. D.; Lee, J.; Greenberg, S.; Shelton, T.; Kaiser, S.; Small, G. W.; Merrill, D. A.	2018	Simultaneous Aerobic Exercise and Memory Training Program in Older Adults with Subjective Memory Impairments	Intervention not eligible
Giuli, C.; Papa, R.; Lattanzio, F.; Postacchini, D.	2016	The Effects of Cognitive Training for Elderly: Results from My Mind Project	Intervention not eligible
Taheri, M.; Irandoust, K.	2017	The effect of balance exercises and computerized cognitive training on psychomotor performance in elderly	Intervention not eligible
Lam, L. C. W.; Chan, W. C.; Leung, T.;	2015	Would older adults with mild cognitive impairment adhere to	Intervention
Fung, A. W. T.; Leung, E. M. F.	2013	and benefit from a structured lifestyle activity intervention to enhance cognition?: A cluster randomized controlled trial	not eligible
Yoon, J. E.; Lee, S. M.; Lim, H. S.; Kim, T. H.; Jeon, J. K.; Mun, M. H.	2013	The effects of cognitive activity combined with active extremity exercise on balance, walking activity, memory level and quality of life of an older adult sample with dementia	Intervention not eligible
Zheng, Z.; Zhu, X.; Yin, S.; Wang, B.; Niu, Y.; Huang, X.; Li, R.; Li, J.	2015	Combined cognitive-psychological-physical intervention induces reorganization of intrinsic functional brain architecture in older adults	Intervention not eligible
Voelcker-Rehage, C.; Godde, B.; Staudinger, U. M.	2011	Cardiovascular and coordination training differentially improve cognitive performance and neural processing in older adults	Intervention not eligible
Vieira, A.; Melo, C.; Machado, J.; Gabriel, J.	2018	Virtual reality exercise on a home-based phase III cardiac rehabilitation program, effect on executive function, quality of life and depression, anxiety and stress: a randomized controlled trial	Intervention not eligible
Van Schaik, P.; Blake, J.; Pernet, F.; Spears, I.; Fencott, C.	2008	Virtual augmented exercise gaming for older adults	Intervention not eligible
Fraser, S. A.; Li, K. Z. H.; Berryman, N.; Desjardins-Crepeau, L.; Lussier, M.; Vadaga, K.; Lehr, L.; Vu, T. T. M.; Bosquet, L.; Bherer, L.	2017	Does combined physical and cognitive training improve dual- task balance and gait outcomes in sedentary older adults?	Intervention not eligible
Fogarty, J. N.; Murphy, K. J.; McFarlane, B.; Montero-Odasso, M.; Wells, J.; Troyer, A. K.; Trinh, D.; Gutmanis, I.; Hansen, K. T.	2016	Taoist Tai Chi and Memory Intervention for Individuals with Mild Cognitive Impairment	Intervention not eligible
Fabre, C.; Masse-Biron, J.; Chamari, K.; Varray, A.; Mucci, P.; Prefaut, C.	1999	Evaluation of quality of life in elderly healthy subjects after aerobic and/or mental training	Intervention not eligible
Evers, A.; Klusmann, V.; Schwarzer, R.; Heuser, I.	2011	Improving cognition by adherence to physical or mental exercise: a moderated mediation analysis	Intervention not eligible
Espeland, M. A.; Lipska, K.; Miller, M. E.; Rushing, J.; Cohen, R. A.; Verghese, J.; McDermott, M. M.; King, A. C.; Strotmeyer, E. S.; Blair, S. N.; Pahor, M.; Reid, K.; Demons, J.; Kritchevsky, S. B.	2017	Effects of Physical Activity Intervention on Physical and Cognitive Function in Sedentary Adults With and Without Diabetes	Intervention not eligible
Esmail, A.; Vrinceanu, T.; Lussier, M.; Predovan, D.; Berryman, N.; Houle, J.; Karelis, A.; Grenier, S.; Minh Vu, T. T.; Villalpando, J. M.; Bherer, L.	2019	Effects of Dance/Movement Training vs. Aerobic Exercise Training on cognition, physical fitness and quality of life in older adults: A randomized controlled trial	Intervention not eligible
Dimitrova, J.; Hogan, M.; Khader, P.; O'Hora, D.; Kilmartin, L.; Walsh, J. C.; Roche, R.; Anderson-Hanley, C.	2017	Comparing the effects of an acute bout of physical exercise with an acute bout of interactive mental and physical exercise on electrophysiology and executive functioning in younger and older adults	Intervention not eligible
Dechamps, A.; Onifade, C.; Decamps, A.; Bourdel-Marchasson, I.	2009	Health-related quality of life in frail institutionalized elderly: Effects of a cognition-action intervention and tai chi	Intervention not eligible
de Oliveira Silva, F.; Ferreira, J. V.; Placido,	2019	Three months of multimodal training contributes to mobility and	Intervention
J.; Sant'Anna, P.; Araujo, J.; Marinho, V.;		executive function in elderly individuals with mild cognitive	not eligible

Laks, J.; Camaz Deslandes, A.		impairment, but not in those with Alzheimer's disease: A randomized controlled trial	
Coetsee, C.; Terblanche, E.	2017	The effect of three different exercise training modalities on cognitive and physical function in a healthy older population	Intervention not eligible
Choi, W.; Lee, S.	2019	The Effects of Virtual Kayak Paddling Exercise on Postural Balance, Muscle Performance, and Cognitive Function in Older Adults with Mild Cognitive Impairment: A Randomized Controlled Trial	Intervention not eligible
Chapman, S. B.; Aslan, S.; Spence, J. S.; DeFina, L. F.; Keebler, M. W.; Didehbani, N.; Lu, H.	2013	Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging	Intervention not eligible
Cassilhas, R. C.; Viana, V. A. R.; Grassmann, V.; Santos, R. T.; Santos, R. F.; Tufik, S.; Mello, M. T.	2007	The impact of resistance exercise on the cognitive function of the elderly	Intervention not eligible
Candela, Filippo; Zucchetti, Giulia; Magistro, Daniele; Rabaglietti, Emanuela	2015	The effects of a physical activity program and a cognitive training program on the long-term memory and selective attention of older adults: A comparative study	Intervention not eligible
Burgener, S. C.; Yang, Y.; Gilbert, R.; Marsh-Yant, S.	2008	The effects of a multimodal intervention on outcomes of persons with early-stage dementia	Intervention not eligible
Cherup, N.; Roberson, K.; Potiaumpai, M.; Widdowson, K.; Jaghab, A. M.; Chowdhari, S.; Armitage, C.; Seeley, A.; Signorile, J.	2018	Improvements in cognition and associations with measures of aerobic fitness and muscular power following structured exercise	Intervention not eligible
Cheng, Y.; Wu, W.; Feng, W.; Wang, J.; Chen, Y.; Shen, Y.; Li, Q.; Zhang, X.; Li, C.	2012	The effects of multi-domain versus single-domain cognitive training in non-demented older people: A randomized controlled trial	Intervention not eligible
Chapman, S. B.; Aslan, S.; Spence, J. S.; Keebler, M. W.; DeFina, L. F.; Didehbani, N.; Perez, A. M.; Lu, H.; D'Esposito, M.	2016	Distinct brain and behavioral benefits from cognitive vs. Physical training: A randomized trial in aging adults	Intervention not eligible
Byun, J. E.; Kang, E. B.	2016	The effects of senior brain health exercise program on basic physical fitness, cognitive function and BDNF of elderly women - a feasibility study	Intervention not eligible
Brummel, N. E.; Girard, T. D.; Ely, E. W.; Pandharipande, P. P.; Morandi, A.; Hughes, C. G.; Graves, A. J.; Shintani, A.; Murphy, E.; Work, B.; Pun, B. T.; Boehm, L.; Gill, T. M.; Dittus, R. S.; Jackson, J. C.	2014	Feasibility and safety of early combined cognitive and physical therapy for critically ill medical and surgical patients: The Activity and Cognitive Therapy in ICU (ACT-ICU) trial	Interventior not eligible
Callisaya, M. L.; Daly, R. M.; Sharman, J. E.; Bruce, D.; Davis, T. M. E.; Greenaway, T.; Nolan, M.; Beare, R.; Schultz, M. G.; Phan, T.; Blizzard, L. C.; Srikanth, V. K.	2017	Feasibility of a multi-modal exercise program on cognition in older adults with Type 2 diabetes - a pilot randomised controlled trial	Interventior not eligible
Bossers, W. J. R.; Scherder, E. J. A.; Boersma, F.; Hortobagyi, T.; Van Der Woude, L. H. V.; Van Heuvelen, M. J. G.	2014	Feasibility of a combined aerobic and strength training program and its effects on cognitive and physical function in institutionalized dementia patients. A pilot study	Intervention not eligible
Bherer, L.; Langeard, A.; Kaushal, N.; Vrinceanu, T.; Desjardins-Crepeau, L.; Langlois, F.; Kramer, A. F.	2019	Physical exercise training effect and mediation through cardiorespiratory fitness on dual-task performances differ in younger-old and older-old adults	Intervention not eligible
Berryman, N.; Bherer, L.; Nadeau, S.; Lauziere, S.; Lehr, L.; Bobeuf, F.; Lussier, M.; Kergoat, M. J.; Vu, T. T. M.; Bosquet, L.	2014	Multiple roads lead to Rome: combined high-intensity aerobic and strength training vs. gross motor activities leads to equivalent improvement in executive functions in a cohort of healthy older adults	Interventior not eligible
Baumeister, J.; Ssin, S. Y.; ElSayed, N. A. M.; Dorrian, J.; Webb, D. P.; Walsh, J. A.; Simon, T. M.; Irlitti, A.; Smith, R. T.; Kohler, M.; Thomas, B. H.	2017	Cognitive Cost of Using Augmented Reality Displays	Interventior not eligible
Baniqued, P. L.; Gallen, C. L.; Voss, M. W.; Burzynska, A. Z.; Wong, C. N.; Cooke, G. E.; Duffy, K.; Fanning, J.; Ehlers, D. K.; Salerno, E. A.; Aguinaga, S.; McAuley, E.; Kramer, A. F.; D'Esposito, M.	2018	Brain network modularity predicts exercise-related executive function gains in older adults	Interventior not eligible
Anonymous,	2019	Erratum: Simultaneous aerobic exercise and memory training program in older adults with subjective memory impairments (Journal of Alzheimer's Disease (2018) 62:2 (795-806) DOI: 10.3233/JAD-170846)	Intervention not eligible
Anonymous,	2019	Simultaneous Aerobic Exercise and Memory Training Program in Older Adults with Subjective Memory Impairments	Intervention not eligible
Solomon, A.; Turunen, H.; Ngandu, T.; Peltonen, M.; Levalahti, E.; Helisalmi, S.; Antikainen, R.; Backman, L.; Hanninen, T.; Jula, A.; Laatikainen, T.; Lehtisalo, J.;	2018	Effect of the apolipoprotein e genotype on cognitive change during a multidomain lifestyle intervention a subgroup analysis of a randomized clinical trial	Intervention not eligible

Lindstrom, J.; Paajanen, T.; Pajala, S.; Stigsdotter-Neely, A.; Strandberg, T.;			
Tuomilehto, J.; Soininen, H.; Kivipelto, M. Falkenstein, M.; Gajewski, P. D.	2013	The Influence of Different Training Regimes on Executive	Intervention
Faikenstein, M.; Gajewski, P. D.	2015	Functions and Brain Activity in Healthy Old Adults	not eligible
Kulmala, J.; Ngandu, T.; Havulinna, S.; Levalahti, E.; Lehtisalo, J.; Solomon, A.; Antikainen, R.; Laatikainen, T.; Pippola, P.; Peltonen, M.; Rauramaa, R.; Soininen, H.; Strandberg, T.; Tuomilehto, J.; Kivipelto, M.	2019	The Effect of Multidomain Lifestyle Intervention on Daily Functioning in Older People	Intervention not eligible
Kwok, Yan Yan	2019	The effects of mindfulness yoga versus stretching and resistance training exercises on psychological distress for people with mild- to-moderate Parkinson's disease: A randomised controlled trial	Intervention not eligible
Kao, C. C.; Chiu, H. L.; Liu, D.; Chan, P. T.; Tseng, I. J.; Chen, R.; Niu, S. F.; Chou, K. R.	2018	Effect of interactive cognitive motor training on gait and balance among older adults: A randomized controlled trial	Intervention not eligible
Maltais, M.; de Souto Barreto, P.; Pothier, K.; Cantet, C.; Andrieu, S.; Rolland, Y.; Vellas, B.	2019	Lifestyle multidomain intervention, omega-3 supplementation, or both for reducing the risk of developing clinically relevant depressive symptoms in older adults with memory complaints? Secondary analysis from the MAPT trial	Intervention not eligible
Marengoni, A.; Rizzuto, D.; Fratiglioni, L.; Antikainen, R.; Laatikainen, T.; Lehtisalo, J.; Peltonen, M.; Soininen, H.; Strandberg, T.; Tuomilehto, J.; Kivipelto, M.; Ngandu, T.	2018	The Effect of a 2-Year Intervention Consisting of Diet, Physical Exercise, Cognitive Training, and Monitoring of Vascular Risk on Chronic Morbidity-the FINGER Randomized Controlled Trial	Intervention not eligible
Wollesen, B.; Voelcker-Rehage, C.; Willer, J.; Zech, A.; Mattes, K.	2015	Feasibility study of dual-task-managing training to improve gait performance of older adults	Intervention not eligible
Maselli, M.; Fiorini, L.; Cecchi, F.; Castro, E.; Esposito, R.; Cavallo, F.; Mancioppi, G.; Ottino, S.; Pinori, F.; Sportiello, M. T.; Laschi, C.	2018	Can physical and cognitive training based on episodic memory be combined in a new protocol for daily training?	Intervention not eligible
Falbo, S.; Condello, G.; Capranica, L.; Forte, R.; Pesce, C.	2016	Effects of Physical-Cognitive Dual Task Training on Executive Function and Gait Performance in Older Adults: A Randomized Controlled Trial	Intervention not eligible
You, J. H.; Shetty, A.; Jones, T.; Shields, K.; Belay, Y.; Brown, D.	2009	Effects of dual-task cognitive-gait intervention on memory and gait dynamics in older adults with a history of falls: A preliminary investigation	Outcome no eligible
de Bruin, E. D.; van Het Reve, E.; Murer, K.	2013	A randomized controlled pilot study assessing the feasibility of combined motor-cognitive training and its effect on gait characteristics in the elderly	Outcome no eligible
Khan, K.; Ghous, M.; Malik, A. N.; Amjad, M. I.; Tariq, I.	2018	Effects of turning and cognitive training in fall prevention with dual task training in elderly with balance impairment	Outcome no eligible
Jehu, D. A.; Paquet, N.; Lajoie, Y.	2017	Balance and mobility training with or without concurrent cognitive training improves the timed up and go (TUG), TUG cognitive, and TUG manual in healthy older adults: an exploratory study	Outcome no eligible
Yang, Y. R.; Cheng, S. J.; Lee, Y. J.; Liu, Y. C.; Wang, R. Y.	2019	Cognitive and motor dual task gait training exerted specific training effects on dual task gait performance in individuals with Parkinson's disease: A randomized controlled pilot study	Outcome no eligible
Jehu, D.; Paquet, N.; Lajoie, Y.	2017	Balance and mobility training with or without concurrent cognitive training does not improve posture, but improves reaction time in healthy older adults	Outcome no eligible
Werner, C.; Rosner, R.; Wiloth, S.; Lemke, N. C.; Bauer, J. M.; Hauer, K.	2018	Time course of changes in motor-cognitive exergame performances during task-specific training in patients with dementia: Identification and predictors of early training response	Outcome no eligible
Wongcharoen, S.; Sungkarat, S.; Munkhetvit, P.; Lugade, V.; Silsupadol, P.	2017	Home-based interventions improve trained, but not novel, dual- task balance performance in older adults: A randomized controlled trial	Outcome no eligible
Pichierri, G.; Murer, K.; de Bruin, E. D.	2012	A cognitive-motor intervention using a dance video game to enhance foot placement accuracy and gait under dual task conditions in older adults: a randomized controlled trial	Outcome no eligible
Lemke, N. C.; Werner, C.; Wiloth, S.; Oster, P.; Bauer, J. M.; Hauer, K.	2019	Transferability and Sustainability of Motor-Cognitive Dual-Task Training in Patients with Dementia: A Randomized Controlled Trial	Outcome no eligible
Wiloth, S.; Werner, C.; Lemke, N. C.; Bauer, J.; Hauer, K.	2018	Motor-cognitive effects of a computerized game-based training method in people with dementia: a randomized controlled trial	Outcome no eligible
Grasso, M. G.; Broccoli, M.; Casillo, P.; Catani, S.; Pace, L.; Pompa, A.; Rizzi, F.; Troisi, E.	2017	Evaluation of the Impact of Cognitive Training on Quality of Life in Patients with Multiple Sclerosis	Population not eligible

Prasertsakul, T.; Kaimuk, P.; Chinjenpradit, W.; Limroongreungrat, W.; Charoensuk, W.	2018	The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: a randomized preliminary study	Population not eligible
Ploughman, M.; Eskes, G. A.; Kelly, L. P.; Kirkland, M. C.; Devasahayam, A. J.;	2019	Synergistic Benefits of Combined Aerobic and Cognitive Training on Fluid Intelligence and the Role of IGF-1 in Chronic	Population not eligible
Wallack, E. M.; Abraha, B.; Hasan, S. M. M.; Downer, M. B.; Keeler, L.; Wilson, G.; Skene, E.; Sharma, I.; Chaves, A. R.; Curtis,		Stroke	
M. E.; Bedford, E.; Robertson, G. S.; Moore, C. S.; McCarthy, J.; Mackay-Lyons, M.			
Meester, D.; Al-Yahya, E.; Dennis, A.; Collett, J.; Wade, D. T.; Ovington, M.; Liu, F.; Meaney, A.; Cockburn, J.; Johansen- Berg, H.; Dawes, H.	2019	A randomized controlled trial of a walking training with simultaneous cognitive demand (dual-task) in chronic stroke	Population not eligible
Bo, W.; Lei, M.; Tao, S.; Jie, L. T.; Qian, L.; Lin, F. Q.; Ping, W. X.	2019	Effects of combined intervention of physical exercise and cognitive training on cognitive function in stroke survivors with vascular cognitive impairment: a randomized controlled trial	Population not eligible
Park, M. O.; Lee, S. H.	2018	Effects of cognitive-motor dual-Task training combined with auditory motor synchronization training on cognitive functioning in individuals with chronic stroke	Population not eligible
Heisz, J. J.; Clark, I. B.; Bonin, K.; Paolucci, E. M.; Michalski, B.; Becker, S.; Fahnestock, M.	2017	The effects of physical exercise and cognitive training on memory and neurotrophic factors	Population not eligible
Kimhy, D.; Vakhrusheva, J.; Bartels, M. N.; Armstrong, H. F.; Ballon, J. S.; Khan, S.; Chang, R. W.; Hansen, M. C.; Ayanruoh, L.; Lister, A.; Castren, E.; Smith, E. E.; Sloan, R. P.	2015	The impact of aerobic exercise on brain-derived neurotrophic factor and neurocognition in individuals with schizophrenia: A single-blind, randomized clinical trial	Population not eligible
Niederer, D.; Engeroff, T.; Wallner, F.; Plaumann, U.; Banzer, W.	2018	The acute physical and cognitive effects of a classical workplace physical activity program versus a motor-cognitive coordination workplace program: A randomized crossover trial	Population not eligible
O'Leary, K. C.; Pontifex, M. B.; Scudder, M. R.; Brown, M. L.; Hillman, C. H.	2011	The effects of single bouts of aerobic exercise, exergaming, and videogame play on cognitive control	Population not eligible
Janssen, A.; Boster, A.; Lee, H.; Patterson, B.; Prakash, R. S. Gillman, A. S.; Bryan, A. D.	2015 2016	The effects of video-game training on broad cognitive transfer in multiple sclerosis: A pilot randomized controlled trial Effects of Performance Versus Game-Based Mobile Applications	Population not eligible Population
Yeh, T. T.; Chang, K. C.; Wu, C. Y.	2019	on Response to Exercise The Active Ingredient of Cognitive Restoration: A Multicenter Randomized Controlled Trial of Sequential Combination of Aerobic Exercise and Computer-Based Cognitive Training in Stroke Survivors With Cognitive Decline	not eligible Population not eligible
Woost, L.; Bazin, P. L.; Taubert, M.; Trampel, R.; Tardif, C. L.; Garthe, A.; Kempermann, G.; Renner, U.; Stalla, G.; Ott, D. V. M.; Rjosk, V.; Obrig, H.;	2018	Physical Exercise and Spatial Training: A Longitudinal Study of Effects on Cognition, Growth Factors, and Hippocampal Plasticity	Population not eligible
Villringer, A.; Roggenhofer, E.; Klein, T. A. Wilczynska, M.; Lubans, D. R.; Paolini, S.; Plotnikoff, R. C.	2019	Mediating Effects of the 'eCoFit' Physical Activity Intervention for Adults at Risk of, or Diagnosed with, Type 2 Diabetes	Population not eligible
Vogt, T.; Herpers, R.; Scherfgen, D.; Struder, H. K.; Schneider, S.	2015	Neuroelectric adaptations to cognitive processing in virtual environments: an exercise-related approach	Population not eligible
Veldkamp, R.; Baert, I.; Kalron, A.; Tacchino, A.; D'Hooge, M.; Hellinckx, P.; Van Zeir, E.; De Weerdt, N.; Raats, J.; Van Geel, F.; Feys, P.	2019	Dual task training in persons with Multiple Sclerosis: Effectiveness of an integrated cognitive-motor dual task training compared to a single mobility training	Population not eligible
Schaeffer, E.; Busch, J. H.; Roeben, B.; Otterbein, S.; Saraykin, P.; Leks, E.; Liepelt- Scarfone, I.; Synofzik, M.; Elshehabi, M.; Maetzler, W.; Hansen, C.; Andris, S.; Berg, D.	2019	Effects of Exergaming on Attentional Deficits and Dual-Tasking in Parkinson's Disease	Population not eligible
Felippe, L. A.; Salgado, P. R.; de Souza Silvestre, D.; Smaili, S. M.; Christofoletti, G.	2019	A Controlled Clinical Trial on the Effects of Exercise on Cognition and Mobility in Adults With Multiple Sclerosis	Population not eligible
Anonymous,	2003	Maintaining cognition in the elderly	Not RCT
Taylor, L.; Kerse, N.; Klenk, J.; Borotkanics, R.; Maddison, R.	2018	Exergames to Improve the Mobility of Long-Term Care Residents: A Cluster Randomized Controlled Trial	Not RCT
Reinthal, A.; Szirony, K.; Clark, C.; Swiers, J.; Kellicker, M.; Linder, S.	2012	ENGAGE: Guided activity-based gaming in neurorehabilitation after stroke: A pilot study	Not RCT
Tay, L.; Lim, W. S.; Chan, M.; Ali, N.;	2016	A Combined Cognitive Stimulation and Physical Exercise	Not RCT

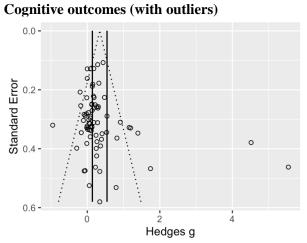
Chong, M. S.		Programme (MINDVital) in Early Dementia: Differential Effects on Single- and Dual-Task Gait Performance	
Gregory, M. A.; Boa Sorte Silva, N. C.; Gill, D. P.; McGowan, C. L.; Liu-Ambrose, T.; Shoemaker, J. K.; Hachinski, V.; Holmes, J.; Petrella, R. J.	2017	Combined Dual-Task Gait Training and Aerobic Exercise to Improve Cognition, Mobility, and Vascular Health in Community-Dwelling Older Adults at Risk for Future Cognitive Decline1	Not RCT
Brami, C.; Trivalle, C.; Maillot, P.	2018	Feasibility and interest of exergame training for Alzheimer patients in long-term care	Not RCT
Chuang, L. Y.; Hung, H. Y.; Huang, C. J.; Chang, Y. K.; Hung, T. M.	2015	A 3-month intervention of Dance Dance Revolution improves interference control in elderly females: a preliminary investigation	Not RCT
Arkin, S.	2007	Language-enriched exercise plus socialization slows cognitive decline in Alzheimer's disease	Not RCT
Kayama, H.; Okamoto, K.; Nishiguchi, S.; Yukutake, T.; Tanigawa, T.; Nagai, K.; Yamada, M.; Aoyama, T.	2013	Efficacy of an Exercise Game Based on Kinect in Improving Physical Performances of Fall Risk Factors in Community- Dwelling Older Adults	Not RCT
Vallabhajosula, S.; McMillion, A. K.; Freund, J. E.	2017	The effects of exergaming and treadmill training on gait, balance, and cognition in a person with Parkinson's disease: A case study	Not RCT
Taniguchij, Y.; Kousa, Y.; Shinkai, S.; Uematsuj, S.; Nagasawa, A.; Aoki, M.; Muto, S. Y.; Abe, M.; Fukaya, T.; Watanabe, N.	2009	Increased physical and intellectual activity and changes in cognitive function in elderly dwellers: lessons from a community-based dementia prevention trial in Suginami Ward, Tokyo. [Japanese]	Not RCT
Tang, J. Y. M.; Wong, G. H. Y.; Luo, H.; Liu, T.; Lum, T. Y. S.	2019	Cognitive changes associated with mentally active lifestyle and structured cognitive programs: a 2-year longitudinal study	Not RCT
Sun, Jing; Zhang, Ning; Buys, Nicholas; Zhou, Zheng-Yuan; Shen, Shu-Ying; Yuan, Bao-Jun	2013	The role of Tai Chi, cultural dancing, playing a musical instrument and singing in the prevention of chronic disease in Chinese older adults: A mind-body meditative approach	Not RCT
Styliadis, C.; Kartsidis, P.; Paraskevopoulos, E.; Ioannides, A. A.; Bamidis, P. D.	2015	Neuroplastic effects of combined computerized physical and cognitive training in elderly individuals at risk for dementia: An eLORETA controlled study on resting states	Not RCT
Thiel, C.; Vogt, L.; Tesky, V. A.; Meroth, L.; Jakob, M.; Sahlender, S.; Pantel, J.; Banzer, W.	2012	Cognitive intervention response is related to habitual physical activity in older adults	Not RCT
Streber, A.; Abu-Omar, K.; Hentschke, C.; Rutten, A.	2017	A multicenter controlled study for dementia prevention through physical, cognitive and social activities - GESTALT-kompakt	Not RCT
Theill, N.; Schumacher, V.; Adelsberger, R.; Martin, M.; Jancke, L.	2013	Effects of simultaneously performed cognitive and physical training in older adults	Not RCT
Smart, C. M.; Karr, J. E.; Areshenkoff, C.; Rabin, L.; Hudon, C.; Ali, J. I.; Arenaza- Urquijo, E. M.; Buckley, R. F.; Chetelat, G.; Gates, N.; Hampel, H.; Jessen, F.; Marchant, N. L.; Sikkes, S. A. M.; Tales, A.; Van Der Flier, W. M.; Wesselman, L.	2016	Impact of non-pharmacologic interventions on cognitive, behavioral, and emotional functioning in older adults with subjective cognitive decline: A systematic review of controlled trials	Not RCT
Smart, C. M.; Karr, J. E.; Areshenkoff, C. N.; Rabin, L. A.; Hudon, C.; Gates, N.; Ali, J. I.; Arenaza-Urquijo, E. M.; Buckley, R. F.; Chetelat, G.; Hampel, H.; Jessen, F.; Marchant, N. L.; Sikkes, S. A. M.; Tales, A.; van der Flier, W. M.; Wesselman, L.	2017	Non-Pharmacologic Interventions for Older Adults with Subjective Cognitive Decline: Systematic Review, Meta- Analysis, and Preliminary Recommendations	Not RCT
Thomas, Karen S.; Hicks, Julia J.; Johnson, Otis A.	1994	A pilot project for group cognitive retraining with elderly stroke patients	Not RCT
Unibaso-Markaida, I.; Iraurgi, I.; Ortiz- Marques, N.; Amayra, I.; Martinez- Rodriguez, S.	2019	Effect of the Wii Sports Resort on the improvement in attention, processing speed and working memory in moderate stroke 17 Psychology and Cognitive Sciences 1701 Psychology	Not RCT
Dannhauser, T. M.; Cleverley, M.; Whitfield, T. J.; Fletcher, B. C.; Stevens, T.; Walker, Z.	2014	A complex multimodal activity intervention to reduce the risk of dementia in mild cognitive impairmentThinkingFit: pilot and feasibility study for a randomized controlled trial	Not RCT
Regan, K.; White, F.; Harvey, D.; Middleton, L. E.	2019	Effects of an Exercise and Mental Activity Program for People With Dementia and Their Care Partners	Not RCT
Rahe, J.; Petrelli, A.; Kaesberg, S.; Fink, G. R.; Kessler, J.; Kalbe, E.	2015	Effects of cognitive training with additional physical activity compared to pure cognitive training in healthy older adults	Not RCT
Lamoth, C. J.; Alingh, R.; Caljouw, S. R.	2012	Exergaming for elderly: effects of different types of game feedback on performance of a balance task	Not RCT
Sanders, L. M. J.; Hortobagyi, T.; Gemert, S. L. B. V.; Van Der Zee, E. A.; Van Heuvelen, M. J. G.	2019	Dose-response relationship between exercise and cognitive function in older adults with and without cognitive impairment: A systematic review and meta-analysis	Not RCT
Santos, G. D.; Nunes, P. V.; Stella, F.; Brum, P. S.; Yassuda, M. S.; Ueno, L. M.;	2015	Multidisciplinary rehabilitation program: Effects of a multimodal intervention for patients with Alzheimer's disease and cognitive	Not RCT

Gattaz, W. F.; Forlenza, O. V.		impairment without dementia	
Kayama, H.; Okamoto, K.; Nishiguchi, S.; Yamada, M.; Kuroda, T.; Aoyama, T.	2014	Effect of a Kinect-based exercise game on improving executive cognitive performance in community-dwelling elderly: case	Not RCT
Kim, H. H.; Jung, N. H.	2018	control study The effect of exercise combined with a cognitive-enhancement group training program on cognition and depression in the	Not RCT
		community-dwelling elderly	
Isieh, C. C.; Lin, P. S.; Wei, Y. T.; Huang, Y. C.	2015	Tai chi-based exergaming program for older adults at risk of cognitive impairment	Not RCT
Gates, N. J.; Vernooij, R. W. M.; Nisio, M. D.; Karim, S.; March, E.; Martinez, G.; Rutjes, A. W. S.	2019	Computerised cognitive training for preventing dementia in people with mild cognitive impairment	Not RCT
Killane, I.; Fearon, C.; Newman, L.; AcDonnell, C.; Waechter, S. M.; Sons, K.; Lynch, T.; Reilly, R. B.	2015	Dual Motor-Cognitive Virtual Reality Training Impacts Dual- Task Performance in Freezing of Gait	Not RCT
Kivipelto, M.; Mangialasche, F.; Ngandu, T.	2018	Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease	Not RCT
Kramer, A. F.	2000	Physical and mental training: Implications for cognitive functioning in old age	Not RCT
Sueider, Alexandra M.	2017	Obesity and physical functioning: Associations with cognition in the advanced cognitive training for independent and vital elderly (active) cohort	Not RCT
Kume, Y.; Fujita, T.; Uemura, S.; Inomata, S.; Tsugaruya, M.; Sato, A.; Nakamura, Y.; takura, Y.; Ota, H.	2019	Effect of a dual-task exercise to motor and memory function for Japanese older individuals in depopulated rural districts: preliminary intervention research from 2016 to 2019	Not RCT
Kuster, O. C.; Fissler, P.; Laptinskaya, D.; Churm, F.; Scharpf, A.; Woll, A.; Kolassa, S.; Kramer, A. F.; Elbert, T.; von Arnim, C. A. F.; Kolassa, I. T.	2016	Cognitive change is more positively associated with an active lifestyle than with training interventions in older adults at risk of dementia: A controlled interventional clinical trial	Not RCT
Kwok, J. Y. Y.; Choi, K. C.; Chan, H. Y. L.	2016	Effects of mind-body exercises on the physiological and psychosocial well-being of individuals with Parkinson's disease: A systematic review and meta-analysis	Not RCT
.aw, L. L. F.; Barnett, F.; Yau, M. K.; Gray, A. A.	2014	Effects of combined cognitive and exercise interventions on cognition in older adults with and without cognitive impairment: A systematic review	Not RCT
Marmeleira, J.; Galhardas, L.; Raimundo, A.	2018	Exercise merging physical and cognitive stimulation improves physical fitness and cognitive functioning in older nursing home residents: a pilot study	Not RCT
Horning, Sheena M.; Young, Stephanie; Ayhre, Janelle W.; Osato, Sheryl; Wilkins, Stacy Schantz	2016	A multimodal cognitive enhancement program for older adults: A case report of the implementation of Brain Training	Not RCT
 H.; Wan, A. H.; Au-Yeung, F. S.; Lo, H.; Siu, P. J.; Wong, C. P.; Ng, W. Y.; Cheung, I. K.; Ng, S. M.; Chan, C. L.; Chen, Y. 	2014	The psychophysiological effects of Tai-chi and exercise in residential schizophrenic patients: a 3-arm randomized controlled trial	Not RCT
Mayor, S.	2015	Brain training, exercise, and healthy eating slow cognitive decline in elderly people at risk, study finds	Not RCT
Blisky, Martha Louise	1998	Interventions for cognitive and psychosocial functioning in older adults: A comparison of aerobic exercise and cognitive training	Not RCT
Michelle, P.; Gail, A. E.; Liam, P. K.; Megan, C. K.; Augustine, J. D.; Elizabeth, M. W.; Beraki, A.; Mahmudul, H. S. M.; Matthew, B. D.; Hailey, D. W.; Laura, K.; Graham, W.; Elaine, S.; Arthur, R. C.; Marie, E. C.; George, S. R.; Craig, M.; ason, M.; Marilyn, M. L.	2017	Aerobic exercise enhances the beneficial effects of cognitive training and reopens the 'window of recovery' in chronic stroke via neurotrophins	Not RCT
Chao, Y. Y.; Scherer, Y. K.; Wu, Y. W.; Lucke, K. T.; Montgomery, C. A.	2013	The feasibility of an intervention combining self-efficacy theory and Wii Fit exergames in assisted living residents: A pilot study	Not RCT
Chao, Y. Y.; Scherer, Y. K.; Montgomery, C. A.; Lucke, K. T.; Wu, Y. W.	2014	Exergames-based intervention for assisted living residents: a pilot study	Not RCT
zrman, N.; Suzuki, K.; Suzuki, T.; Ono, Y.; Edanaka, Y.; Kunieda, F.; Nakata, M.; Vatanabe, K.	2017	Effect of dance video game training on elderly's cognitive function	Not RCT
D'Neil-Pirozzi, T. M.; Hsu, H.	2016	Feasibility and benefits of computerized cognitive exercise to adults with chronic moderate-to-severe cognitive impairments following an acquired brain injury: A pilot study	Not RCT
Nitz, J. C.; Kuys, S.; Isles, R.; Fu, S.	2010	Is the Wii Fit a new-generation tool for improving balance, health and well-being? A pilot study	Not RCT

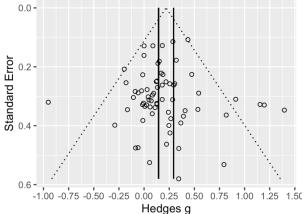
Orellano, E.; Colon, W. I.; Arbesman, M.	2012	Effect of occupation- and activity-based interventions on instrumental activities of daily living performance among	Not RCT
		community-dwelling older adults: A systematic review	
Oswald, Wolf D.; Ackermann, Andreas; Gunzelmann, Thomas	2006	Effects of a Multimodal Activity Program in Nursing-Home Residents	Not RCT
Pereira, C.; Rosado, H.; Cruz-Ferreira, A.; Marmeleira, J.	2018	Effects of a 10-week multimodal exercise program on physical and cognitive function of nursing home residents: A psychomotor intervention pilot study	Not RCT
Gonzalez-Palau, F.; Franco, M.; Bamidis, P.; Losada, R.; Parra, E.; Papageorgiou, S. G.; Vivas, A. B.	2014	The effects of a computer-based cognitive and physical training program in a healthy and mildly cognitive impaired aging sample	Not RCT
Ansai, J. H.; de Andrade, L. P.; de Souza Buto, M. S.; de Vassimon Barroso, V.; Farche, A. C.; Rossi, P. G.; de Medeiros Takahashi, A. C.	2017	Effects of the Addition of a Dual Task to a Supervised Physical Exercise Program on Older Adults' Cognitive Performance	Not RCT
Sapi, M.; Domjan, A.; Feherne Kiss, A.; Pinter, S.	2019	Is Kinect Training Superior to Conventional Balance Training for Healthy Older Adults to Improve Postural Control?	Not RCT
Oswald, W. D.; Gunzelmann, T.; Rupprecht, R.; Hagen, B.	2006	Differential effects of single versus combined cognitive and physical training with older adults: the SimA study in a 5-year perspective	Not RCT
Bruce, H.; Lai, L.; Bherer, L.; Lussier, M.; StOnge, N.; Li, K. Z. H.	2019	The effect of simultaneously and sequentially delivered cognitive and aerobic training on mobility among older adults with hearing loss	Not RCT
Bamidis, P. D.; Fissler, P.; Papageorgiou, S. G.; Zilidou, V.; Konstantinidis, E. I.; Billis, A. S.; Romanopoulou, E.; Karagianni, M.; Bearatis, I.; Tsapanou, A.; Tsilikopoulou, G.; Grigoriadou, E.; Ladas, A.; Kyrillidou, A.; Tsolaki, A.; Frantzidis, C.; Sidiropoulos, E.; Siountas, A.; Matsi, S.; Papatriantafyllou, J.; Margioti, E.; Nika, A.; Schlee, W.; Elbert, T.; Tsolaki, M.; Vivas, A. B.; Kolassa, I. T.	2015	Gains in cognition through combined cognitive and physical training: The role of training dosage and severity of neurocognitive disorder	Not RCT
Alves, M. L. M.; Mesquita, B. S.; Morais, W. S.; Leal, J. C.; Satler, C. E.; Dos Santos Mendes, F. A.	2018	Nintendo WiiTM Versus Xbox KinectTM for Assisting People With Parkinson's Disease	Not RCT
Wayne, P. M.; Walsh, J.; Taylor-Piliae, R.; Wells, R.; Papp, K.; Donovan, N.; Yeh, G.	2014	The impact of Tai-Chi on cognitive performance in older adults: A systematic review and meta-analysis	Not RCT
Wall, K.; Stark, J.; Schillaci, A.; Saulnier, E. T.; McLaren, E.; Striegnitz, K.; Cohen, B. D.; Arciero, P. J.; Kramer, A. F.; Anderson- Hanley, C.	2018	The Enhanced Interactive Physical and Cognitive Exercise System (iPACES [™] v2.0): Pilot Clinical Trial of an In-Home iPad-Based Neuro-Exergame for Mild Cognitive Impairment (MCI)	Not RCT
Walton, C. C.; Mowszowski, L.; Lewis, S. J. G.; Naismith, S. L.	2014	Stuck in the mud: Time for change in the implementation of cognitive training research in ageing?	Not RCT
Woodard, J. L.; Sugarman, M. A.; Nielson, K. A.; Smith, J. C.; Seidenberg, M.; Durgerian, S.; Butts, A.; Hantke, N.; Lancaster, M.; Matthews, M. A.; Rao, S. M.	2012	Lifestyle and genetic contributions to cognitive decline and hippocampal structure and function in healthy aging	Not RCT
Wang, S.; Yin, H.; Jia, Y.; Zhao, L.; Wang, L.; Chen, L.	2018	Effects of mind-body exercise on cognitive function in older adults with cognitive impairment: A systematic review and meta- analysis	Not RCT
Young, J.; Angevaren, M.; Rusted, J.; Tabet, N.	2015	Aerobic exercise to improve cognitive function in older people without known cognitive impairment	Not RCT
Zhu, X.; Yin, S.; Lang, M.; He, R.; Li, J.	2016	The more the better? A meta-analysis on effects of combined cognitive and physical intervention on cognition in healthy older adults	Not RCT
Wu, C.; Yi, Q.; Zheng, X.; Cui, S.; Chen, B.; Lu, L.; Tang, C.	2019	Effects of Mind-Body Exercises on Cognitive Function in Older Adults: A Meta-Analysis	Not RCT
Zou, L.; Loprinzi, P. D.; Yeung, A. S.; Zeng, N.; Huang, T.	2019	The Beneficial Effects of Mind-Body Exercises for People With Mild Cognitive Impairment: a Systematic Review With Meta- analysis	Not RCT
Vasques, P. E.; Moraes, H.; Silveira, H.; Deslandes, A. C.; Laks, J.	2011	Acute exercise improves cognition in the depressed elderly: The effect of dual-tasks	Not RCT
Vaportzis, E.; Niechcial, M. A.; Gow, A. J.	2019	A systematic literature review and meta-analysis of real-world interventions for cognitive ageing in healthy older adults	Not RCT
Rosenberg, D.; Depp, C. A.; Vahia, I. V.; Reichstadt, J.; Palmer, B. W.; Kerr, J.; Norman, G.; Jeste, D. V.	2010	Exergames for subsyndromal depression in older adults: A pilot study of a novel intervention	Not RCT
Garcia, J. A.; Schoene, D.; Lord, S. R.; Delbaere, K.; Valenzuela, T.; Navarro, K. F.	2016	A Bespoke Kinect Stepping Exergame for Improving Physical and Cognitive Function in Older People: A Pilot Study	Not RCT

Fraser, S. A.; Elliott, V.; de Bruin, E. D.; Bherer, L.; Dumoulin, C.	2014	The Effects of Combining Videogame Dancing and Pelvic Floor Training to Improve Dual-Task Gait and Cognition in Women with Mixed-Urinary Incontinence	Not RCT
De Boer, C.; Echlin, H. V.; Rogojin, A.; Baltaretu, B. R.; Sergio, L. E.	2018	With Mixed-Urinary Incontinence Thinking-While-Moving Exercises May Improve Cognition in Elderly with Mild Cognitive Deficits: A Proof-of-Principle Study	Not RCT
De Andrade, L. P.; Gobbi, L. T. B.; Coelho, F. G. M.; Christofoletti, G.; Riani Costa, J. L.; Stella, F.	2013	Benefits of multimodal exercise intervention for postural control and frontal cognitive functions in individuals with Alzheimer's disease: A controlled trial	Not RCT
L; Stella, F. Coley, N.; Ngandu, T.; Lehtisalo, J.; Soininen, H.; Vellas, B.; Richard, E.; Kivipelto, M.; Andrieu, S.; van Gool, P.; van Charante, E. M.; Beishuizen, C.; Jongstra, S.; van Middelaar, T.; van Wanrooij, L.; Hoevenaar-Blom, M.; Barbera, M.; Mangiasche, F.; Guillemont, J.; Meiller, Y.; van de Groep, B.; Brayne, C.; Solomon, A.; Laatikainen, T.; Strandberg, T.; Tuomilehto, J.; Antikainen, R.; Lindstrom, J.; Havulinna, S.; Rauramaa, R.; Hanninen, T.; Backman, L.; Stigsdotter-Neely, A.; Jula, A.; Peltonen, M.; Levalahti, E.; Gronholm, M.; Hemio, K.; Guyonnet, S.; Carrie, I.; Brigitte, L.; Faisant, C.; Lala, F.; Delrieu, J.; Villars, H.; Combrouze, E.; Badufle, C.; Zueras, A.; Cantet, C.; Morin, C.; Van Kan, G. A.; Dupuy, C.; Rolland, Y.; Caillaud, C.; Ousset, P. J.; Fougere, B.; Willis, S.; Belleville, S.; Gilbert, B.; Fontaine, F.; Dartigues, J. F.; Marcet, I.; Delva, F.; Foubert, A.; Cerda, S.; Marie Noelle, Cuffi; Costes, C.; Rouaud, O.; Manckoundia, P.; Quipourt, V.; Marilier, S.; Franon, E.; Bories, L.; Pader, M. L.; Basset, M. F.; Lapoujade, B.; Faure, V.; Yung Tong, M. L.; Malick-Loiseau, C.; Cazaban-Campistron, E.; Desclaux, F.; Blatge, C.; Dantoine, T.; Laubarie-Mouret, C.; Saulnier, I.; Clement, J. P.; Picat, M. A.; Bernard-Bourzeix, L.; Willebois, S.; Desormais, I.; Cardinaud, N.; Bonnefoy, M.; Livet, P.; Rebaudet, P.; Gedeon, C.; Burdet, C.; Terracol, F.; Pesce, A.; Roth, S.; Chaillou, S.; Louchart, S.; Sudres, K.; Lebrun, N.; Barro-Belaygues, N.; Touchon, J.; Bennys, K.; Gabelle, A.; Romano, A.; Touati, L.; Marelli, C.; Pays, C.; Robert, P.; Le Duff, F.; Gervais, C.; Gonfrier, S.; Gasnier, Y.; Bordes, S.; Begorre, D.; Carpuat, C.; Khales, K.; Lefebvre, J. F.; El Idrissi, S. M.; Skolil, P.; Salles, J. P.; Dufouil, C.; Lehericy, S.; Chupin, M.; Mangin, J. F.; Bouhayia, A.; Allard, M.; Ricolfi, F.; Dubois, D.; Bonceour Martel, M. P.; Cotton, F.; Bonafe, A.; Chanalet, S.; Hugon, F.; Bonneville, F.; Cognard, C.; Chollet, F.; Payoux, P.; Voisin, T.	2019	Adherence to multidomain interventions for dementia prevention: Data from the FINGER and MAPT trials	Not RCT
Monteil, J.; Darcourt, J.; Molinier, L.; Derumeaux, H.; Costa, N.; Vincent, C.; Perret, B.; Vinel, C.; Olivier-Abbal, P.			
Coelho-Junior, H. J.; Goncalvez, I. D. O.; Sanches, I. C.; Goncalves, L.; Caperuto, E. C.; Uchida, M. C.; Rodrigues, B.	2018	Multicomponent Exercise Improves Physical Functioning but Not Cognition and Hemodynamic Parameters in Elderly Osteoarthritis Patients Regardless of Hypertension	Not RCT
Coelho, F. G. M.; Andrade, L. P.; Pedroso, R. V.; Santos-Galduroz, R. F.; Gobbi, S.; Costa, J. L. R.; Gobbi, L. T. B.	2013	Multimodal exercise intervention improves frontal cognitive functions and gait in Alzheimer's disease: A controlled trial	Not RCT
Cavallo, M.; Cavanna, A. E.; Harciarek, M.; Johnston, H.; Ostacoli, L.; Angilletta, C.	2013	"Keep up the good work!": A case study of the effects of a specific cognitive training in Alzheimer's disease	Not RCT
Cavallo, M.; Angilletta, C.	2016	A case study of the long-lasting effects of cognitive training on similar tasks in Alzheimer's disease	Not RCT

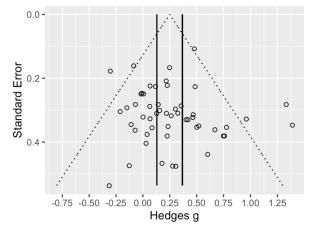
Carrasco, Maria; Ortiz-Maques, Nuria; Martinez-Rodriguez, Silvia	2019	Playing with nintendo wii sports: Impact on physical activity, perceived health and cognitive functioning of a group of community-dwelling older adults	Not RCT
Ben-Sadoun, G.; Sacco, G.; Manera, V.; Bourgeois, J.; Konig, A.; Foulon, P.; Fosty, B.; Bremond, F.; D'Arripe-Longueville, F.; Robert, P.	2016	Physical and Cognitive Stimulation Using an Exergame in Subjects with Normal Aging, Mild and Moderate Cognitive Impairment	Not RCT
Cancela, Jose M.; Vila Suarez, Ma Helena; Vasconcelos, Jamine; Lima, Ana; Ayan, Carlos	2015	Efficacy of brain gym training on the cognitive performance and fitness level of active older adults: A preliminary study	Not RCT
Cai, H.; Li, G.; Jiang, S.; Yin, H.; Liu, P.; Chen, L.	2019	Effect of Low-Intensity, KinectTM-Based Kaimai-Style Qigong Exercise in Older Adults With Type 2 Diabetes	Not RCT
Cadore, E. L.; Moneo, A. B. B.; Mensat, M. M.; Munoz, A. R.; Casas-Herrero, A.; Rodriguez-Manas, L.; Izquierdo, M.	2014	Positive effects of resistance training in frail elderly patients with dementia after long-term physical restraint	Not RCT
Bruderer-Hofstetter, M.; Rausch-Osthoff, A. K.; Meichtry, A.; Munzer, T.; Niedermann, K.	2018	Effective multicomponent interventions in comparison to active control and no interventions on physical capacity, cognitive function and instrumental activities of daily living in elderly people with and without mild impaired cognition - A systematic review and network meta-analysis	Not RCT
Bock, B. C.; Thind, H.; Dunsiger, S. I.; Serber, E. R.; Ciccolo, J. T.; Cobb, V.; Palmer, K.; Abernathy, S.; Marcus, B. H.	2015	Exercise videogames for physical activity and fitness: Design and rationale of the Wii Heart Fitness trial	Not RCT
Bamidis, P. D.; Vivas, A. B.; Styliadis, C.; Frantzidis, C.; Klados, M.; Schlee, W.; Siountas, A.; Papageorgiou, S. G.	2014	A review of physical and cognitive interventions in aging	Not RCT
Arlati, S.; Colombo, V.; Spoladore, D.; Greci, L.; Pedroli, E.; Serino, S.; Cipresso, P.; Goulene, K.; Stramba-Badiale, M.; Riva, G.; Gaggioli, A.; Fserrigno, G.; Sacco, M.	2019	A Social Virtual Reality-Based Application for the Physical and Cognitive Training of the Elderly at Home	Not RCT
Arkin, S. M.	2001	Alzheimer rehabilitation by students: Interventions and outcomes	Not RCT
Antwi, F. A.; Fazylova, N.; Garcon, M. C.; Lopez, L.; Rubiano, R.; Slyer, J. T.	2013	Effectiveness of web-based programs on the reduction of childhood obesity in school-aged children: A systematic review	Not RCT
Angelucci, F.; Caltagirone, C.; Costa, A.	2015	Cognitive training in neurodegenerative diseases: A way to boost neuroprotective molecules?	Not RCT
Anderson, J. G.; Lopez, R. P.; Rose, K. M.; Specht, J. K.	2017	Nonpharmacological Strategies for Patients With Early-Stage Dementia or Mild Cognitive Impairment: A 10-Year Update	Not RCT
Scott, I.; Cooper, C.; Leverton, M.; Burton, A.; Beresford-Dent, J.; Rockwood, K.; Butler, L.; Rapaport, P.	2019	Effects of nonpharmacological interventions on functioning of people living with dementia at home: A systematic review of randomised controlled trials	Not RCT
Shah, T.; Verdile, G.; Sohrabi, H.; Campbell, A.; Putland, E.; Cheetham, C.; Dhaliwal, S.; Weinborn, M.; Maruff, P.; Darby, D.; Martins, R. N.	2014	A combination of physical activity and computerized brain training improves verbal memory and increases cerebral glucose metabolism in the elderly	Not RCT
Anderson-Hanley, C.; Arciero, P. J.; Barcelos, N.; Nimon, J.; Rocha, T.; Thurin, M.; Maloney, M.	2014	Executive function and self-regulated exergaming adherence among older adults	Not RCT
Amoyal, N.; Fallon, E.	2012	Physical exercise and cognitive training clinical interventions used in slowing degeneration associated with mild cognitive impairment: A review of the recent literature	Not RCT
Anderson-Hanley, C.; Stark, J.; Wall, K. M.; VanBrakle, M.; Michel, M.; Maloney, M.; Barcelos, N.; Striegnitz, K.; Cohen, B. D.; Kramer, A. F.	2018	The interactive Physical and Cognitive Exercise System (iPACESTM): effects of a 3-month in-home pilot clinical trial for mild cognitive impairment and caregivers	Not RCT
Wiloth, S.; Lemke, N.; Werner, C.; Hauer, K.	2016	Validation of a Computerized, Game-based Assessment Strategy to Measure Training Effects on Motor-Cognitive Functions in People With Dementia	Not RCT

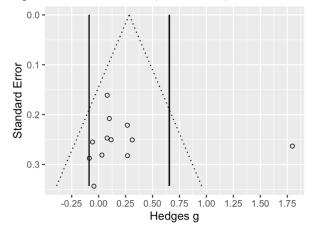

Appendix D. Risk of bias within individual studies

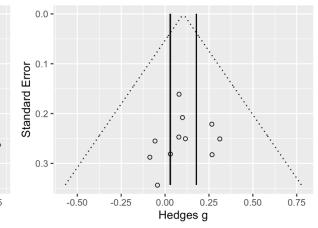
Study	Randomization process	Deviations from intended interventions	Mising outcome data	Measurement of the outcome	Selection of the reported result	Overall Bias
Adcock 2020	Some concerns	High	Some concerns	Some concerns	Low	Some concerns
Anderson-Hanley 2018	Some concerns	High	High	Some concerns	Some concerns	High
Bacha 2018	Low	Some concerns	Low	Some concerns	Low	Some concerns
Barban 2017	Low	Some concerns	Low	Low	Some concerns	Low
Barcelos 2015	Some concerns	High	High	Some concerns	Some concerns	High
Barnes 2013	Low	Some concerns	Low	Low	Low	Low
Boa Sorte Silva 2018	Low	Low	Low	Low	Low	Low
Combourieu Donnezan 2018	Some concerns	High	Some concerns	Some concerns	Some concerns	Some concerns
Damirchi 2018	Some concerns	High	High	Some concerns	Some concerns	High
Delbroek 2017	Some concerns	Some concerns	Low	Low	Some concerns	Low
Desjardins-Crepau 2016	Some concerns	High	High	Low	Some concerns	High
Eggenberger 2015	Some concerns	High	Some concerns	Some concerns	Some concerns	Some concerns
Eggenberger 2016	Some concerns	Some concerns	Some concerns	Some concerns	Low	Some concerns
Fabre 2002	Some concerns	Some concerns	Some concerns	Some concerns	Some concerns	Some concerns
Fiatarone Singh 2014	Low	Some concerns	Low	Low	Low	Low
Gschwind 2015	Some concerns	Some concerns	Low	Low	Low	Low
Hagovska 2016	Low	Some concerns	Low	Some concerns	High	Some concerns
Hiyamizu 2011	Low	Some concerns	Some concerns	Some concerns	Some concerns	Some concerns
Htut 2018	Some concerns	Low	Low	Low	Some concerns	Low
Hughes 2014	Some concerns	Low	Low	Some concerns	Some concerns	Some concerns
Karssemeijer 2019	Some concerns	Some concerns	Low	Low	Low	Low
Kitazawa 2015	Some concerns	Low	Low	Low	Some concerns	Low
Lataar 2018	Low	High	High	High	Some concerns	High
Legault 2011	Some concerns	Low	Low	Low	Low	Low
Leon 2015	Some concerns	Some concerns	High	High	Some concerns	High
Linde 2014	Low	High	Some concerns	Low	Some concerns	Some concerns
Maffei 2017	Low	High	Low	Low	Low	Low
Maillot 2012	Some concerns	Some concerns	Low	Some concerns	Some concerns	Some concerns
McDaniel 2014	Some concerns	Low	Low	Low	Some concerns	Low
Mrakic-Sposta 2018	Some concerns	High	Some concerns	Some concerns	Some concerns	Some concerns
Nishiguchi 2015	Some concerns	Low	Low	Low	Some concerns	Low
Norouzi 2019	Some concerns	Low	Low	Some concerns	Some concerns	Some concerns
Park 2019	Some concerns	Some concerns	Low	Some concerns	Some concerns	Some concerns
Pompeu 2012	Low	Low	Low	Low	Low	Low
Rahe 2015	Some concerns	High	Some concerns	Low	Low	Some concerns
Reigal 2014	Some concerns	Some concerns	High	Low	Some concerns	High
Rezola-Pardo 2019	Low	Low	Low	Low	Some concerns	Low


Romera-Liebana 2018	Low	Low	Low	Low	Low	Low
Schattin 2016	Low	Some concerns	Some concerns	Some concerns	High	Some concerns
Schoene 2013	Low	Some concerns	High	Low	Some concerns	High
Schoene 2015	Low	High	Low	Low	Low	Low
Shatil 2013	Some concerns	High	High	Some concerns	Some concerns	High
Shimada 2018	Low	Some concerns	Low	Low	High	Low
Song 2018	Low	Some concerns	Low	Low	Low	Low
Stanmore 2019	Low	Some concerns	Low	Some concerns	Low	Some concerns
Ten Brinke 2019	Low	Some concerns	Low	Low	Low	Low
Van het Reve 2014	Low	Some concerns	High	Some concerns	Some concerns	High

It is made available under a CC-BY-NC-ND 4.0 International license .


Appendix E. Funnel plots of cognitive, physical and psychosocial outcomes


Cognitive outcomes (without outliers)


Physical outcomes

Psychosocial outcomes (with oulier)

Psychosocial outcomes (without oulier)

It is made available under a CC-BY-NC-ND 4.0 International license .

27

RoB	Population	Study	Intervention	Control	Hedges' g	95% Lower limit	95% Upper limit
Low	Healthy	Gschwind 2015	Exergame	Passive	0.00	-0.32	0.32
Low	Healthy	Htut 2018	Exergame	Passive	1.20	0.55	1.84
Low	Healthy	Htut 2018	Exergame	PE	1.15	0.51	1.80
Low	Healthy	Htut 2018	Exergame	Sham	-0.95	-1.58	-0.33
Low	Healthy	Schoene 2015	Exergame	Passive	0.17	-0.26	0.60
Low	Healthy	Barban 2017	Sequential	СТ	0.00	-0.25	0.25
Low	Healthy	Barban 2017	Sequential	PE	0.09	-0.16	0.34
Low	Healthy	Barban 2017	Sequential	Sham	0.18	-0.07	0.43
Low	Healthy	Barnes 2013	Sequential	СТ	0.12	-0.37	0.61
Low	Healthy	Barnes 2013	Sequential	PE	0.22	-0.27	0.71
Low	Healthy	Barnes 2013	Sequential	Sham	0.13	-0.36	0.61
Low	Healthy	Legault 2011	Sequential	СТ	0.06	-0.60	0.72
Low	Healthy	Legault 2011	Sequential	PE	0.11	-0.55	0.77
Low	Healthy	Legault 2011	Sequential	Sham	0.01	-0.65	0.66
Low	Healthy	McDaniel 2014	Sequential	СТ	0.02	-0.62	0.67
Low	Healthy	McDaniel 2014	Sequential	PE	0.18	-0.43	0.79
Low	Healthy	McDaniel 2014	Sequential	Sham	0.13	-0.51	0.76
Low	Healthy	Romera-Liebana 2018	Sequential	Passive	0.44	0.23	0.65
Low	Healthy	ten Brinke 2019	Sequential	СТ	-0.01	-0.46	0.43
Low	Healthy	ten Brinke 2019	Sequential	Sham	0.19	-0.26	0.63
Low	Healthy	Boa Sorte Silva 2018	Simultaneous	PE	0.32	-0.03	0.67
Low	Healthy	Kitazawa 2015	Simultaneous	Passive	0.31	-0.20	0.81
Low	Healthy	Nishiguchi 2015	Simultaneous	Passive	0.54	-0.02	1.11
Low	MCI	Delbroek 2017	Exergame	Passive	0.22	-0.68	1.13
Low	MCI	Fiatarone Singh 2014	Sequential	СТ	0.03	-0.51	0.57
Low	MCI	Fiatarone Singh 2014	Sequential	PE	-0.09	-0.64	0.47
Low	MCI	Fiatarone Singh 2014	Sequential	Sham	0.13	-0.40	0.66
Low	MCI	Maffei 2017	Sequential	Passive	0.14	-0.23	0.51
Low	MCI	Shimada 2018	Simultaneous	Sham	0.29	0.06	0.51
Some concerns	Healthy	Adcock 2020	Exergame	Passive	0.08	-0.62	0.79
Some concerns	Healthy	Bacha 2018	Exergame	PE	0.10	-0.47	0.66
Some concerns	Healthy	Eggenberger 2015	Exergame	PE	-0.03	-0.58	0.53
Some concerns	Healthy	Eggenberger 2016	Exergame	PE	-0.17	-0.84	0.51
Some concerns	Healthy	Maillot 2012	Exergame	Passive	0.82	0.10	1.53
Some concerns	Healthy	Schattin 2016	Exergame	PE	0.27	-0.47	1.00
Some concerns	Healthy	Fabre 2002	Sequential	СТ	-0.06	-0.99	0.87
Some concerns	Healthy	Fabre 2002	Sequential	PE	-0.09	-1.02	0.85
Some concerns	Healthy	Fabre 2002	Sequential	Sham	0.35	-0.59	1.28
Some concerns	Healthy	Linde 2014	Sequential	СТ	-0.01	-0.76	0.74
Some concerns	Healthy	Linde 2014	Sequential	Passive	0.39	-0.33	1.11
Some concerns	Healthy	Linde 2014	Sequential	PE	0.24	-0.45	0.94
Some concerns	Healthy	Rahe 2015	Sequential	СТ	0.08	-0.50	0.66
Some concerns	Healthy	Rahe 2015	Sequential	СТ	0.04	-0.55	0.63
Some concerns	Healthy	Eggenberger 2015	Simultaneous	PE	-0.06	-0.62	0.51

Appendix F. Results of individual studies and comparisons: Overall cognition

It is made available under a CC-BY-NC-ND 4.0 International license .

28

	T		T		1		
Some concerns	Healthy	Hiyamizu 2012	Simultaneous	PE	-0.01	-0.66	0.63
Some concerns	Healthy	Norouzi 2019	Simultaneous	PE	0.28	-0.33	0.89
Some concerns	Healthy	Norouzi 2019	Simultaneous	Sham	1.40	0.72	2.08
Some concerns	MCI	Hughes 2014	Exergame	Sham	0.37	-0.41	1.14
Some concerns	MCI	Stanmore 2019	Exergame	Passive	-0.20	-0.60	0.21
Some concerns	MCI	Hagovska 2016	Sequential	PE	0.47	0.03	0.92
Some concerns	MCI	Combourieu Donnezan 2018	Simultaneous	СТ	0.13	-0.51	0.77
Some concerns	MCI	Combourieu Donnezan 2018	Simultaneous	Passive	0.53	-0.14	1.21
Some concerns	MCI	Combourieu Donnezan 2018	Simultaneous	PE	0.07	-0.55	0.69
Some concerns	MCI	Mrakic-Sposta 2018	Simultaneous	Passive	0.34	-0.79	1.48
Some concerns	MCI	Park 2019	Simultaneous	Passive	0.91	0.30	1.53
High	Healthy	Schoene 2013	Exergame	Passive	0.41	-0.28	1.09
High	Healthy	Desjardins-Crepau 2016	Sequential	СТ	-0.11	-0.70	0.49
High	Healthy	Desjardins-Crepau 2016	Sequential	PE	-0.01	-0.64	0.63
High	Healthy	Desjardins-Crepau 2016	Sequential	Sham	0.05	-0.56	0.66
High	Healthy	Shatil 2013	Sequential	СТ	-0.18	-0.68	0.32
High	Healthy	Shatil 2013	Sequential	PE	0.26	-0.25	0.76
High	Healthy	Shatil 2013	Sequential	Sham	0.29	-0.22	0.81
High	Healthy	van het Reve 2014	Sequential	PE	0.15	-0.20	0.51
High	Healthy	Reigal 2014	Simultaneous	PE	0.18	-0.33	0.69
High	MCI	Anderson-Hanley 2018	Exergame	PE	0.06	-0.97	1.08
High	MCI	Barcelos 2015	Exergame	PE	0.79	-0.26	1.85
High	MCI	Damirchi 2018	Sequential	СТ	-0.29	-1.07	0.49
High	MCI	Damirchi 2018	Sequential	Passive	0.26	-0.57	1.09
High	MCI	Damirchi 2018	Sequential	PE	0.25	-0.54	1.03

It is made available under a CC-BY-NC-ND 4.0 International license .

29

RoB **Population** Study Intervention Control 95% 95% Hedges's g Lower Upper limit limit -0.09 Low Healthy Gschwind 2015 Exergame Passive -0.400.23 Htut 2018 1.39 0.71 2.07 Low Healthy Exergame Passive Low Healthy Htut 2018 Exergame PE -0.21-0.810.39 Sham Low Healthy Htut 2018 Exergame 0.32 -0.280.93 Schoene 2015 Low Healthy Exergame Passive 0.23 -0.210.66 Low Healthy Barnes 2013 Sequential CT 0.01 -0.480.49 Healthy Barnes 2013 PE -0.02 -0.51 0.47 Low Sequential Barnes 2013 Low Healthy Sham -0.01-0.490.48 Sequential McDaniel 2014 CT Low Healthy Sequential 0.52 -0.171.20 Low Healthy McDaniel 2014 PE 0.13 -0.48 0.74 Sequential 1.05 Low Healthy McDaniel 2014 Sequential Sham 0.40 -0.24Low Healthy Romera-Liebana 2018 Sequential Passive 0.48 0.27 0.69 Low Healthy ten Brinke 2019 Sequential CT 0.12 -0.33 0.56 ten Brinke 2019 Low Healthy Sequential Sham 0.07 -0.37 0.51 Low Healthy Boa Sorte Silva 2018 Simultaneous PE -0.30-0.650.05 0.78 Kitazawa 2015 Simultaneous Low Healthy Passive 1.33 1.89 Low Healthy Nishiguchi 2015 Simultaneous Passive 0.36 -0.210.92 Low MCI Delbroek 2017 Passive 0.18 -0.74 1.09 Exergame 0.76 0.01 1.50 Low MCI Fiatarone Singh 2014 Sequential CT MCI Low Fiatarone Singh 2014 Sequential PE 0.03 -0.76 0.82 Low MCI Fiatarone Singh 2014 Sequential Sham 0.67 -0.041.38 Adcock 2020 0.08 -0.61 0.78 Some concerns Healthy Exergame Passive Some concerns Healthy Bacha 2018 Exergame PE -0.15 -0.720.43 Healthy Eggenberger 2015 Exergame PE -0.07 -0.62 0.48 Some concerns Eggenberger 2016 PE -0.79 0.57 Some concerns Healthy Exergame -0.11 Some concerns Healthy Maillot 2012 Exergame Passive 0.75 0.001.50 PE -0.70 Some concerns Healthy Schattin 2016 Exergame 0.04 0.78 Fabre 2002 0.31 -0.63 1.24 Some concerns Healthy Sequential CT Some concerns Healthy Fabre 2002 Sequential PE -0.13 -1.06 0.80 Some concerns Healthy Fabre 2002 Sequential Sham 0.28 -0.66 1.21 Linde 2014 Sequential -0.52 Some concerns Healthy CT 0.23 0.97 Some concerns Healthy Linde 2014 Sequential Passive -0.07-0.780.64 Some concerns Healthy Linde 2014 Sequential PE 0.23 -0.45 0.92 Some concerns Healthy Rahe 2015 Sequential CT 0.30 -0.280.88 Rahe 2015 CT 0.16 -0.43 0.75 Some concerns Healthy Sequential Some concerns Healthy Eggenberger 2015 Simultaneous PE 0.06 -0.50 0.63 Some concerns Healthy Hiyamizu 2012 Simultaneous PE 0.07 -0.570.71 Some concerns Healthy Norouzi 2019 Simultaneous PE 0.47 -0.15 1.08 Some concerns Healthy Norouzi 2019 Simultaneous Sham 0.96 0.32 1.60 Hughes 2014 Some concerns MCI Exergame Sham 0.60 -0.26 1.46 Some concerns MCI Stanmore 2019 Exergame Passive 0.22 -0.190.62 MCI Hagovska 2016 Sequential PE 0.48 0.04 0.93 Some concerns MCI Combourieu Donnezan 2018 CT 0.42 -0.23 1.07 Some concerns Simultaneous Some concerns MCI Combourieu Donnezan 2018 0.78 0.08 1.47

Simultaneous

Passive

Appendix G. Results of individual studies and comparisons: Overall physical outcomes

It is made available under a CC-BY-NC-ND 4.0 International license .

30

Some concerns	MCI	Combourieu Donnezan 2018	Simultaneous	PE	0.46	-0.17	1.10
Some concerns	MCI	Park 2019	Simultaneous	Passive	0.14	-0.41	0.70
High	Healthy	Schoene 2013	Exergame	Passive	0.50	-0.19	1.19
High	Healthy	Desjardins-Crepau 2016	Sequential	СТ	0.22	-0.39	0.83
High	Healthy	Desjardins-Crepau 2016	Sequential	PE	0.00	-0.63	0.63
High	Healthy	Desjardins-Crepau 2016	Sequential	Sham	0.26	-0.36	0.89
High	Healthy	van het Reve 2014	Sequential	PE	0.25	-0.08	0.58
High	MCI	Anderson-Hanley 2018	Exergame	PE	-0.31	-1.37	0.74

It is made available under a CC-BY-NC-ND 4.0 International license .

31

RoB	Population	Study	Intervention	Control	Hedges's g	95% CI Lower	95% CI Upper
						limit	limit
Low	Healthy	Gschwind 2015	Exergame	Passive	0.08	-0.24	0.40
Low	Healthy	Schoene 2015	Exergame	Passive	0.27	-0.17	0.70
Low	Healthy	Barnes 2013	Sequential	СТ	0.12	-0.38	0.61
Low	Healthy	Barnes 2013	Sequential	PE	0.31	-0.18	0.80
Low	Healthy	Barnes 2013	Sequential	Sham	0.08	-0.41	0.56
Low	Healthy	Kitazawa 2015	Simultaneous	Passive	-0.06	-0.56	0.44
Some concerns	Healthy	Eggenberger 2015	Exergame	PE	0.03	-0.52	0.58
Some concerns	Healthy	Eggenberger 2016	Exergame	PE	-0.04	-0.72	0.63
Some concerns	Healthy	Eggenberger 2015	Simultaneous	PE	-0.09	-0.65	0.48
Some concerns	MCI	Stanmore 2019	Exergame	Passive	0.10	-0.31	0.51
Some concerns	MCI	Hagovska 2016	Sequential	PE	1.80	1.28	2.31
Some concerns	MCI	Park 2019	Simultaneous	Passive	0.27	-0.29	0.82

Appendix H. Results of individual studies and comparisons: Overall psychosocial outcomes

It is made available under a CC-BY-NC-ND 4.0 International license .

32

RoB	Population	Study	Intervention	Control	Hedges's g	95% CI Lower limit	95% CI Upper limit
Overall cognitiv	e outcomes						
Low	Dementia	Karssemeijer 2019	Exergame	PE	-0.02	-0.49	0.46
Low	Dementia	Karssemeijer 2019	Exergame	Sham	0.21	-0.26	0.68
Low	Dementia	Rezola-Pardo 2019	Simultaneous	PE	0.00	-0.47	0.47
Low	Parkinson	Pompeu 2012	Exergame	PE	0.04	-0.63	0.72
Low	Parkinson	Song 2018	Exergame	Passive	0.19	-0.34	0.72
Overall physical	outcomes						
Low	Dementia	Rezola-Pardo 2019	Simultaneous	PE	-0.06	-0.53	0.41
Low	Parkinson	Pompeu 2012	Exergame	PE	0.10	-0.57	0.78
Low	Parkinson	Song 2018	Exergame	Passive	-0.15	-0.68	0.38
Overall psychos	ocial outcomes						
Low	Dementia	Rezola-Pardo 2019	Simultaneous	PE	-0.35	-0.83	0.13

Appendix I. Results of individual studies and comparisons: Dementia and Parkinson's disease

STUDY INFORMATION		POPULATIO	N CHARACTE	RISTICS	INTERVE	NTION	Risk of Bias
Comparison	Study	Population	Age	MMSE (or equivalent)	Duration (weeks)	Delivery	
Exg vs PC	Adcock 2020	Healthy	73.9	29.05	16	Unsupervised	Some concerns
Exg vs PE	Anderson-Hanley 2018	MCI	78.1	21.8 (MoCA)	24	Supervised	High
Exg vs PE	Bacha 2018	Healthy	68	23.0 (MoCA)	7	Supervised	Some concerns
Seq vs CT vs PE vs Sham	Barban 2017	Healthy	75.0	<u>≥</u> 20	12	Supervised	Low
Exg vs PE	Barcelos 2015	MCI	85.1	22.6 (MoCA)	12	Supervised	High
Seq vs CT vs PE vs Sham	Barnes 2013	Healthy	73.4	28.34 (3MSE) ^a	12	Supervised	Low
Sim vs PE	Boa Sorte Silva 2018	Healthy	67.5	29.1	24	Supervised	Low
Sim vs CT vs PE vs PC	Combourieu Donnezan 2018	MCI	76.7	27.78	12	Supervised	Some concerns
Seq vs CT vs PE vs PC	Damirchi 2018	MCI	68.3	23.43	8	Supervised	High
Exg vs PC	Delbroek 2017	MCI	87.2	17.25 (MoCA)	6	Supervised	Low
Seq vs CT vs PE vs Sham	Desjardin-Crepeau 2016	Healthy	72.4	28.89	12	Supervised	High
Exg vs Sim vs PE	Eggenberger 2015	Healthy	78.9	28.23	26	Supervised	Some concerns
Exg vs PE	Eggenberger 2016	Healthy	74.9	26.24 (MoCA)	8	Supervised	Some concerns
Seq vs CT vs PE vs Sham	Fabre 2002	Healthy	65.9	Nr	8	Supervised	Some concerns
Seq vs CT vs PE vs Sham	Fiatarone Singh 2014	MCI	70.1	27	26	Supervised	Low
Exg vs PC	Gschwind 2015	Healthy	74.7	Nr	16	Unsupervised	Low
Seq vs PE	Hagovska 2016	MCI	67	26.4	10	Supervised	Some concerns
Sim vs PE	Hiyamizu 2012	Healthy	72	Nr	12	Supervised	Some concerns
Exg vs Sham	Hughes 2014	MCI	77.4	27.2	24	Supervised	Some concerns
Sim vs PC	Kitazawa 2015	Healthy	76.4	Nr	8	Supervised	Low
Seq vs CT vs PE vs Sham	Legault 2011	Healthy	76.4	28.41 (3MSE) ^a	16	Supervised	Low
Seq vs CT vs PE vs PC	Linde 2014	Healthy	67.1	Nr	16	Supervised	Some concerns
Seq vs PC	Maffei 2017	MCI	74.5	25.6	28	Supervised	Low
Exg vs PC	Maillot 2012	Healthy	73.5	28.97	12	Supervised	Some concerns
Seq vs CT vs PE vs Sham	McDaniel 2014	Healthy	65	29	24	Supervised	Low
Sim vs PC	Mrakic-Sposta 2018	MCI	73.3	23	6	Supervised	Some concerns
Sim vs PC	Nishiguchi 2015	Healthy	73.2	27.6	12	Supervised	Low
Sim vs PE vs Sham	Norouzi 2019	Healthy	68.3	26.3	4	Supervised	Some concerns
Sim vs PC	Park 2019	MCI	71.6	24.5	24	Supervised	Some concerns
Seq vs CT	Rahe 2015 Study 1	Healthy	68.4	Nr	7	Supervised	Some concerns

Appendix J. Distribution of potential effect modifiers

Seq vs CT	Rahe 2015 Study 2	Healthy	68.4	Nr	7	Supervised	Some concerns
Sim vs PE	Reigal 2014	Healthy	66.1	Nr	20	Supervised	High
Seq vs PC	Romera-Liebana 2018	Healthy	77.3	26.5 (MEC-35) ^a	12	Supervised	Low
Exg vs PE	Schattin 2016	Healthy	80	28.74	8	Supervised	Some concerns
Exg vs PC	Schoene 2013	Healthy	77.9	28.85	8	Unsupervised	High
Exg vs PC	Schoene 2015	Healthy	81.5	Nr	16	Unsupervised	Low
Seq vs CT vs PE vs Sham	Shatil 2013	Healthy	79.8	>24	16	Supervised	High
Sim vs Sham	Shimada 2018	MCI	71.6	26.7	40	Supervised	Low
Exg vs PC	Stanmore 2019	MCI	77.8	Nr	12	Supervised	Some concerns
Seq vs CT vs Sham	ten Brinke 2019	Healthy	72.2	28.6	8	Supervised	Low
Seq vs PE	van het Reve 2014	Healthy	81.5	27.65	12	Supervised	High

^a Converted to a 0-30 scale

Exg = exergaming. CT = cognitive training. MCI = mild cognitive impairment. MEC-35 = Mini-Examination Cognitive of Lobo. MMSE =

Mini-Mental State Examination. MoCA = Montreal Cognitive Assessment. PC = passive control. PE = physical exercise. Seq = sequential

training. Sham = sham intervention. Sim = simultaneous training. 3MSE = Modified Mini-Mental State Examination.

It is made available under a CC-BY-NC-ND 4.0 International license

Appendix K. CINeMA grading of the certainty of the evidence

We evaluated the certainty of the evidence for the network meta-analysis using the CINeMA web application (Papakonstantinou, Nikolakopoulou, Higgins, Egger, & Salanti, 2020), applying the following criteria:

Within-study bias: The overall risk of bias assessment for each study was combined with the percentage contribution matrix to compute the percentage contribution for each comparison from studies with a low, some concerns and high risk of bias. The overall assessment for each comparison was based on the average risk of bias of the contributing studies.

Reporting bias: No asymmetry was detected in the funnel plot and no significant association was found between study precision and effect size for cognitive or physical outcomes. Consequently, reporting bias was set as "undetected" for all comparisons.

Indirectness: All of the included studies matched the study question and visual inspection of potential effect modifiers showed that these were similarly distributed across the network of included comparisons. However, four studies used unsupervised training, all of which compared exergaming with passive control. These studies were therefore downgraded to "moderate" indirectness. All other studies were set as "low" indirectness.

Imprecision, heterogeneity and incoherence: We considered a clinically meaningful threshold for SMD to be 0.20.

Comparison	Number of studies	Within-study bias	Reporting bias	Indirectness	Imprecision	Heterogeneity	Incoherence	Confidence rating
CT:PE	11	Some concerns	Undetected	No concerns	Some concerns	No concerns	No concerns	Low
CT:Passive	3	Some concerns	Undetected	No concerns	No concerns	No concerns	No concerns	Moderate
CT:Seq	13	Some concerns	Undetected	No concerns	No concerns	No concerns	No concerns	Moderate
CT:Sham	9	No concerns	Undetected	No concerns	No concerns	No concerns	No concerns	High
CT:Sim	1	Some concerns	Undetected	No concerns	Some concerns	No concerns	No concerns	Low
Exg:PE	6	Some concerns	Undetected	No concerns	No concerns	No concerns	No concerns	Moderate
Exg:Passive	7	Some concerns	Undetected	No concerns	No concerns	No concerns	No concerns	Moderate
Exg:Sham	1	Some concerns	Undetected	No concerns	Some concerns	No concerns	No concerns	Low
Exg:Sim	1	Some concerns	Undetected	No concerns	No concerns	No concerns	No concerns	Moderate
Passive:PE	3	Some concerns	Undetected	No concerns	No concerns	No concerns	No concerns	Moderate
PE:Seq	12	Some concerns	Undetected	No concerns	No concerns	No concerns	No concerns	Moderate

Certainty of the evidence for cognitive outcomes

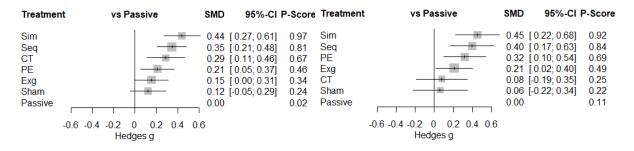
PE:Sham	9	Some concerns	Undetected	No concerns	Some concerns	No concerns	No concerns	Low
PE:Sim	6	Some concerns	Undetected	No concerns	No concerns	No concerns	No concerns	Moderate
Passive:Seq	4	No concerns	Undetected	No concerns	No concerns	No concerns	No concerns	High
Passive:Sim	5	Some concerns	Undetected	No concerns	No concerns	No concerns	No concerns	Moderate
Seq:Sham	9	No concerns	Undetected	No concerns	No concerns	No concerns	No concerns	High
Sham:Sim	2	No concerns	Undetected	No concerns	No concerns	No concerns	No concerns	High
CT:Exg	0	Some concerns	Undetected	No concerns	Some concerns	No concerns	No concerns	Low
Exg:Seq	0	Some concerns	Undetected	No concerns	Some concerns	No concerns	No concerns	Low
Passive:Sham	0	No concerns	Undetected	No concerns	Some concerns	No concerns	No concerns	Moderate
Seq:Sim	0	Some concerns	Undetected	No concerns	Some concerns	No concerns	No concerns	Low

Certainty of the evidence for physical outcomes

Comparison	Number of studies	Within-study bias	Reporting bias	Indirectness	Imprecision	Heterogeneity	Incoherence	Confidence rating
CT:PE	7	Some concerns	Undetected	No concerns	No concerns	Some concerns	No concerns	Low
CT:Passive	2	Some concerns	Undetected	No concerns	Some concerns	Some concerns	No concerns	Very low
CT:Seq	9	Some concerns	Undetected	No concerns	No concerns	No concerns	Some concerns	Low
CT:Sham	6	No concerns	Undetected	No concerns	Some concerns	Some concerns	No concerns	Low
CT:Sim	1	Some concerns	Undetected	No concerns	No concerns	Some concerns	No concerns	Low
Exg:PE	5	Some concerns	Undetected	No concerns	Some concerns	No concerns	No concerns	Low
Exg:Passive	7	Some concerns	Undetected	No concerns	No concerns	Some concerns	No concerns	Low
Exg:Sham	1	Some concerns	Undetected	No concerns	Some concerns	Some concerns	No concerns	Very low
Exg:Sim	1	Some concerns	Undetected	No concerns	Some concerns	No concerns	No concerns	Low
Passive:PE	2	Some concerns	Undetected	No concerns	No concerns	No concerns	No concerns	Moderate
PE:Seq	8	Some concerns	Undetected	No concerns	Some concerns	No concerns	No concerns	Low
PE:Sham	6	Some concerns	Undetected	No concerns	No concerns	Some concerns	No concerns	Low
PE:Sim	5	Some concerns	Undetected	No concerns	Some concerns	No concerns	No concerns	Low
Passive:Seq	2	No concerns	Undetected	No concerns	No concerns	No concerns	No concerns	High
Passive:Sim	4	Some concerns	Undetected	No concerns	No concerns	No concerns	No concerns	Moderate
Seq:Sham	6	Some concerns	Undetected	No concerns	No concerns	No concerns	Some concerns	Low
Sham:Sim	1	Some concerns	Undetected	No concerns	No concerns	No concerns	Some concerns	Low
CT:Exg	0	Some concerns	Undetected	No concerns	Some concerns	Some concerns	No concerns	Very low
Exg:Seq	0	Some concerns	Undetected	No concerns	Some concerns	No concerns	No concerns	Low

Passive:Sham	0	Some concerns	Undetected	No concerns	Some concerns	Some concerns	No concerns	Very low
Seq:Sim	0	Some concerns	Undetected	No concerns	Major concerns	No concerns	No concerns	Very low

It is made available under a CC-BY-NC-ND 4.0 International license .


Appendix L. Sensitivity analyses

Excluding studies with a high risk of bias

Cognitive outcomes

Physical outcomes

Physical outcomes

Cognitively healthy older adults

Cognitive outcomes

Treatmen	nt vs Passive	SMD	95%-CI F	P-Score	Treatment	vs Passive	SMD	95%-CI I	P-Score
Sim Seq CT PE Exg Sham Passive		0.38 0.36 0.24 0.21	[0.23; 0.66] [0.22; 0.53] [0.16; 0.56] [0.07; 0.41] [0.04; 0.38] [-0.04; 0.35]	0.91 0.79 0.75 0.42 0.38 0.23 0.01	Sim Seq PE Exg CT Sham Passive		0.43 0.38 0.23 0.18	[0.24; 0.77] [0.20; 0.65] [0.15; 0.61] [0.03; 0.43] [-0.11; 0.47] [-0.12; 0.47]	0.91 0.81 0.71 0.41 0.31 0.30 0.04
	-0.6 -0.4 -0.2 0 0.2 0.4 0.6 Hedges g	3				-0.6-0.4-0.2 0 0.2 0.4 0.6 Hedges g			

Participants with MCI

Co	gnitive outcomes				Physical outcom	ies	
Treatment	vs Passive	SMD 95	%-CI P-Score	Treatment	vs Passive	SMD 95%-CI	P-Score
Sim Seq CT Exg Sham PE Passive	-0.5 0 0.5 Hedges g	- 0.45 [0.11; 0.25 [-0.05; 0.26 [-0.12; 0.13 [-0.22; 0.08 [-0.28; 0.07 [-0.26; 0.00	0.55] 0.67 0.64] 0.67 0.48] 0.43 0.44] 0.33	Seq Sim PE Exg Passive CT Sham	-1 -0.5 0 0.5 1 Hedges g	 0.66 [0.13; 1.19] 0.36 [-0.02; 0.75] 0.26 [-0.19; 0.70] 0.22 [-0.11; 0.54] 0.00 -0.09 [-0.57; 0.39] -0.14 [-0.68; 0.40] 	0.96 0.74 0.61 0.27 0.19 0.15