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Abstract 1 

 2 

Objectives: Striking histopathological overlap between distinct but related conditions poses a 3 

significant disease diagnostic challenge. There is a major clinical need to develop computational 4 

methods enabling clinicians to translate heterogeneous biomedical images into accurate and 5 

quantitative diagnostics. This need is particularly salient with small bowel enteropathies; 6 

Environmental Enteropathy (EE) and Celiac Disease (CD). We built upon our preliminary analysis 7 

by developing an artificial intelligence (AI)-based image analysis platform utilizing deep learning 8 

convolutional neural networks (CNNs) for these enteropathies.  9 

 10 

Methods: Data for secondary analysis was obtained from three primary studies at different sites. 11 

The image analysis platform for EE and CD was developed using convolutional neural networks 12 

(CNNs: ResNet and custom Shallow CNN). Gradient-weighted Class Activation Mappings (Grad-13 

CAMs) were used to visualize the models’ decision making process. A team of medical experts 14 

simultaneously reviewed the stain color normalized images done for bias reduction and Grad-15 

CAM visualizations to confirm structural preservation and biological relevance, respectively.  16 

 17 

Results: 461 high-resolution biopsy images from 150 children were acquired. Median age 18 

(interquartile range) was 37·5 (19·0 to 121·5) months with a roughly equal sex distribution; 77 19 

males (51·3%). ResNet50 and Shallow CNN demonstrated 98% and 96% case-detection 20 

accuracy, respectively, which increased to 98·3% with an ensemble. Grad-CAMs demonstrated 21 

models’ ability to learn distinct microscopic morphological features. 22 

 23 

Conclusion: Our AI-based image analysis platform demonstrated high classification accuracy for 24 

small bowel enteropathies which was capable of identifying biologically relevant microscopic 25 

features, emulating human pathologist decision making process, performing in the case of 26 
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suboptimal computational environment, and being modified for improving disease classification 27 

accuracy. Grad-CAMs that were employed illuminated the otherwise ‘black box’ of deep learning 28 

in medicine, allowing for increased physician confidence in adopting these new technologies in 29 

clinical practice.  30 

 31 

Keywords: Biopsy Image Analysis, Environmental Enteropathy, Global Health, Intestinal 32 

Structure, Convolutional Neural Networks 33 

 34 

What is known  35 

x Striking histopathological overlap exists between distinct but related conditions which 36 

poses a significant disease diagnostic challenge; such as for small bowel enteropathies 37 

including Environmental Enteropathy (EE) and Celiac Disease (CD). 38 

x There is a major clinical need to develop computational [including Artificial Intelligence (AI) 39 

and deep learning] methods enabling clinicians to translate heterogeneous biomedical 40 

images into accurate and quantitative diagnostics. 41 

x A major issue plaguing the use of AI in medicine is the so-called ‘black box’ of deep 42 

learning, an analogy which describes the lack of insight that humans have into how the 43 

models arrive at their decision-making 44 

What is new 45 

x AI-based image analysis platform demonstrated high classification accuracy for small 46 

bowel enteropathies (EE vs. CD vs. histologically normal controls). 47 

x Gradient-weighted Class Activation Mappings (Grad-CAMs) illuminated the otherwise 48 

‘black box’ of deep learning in medicine, allowing for increased physician confidence in 49 

adopting these new technologies in clinical practice. 50 

 51 
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Abbreviations 52 

EE: Environmental Enteropathy 53 

CD: Celiac Disease 54 

AI: Artificial Intelligence 55 

CNN: Convolutional Neural Networks  56 

Grad-CAMs: Gradient-weighted Class Activation Mappings 57 

ResNet: Deep residual network  58 

H&E: Hematoxylin and Eosin 59 

PK: Pakistan  60 

ZA: Zambia  61 

UVA: University of Virginia 62 

US: United States 63 

EEDBI: Environmental Enteropathic Dysfunction Biopsy Initiative  64 

IQR: inter-quartile range 65 

LAZ/ HAZ: Length/ Height-for-Age Z score 66 

ROC: Receiver Operating Curves  67 

AUC: Area Under the Curve  68 

 69 

 70 

 71 

 72 

 73 

 74 

 75 

 76 

 77 
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 78 

 79 

Introduction 80 

A major challenge of interpreting clinical biopsy images to diagnose disease is the often striking 81 

overlap in histopathology between distinct but related conditions.(1-3) Due to this significant 82 

clinical need, computational methods can pave the way for accurate and quantitative 83 

diagnostics(4). Computational modeling enhancements in medicine, particularly for image 84 

analysis, have shown the potential benefit of artificial intelligence (AI) for disease 85 

characterization.(5) There is an increasing interest in the utilization of deep learning,(6, 7) a 86 

subset of AI involving iterative optimization strategies based on pixel-by-pixel image evaluation.(8) 87 

These AI-based deep learning models, in particular Convolutional Neural Networks (CNNs), have 88 

been shown to be effective for medical image analysis.(5) CNNs have demonstrated potential for 89 

image feature extraction from diseases relying on radiological and histopathological diagnosis, 90 

particularly in the fields of ophthalmology and oncology.(9-13) Deep residual network (ResNet) is 91 

a CNN that has repeatedly shown success for image classification as it is optimized to gather fine 92 

grain attributes from regions of interest within the image.(14-16)  It has also outperformed early 93 

deep learning models such as AlexNet(17) and VGG(18) and achieved superior performance on 94 

the ImageNet(19, 20) and COCO(21) image recognition benchmarks. While the deep learning 95 

models are noteworthy of their own accord, a major issue plaguing the use of AI in medicine is 96 

the so-called ‘black box’ of deep learning, an analogy which describes the lack of insight that 97 

humans have into how the models arrive at their decision-making.(22) 98 

 99 

An accurate AI-based biopsy image analysis platform may enable efficient detection and 100 

differentiation of small bowel enteropathy damaged tissue architecture features which is 101 

challenging due to histopathological overlap.(2, 23-25) This will not only enable pathologists to 102 

filter and pre-populate scans, improving turn-around time, but also provide insight into previously 103 
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uncharacterized tissue features unique to complex small bowel enteropathies such as 104 

Environmental Enteropathy (EE) and Celiac Disease (CD).  105 

 106 

EE has been linked to poor sanitation and hygiene with dire consequences such as cognitive 107 

decline, oral vaccine response, and growth failure.(3) EE assessment and its histopathological 108 

differentiation from similar diseases (i.e. CD) is an essential task performed by pathologists.(26) 109 

Even though an EE scoring system has been proposed, it will benefit from approaches narrowing 110 

down specific cellular parameters important for an accurate EE diagnosis.(27) CD is an immune-111 

mediation condition with sensitivity to gluten leading to small bowel injury. Modified Marsh score 112 

system(28, 29) has been used to classify the severity of CD but it does not account for complex 113 

disease features, such as the role of goblet or enteroendocrine cells, that can potentially improve 114 

diagnostic accuracy.  115 

 116 

We have previously published a histopathological analysis model demonstrating 93.4% 117 

classification accuracy for identifying and differentiating between duodenal biopsies from children 118 

with EE and CD.(30) We also added a layer of explainability by using deconvolutions but they 119 

lacked biopsy regions of interest being specifically highlighted and did not fully explain the deep 120 

learning decision making process.(22) Despite increasing utilization of deep learning 121 

architectures in medicine, they remain underutilized for improving diagnostic accuracy and 122 

differentiation between histologically similar small bowel enteropathies. We now build upon our 123 

prior work to address knowledge gaps in the approaches previously reported. We aimed to: 1) 124 

optimize datasets by removing unavoidable bias acquired by archival data sourcing from multiple 125 

sites by using a hematoxylin and eosin (H&E) color normalization method with structure-126 

preserving capabilities; 2) deploy an enteropathy focused deep learning CNN model with multiple 127 

layers modified to gather fine grain attributes from image regions of interest; 3) mimic the 128 

interpretation methodology of human pathologists by using a combination of multi-zoom and 129 
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reduced parameter approaches (shallow deep learning models); and, 4) improve visualization of 130 

deep learning classification decision making. 131 

 132 

Methods 133 

 134 

Study Design and Archival Biopsy Image Dataset Acquisition 135 

Archival Specimen Sources 136 

Archival data for secondary analyses was sourced from: 1) primary Environmental Enteropathy 137 

(EE) studies from Pakistan (PK; Aga Khan University) and Zambia (ZA; University of Zambia 138 

School of Medicine, University Teaching Hospital), conducted 2013 to 2015,(31, 32) and 2) the 139 

University of Virginia (UVA), United States (US). UVA biopsies were from archival specimens with 140 

clinical diagnoses of CD and histologically normal controls (referred to as controls) from 141 

participants who had undergone esophagogastroduodenoscopy in the past 25 years (data 142 

accessed: 1992 to 2017) as part of an archival controls sub-study, methods reported 143 

elsewhere.(33) Biopsies available from each site for this project were archival and had been 144 

previously processed per local institutional H&E slide staining, tissue sectioning, and tissue 145 

paraffin embedding protocols. Our timeline for secondary data collection and analysis was from 146 

November 2017 to December 2019. 147 

 148 

Biopsy Digitization 149 

Biopsy slides for our secondary analysis had been previously digitized at high resolutions 150 

(average 20,000 by 20,000 pixels) to allow visualization of microscopic cellular features up to 40x 151 

(PK, US) and 20x (ZA) magnification. Digitization was done using Olympus VS 120 (Olympus 152 

Corporation Inc., Center Valley, Pennsylvania), Aperio Scanscope CS scanners (Leica 153 

Biosystems Division of Leica Microsystems Inc., Buffalo Grove, IL, United States), and Leica 154 

SCN400 brightfield scanner (Leica Microsystems CMS GmbH, Germany) at PK, ZA, and US, 155 
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respectively. US archival biopsies were scanned using a prior detailed methods and work from 156 

these datasets has been published elsewhere.(2, 30, 32) 157 

 158 

Archival Biopsy Image Data Acquisition 159 

For the biopsy images acquired, diagnosis of EE was as previously defined in primary studies. At 160 

each site, clinical pathologists made diagnoses based on histological and clinical findings.(31, 32) 161 

For the US archival images, duodenal biopsy slides were obtained from the Biorepository and 162 

Tissue Research Facility at UVA with disease diagnoses as per clinical pathology reports. 163 

Biopsies from participants reported as controls were only included if there was no disease in any 164 

other part of the gastrointestinal tract (e.g., eosinophilic esophagitis, inflammatory bowel disease, 165 

H. Pylori gastritis, post-transplant liver disease etc.) or overall (e.g., patients with solid organ 166 

transplant, leukemia etc.).  167 

 168 

Biopsy Image Analysis Model Design 169 

Dataset Pre-processing 170 

Biopsy Image Patch Creation 171 

High resolution whole slide images are patched for deep learning models to account for 172 

computational limitations.(34) Images were split into patches of 1000x1000 and 2000x2000 pixels 173 

with an overlap in horizontal and vertical axes of 750 and 1000 pixels, respectively. Patches that 174 

contained less than 50% tissue area were discarded and the rest were resized to 256x256 pixels 175 

(details noted in supplemental methods Figure S1). Each biopsy whole slide image generated an 176 

average of 250 1000x1000 and 40 2000x2000 patches.  177 

 178 

Sample Size Augmentation, Balancing, and Justification 179 

As there were more biopsy images for CD, EE and control images were up-sampled to balance 180 

datasets. Extensive data augmentations were performed for better generalization. As biopsy 181 
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images exhibit both rotational and axial symmetry, a random combination of rotation (90, 180 or 182 

270 degree angle), mirroring, and zoom (between 1x and 1·1x) was applied (Figure S2 in 183 

supplement). Deep learning studies have focused on obtaining as much image data as possible 184 

without any standard sample size recommendations.(34) There are limited studies focused on EE 185 

deep learning models and the sample size of this model is larger compared to our preliminary 186 

analysis.(30) 187 

 188 

Stain Color Normalization 189 

Stain color normalization using structure-preserving method as described by Vahadane et al.(35, 190 

36) was used to eliminate bias due to color differences in the biopsies from different sites. It 191 

involved empirically selecting a target patch to normalize color across all patches (Figure 1). 192 

Three independent pathologists (LC, ZA, RI) completed a blind review of the color normalized 193 

biopsy images from different sites to assess the structure-preserving ability of the method. 194 

 195 

Image Analysis Model: Deep Learning Computer-Aided Biopsy Disease Classification System 196 

Several deep learning Convolutional Neural Network (CNN) architectures were used to address 197 

specific questions as outlined below: 198 

 199 

1. Need for the identification of microscopic features visible at high magnification (zoom) 200 

level: ResNet50 is a widely used deep CNN architecture with 50 layers for image 201 

classification requiring identification of microscopic patterns.(14-16) Final decision layers 202 

were modified to improve accuracy.(36) To combat data sparsity we used transfer 203 

learning, an established methods used to improve training using limited datasets by pre-204 

training the model on the ImageNet dataset.(19, 37) Additional details of our modifications 205 

to the ResNet50 architecture are described in the Appendix S1 in supplement.    206 

 207 
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2. Emulate human pathologist  decision making process for visualizing biopsies at multiple 208 

levels of magnification (zoom): we developed a framework incorporating multiple zoom 209 

levels (Figure 2). Biopsy images were segmented into 2000x2000 pixels then further into 210 

1000x1000 pixel patches with an overlap of 750 pixels (horizontal and vertical axes). Two 211 

independent ResNet50 models were independently trained and the 1000x1000 and 212 

2000x2000 corresponding patches were paired. Each pair was passed through the 213 

respective trained ResNet50 model and features from the last fully connected layer of 214 

each model were extracted and concatenated for an overall representation of specific 215 

regions of the biopsy images. This concatenated vector was further passed through a set 216 

of trainable linear layers for the final classification. 217 

 218 

3. Reduce computational model complexity used for disease classification: Custom shallow 219 

CNN architecture was designed to help reduce the number of parameters the model 220 

optimized for disease classification.  This Shallow CNN consisted of three convolutional 221 

layers (Figure 2; detailed methods in Appendix S2 as part of the Supplement).  222 

 223 

4. Explore methods of improving disease classification by using a combined model: 224 

Ensemble models have been shown to generally improve the accuracy and robustness of 225 

classification.(38) We combined Resnet50 and shallow CNN to improve model 226 

classification accuracy. We obtained 3 values from the output layer of each CNN 227 

architecture which were then passed into a softmax function to obtain prediction 228 

probabilities for each patch being EE, CD or control. These predictions were then 229 

aggregated to acquire the final and better prediction for each biopsy image. 230 

 231 

Visualization of Model Decision-Making 232 
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CNN activation maps were generated using Gradient-weighted Class Activation Mappings (Grad-233 

CAMs)(39) to visualize the regions of interest utilized by the model for decision making (detailed 234 

methods outlined in Appendix S3 in the Supplement). These were reviewed by a team of medical 235 

professionals [pathologist specialized in gastroenterology (CM), pediatric gastroenterologist (SS)] 236 

enabling corroboration of the model results with incumbent classification. Since human intuition 237 

is required to assess if features highlighted can be biologically explained, we used the 238 

Environmental Enteropathic Dysfunction Biopsy Initiative (EEDBI) scoring system for EE(27) and 239 

the modified Marsh score classification for CD(28, 29) to inform human medical professional 240 

intuition (Figure S3 and Table S1 in the Supplement).  241 

 242 

Base Case for Comparison Using Existing Computer Vision Approach 243 

An alternative method, CellProfiler,(40) using cellular feature extraction for explainability of the 244 

models was also explored (Appendix S4 and Figure S4 in the Supplement). CellProfiler isolated 245 

nucleated cells from the biopsy images and classified EE vs. CD vs. controls based on the cellular 246 

feature differences, achieving 65% accuracy.  247 

 248 

Ethical Considerations 249 

The secondary analyses as part of this study were approved by University of Virginia Institutional 250 

Review Board. Ethical approval for prior original primary studies was obtained from: 1) the Ethical 251 

Review Committee of Aga Khan University, Karachi, PK (informed consent obtained from parents 252 

and/ or guardians for EE cases), 2) the Biomedical Research Ethics Committee of the University 253 

of Zambia School of Medicine, University Teaching Hospital, Lusaka, ZA (informed consent 254 

obtained from caregivers for EE cases), and 3) University of Virginia Institutional Review Board 255 

(waiver of consent granted).  256 

 257 

This manuscript has been prepared in accordance with STARD guidelines.(41) 258 
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 259 

Results 260 

Biopsy Image Dataset 261 

We obtained 461 digitized biopsy images (171 H&E stained duodenal biopsy glass slides) from 262 

150 participants (US: 124; PK: 10; ZA: 16). Our EE data consisted of 29 and 19 biopsy images 263 

from 10 PK and 16 ZA participants, respectively. Data from 124 UVA participants; 63 CD, 61 264 

controls, was available for these analyses.  265 

 266 

Population Clinical Characteristics 267 

Of the 150 participants, 77 (51·3%) were male. Median (inter-quartile range: IQR) age and LAZ/ 268 

HAZ (Length/ Height-for-Age Z score) of the EE participants was 22·2 (IQR: 20·8 to 23·4) months 269 

and -2·8 (IQR: -3·6 to -2·3), respectively (Table 1). Participants with EE were overall younger as 270 

compared to the US CD and controls (median age: 25·0; IQR: 16·5 to 41·0 months). 271 

 272 

Stain Color Normalization Assessment  273 

Our panel of blinded independent pathologists confirmed that medically relevant cell types 274 

(lymphocytes, polymorphonuclear neutrophils, epithelial cells, eosinophils, goblet cells, paneth 275 

cells, and neuroendocrine cells) were preserved after color normalization. The panel also 276 

commented that features used for EE assessment via the published EE scoring system(27) were 277 

also visible. Although the granularity of eosinophilic cytoplasm and sharpness of paneth cell 278 

globules was less appreciated in post color-normalized images, these features were consistent 279 

throughout the biopsy images and were therefore hypothesized to not result in classification bias.  280 

 281 

Disease Classification Accuracy and Performance 282 

Patches were used for training the models and the predictions were then aggregated to identify 283 

classifications for their parent biopsy images. Modified ResNet50 and Shallow CNN exhibited 284 
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overall accuracies at the biopsy level of 98% (sensitivity: 93%, specificity: 94%) and 96% 285 

(sensitivity: 80%, specificity: 88%), respectively. The accuracy increased to 98·3% (sensitivity: 286 

95%, specificity: 96%) with the ensemble. Accuracy of the multi-zoom ResNet50 architecture was 287 

98% (sensitivity: 96%, specificity: 97%). Confusion matrices of the models’ classification for each 288 

disease are shown in Figure 4. Receiver operating curves (ROC) with area under the curve (AUC) 289 

were used to assess the certainty of the model classifications. Biopsy level AUC for modified 290 

ResNet50, ResNet50 with multi-zoom architecture, and shallow CNN were 0·99, 0·99, and 0·96, 291 

respectively (Figure 3). Error analysis and performance statistics for the models are included in 292 

Table S2 in the supplement. 293 

 294 

Grad-CAM Interpretations 295 

Grad-CAMs were obtained for all the models (Figure 5). Modified ResNet50 and ResNet50 Multi-296 

zoom mainly focused on similar areas for classification of EE vs CD vs controls while Shallow 297 

CNN focused on distinct, yet medically relevant cellular features (Table S3 in supplemental 298 

material for detailed Grad-CAM findings).  299 

 300 

Discussion 301 

Diagnosis of overlapping histological diseases, such as small bowel enteropathies, lacks 302 

computational approaches for histopathological assessment.(30) While scoring systems such as 303 

the EE score and modified Marsh score for EE and CD, respectively, have the potential to 304 

diagnose and classify the severity of these diseases, there is a need to more accurately define 305 

the cellular parameters that play an important role in diagnosis.(27) We developed an AI-based 306 

image analysis platform, based on our preliminary results,(30) for the diagnosis of small bowel 307 

enteropathies. To the best of our knowledge, similar small bowel enteropathy image analysis 308 

platforms that include EE do not exist. We now build upon our prior work to address knowledge 309 

gaps in the approaches previously reported. Our modified ResNet50, ResNet50 with multi-zoom, 310 
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Shallow CNN, and an ensemble model (modified ResNet50 and Shallow CNN) depicted overall 311 

>90% classification accuracies. These AI-bases analytics and black box feature detection findings 312 

pave the way for standardizing and improving diagnoses for small bowel enteropathies. 313 

 314 

Prior to training our deep learning models, dataset preparation included stain color normalization 315 

since with studies obtaining data from multiple sites for further analysis, an important 316 

consideration is to optimize datasets to remove site-specific bias.(35, 42) In our case, the biopsy 317 

images displayed visible stain color differences and the method we used to counter this bias has 318 

previously been proposed by Vahadane et al.(35) Along with stain color normalization, it 319 

successfully preserved small bowel architecture as assessed by our team of pathologists.  320 

  321 

Our modified ResNet50 deep learning model trained to classify biopsy images of EE vs CD vs 322 

healthy controls was able to identify microscopic features of each disease. This work has been 323 

shown to be successful for other medical fields with ResNet providing superior performance for 324 

biopsy images.(14-16) This expands upon our preliminary model, as with the use of ResNet50 it 325 

provides powerful analytics for images. Further, the input to the previously published model(30) 326 

and other similar published studies for other clinical diseases consisted of small patches of whole 327 

slide images(15, 34) that represent approximately 2% of the original biopsy image. Such patch 328 

inputs do not take into account the fact that tissue features can be better visualized at multiple 329 

magnifications. The multi-zoom ResNet50 model employed in this study more closely emulates 330 

the process of human pathologists, who visualize biopsies at multiple magnification (zoom) levels 331 

for diagnoses.(43) The multi-zoom model’s Grad-CAMs focused on biologically similar areas as 332 

the model without multi-zoom, suggesting that the multi-zoom architecture does not bias the 333 

model significantly.   334 

 335 
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To further build upon our deep learning methods, we incorporated a shallow CNN and a final 336 

ensemble of ResNet and shallow CNN. The architecture of the shallow CNN was less complex 337 

than that of ResNet, a useful quality if an optimal computational environment is unavailable. A 338 

less complex model would also demonstrate utility if model parameters need to be reduced for a 339 

first-pass analysis of biopsy images to show proof of concept. Although the shallow CNN Grad-340 

CAMs focused on far too many features for EE to be clinical useful, it focused on distinct and 341 

biologically informative features for CD. These Grad-CAM results led us to hypothesize that the 342 

shallow CNN would have better utility when combined with a more complex model such as 343 

ResNet50. This combination was manifested in the ensemble model, which showed an overall 344 

accuracy of 98.3%, higher than either model alone (ResNet50-only accuracy: 98%, Shallow-CNN-345 

only accuracy: 96%).  346 

 347 

While these results are noteworthy of their own accord, we further extracted Grad-CAMs to help 348 

illuminate the ‘black box’(22) of these deep learning models, to improve the insight into how the 349 

models arrive at their decision-making and provide the much needed ‘explainability’ for clinicians 350 

and researchers. Grad-CAMs supported the models’ use of biologically relevant features for 351 

defining each class: EE, CD or controls. The image features visualized via Grad-CAMs, if 352 

confirmed via molecular methods such as immunohistochemistry or RNA in situ hybridization, 353 

may pave the way for optimizing the EE and modified Marsh (for CD) scoring systems by drawing 354 

attention to the parameters pertinent to disease diagnoses. 355 

 356 

Our secondary analysis built upon our earlier work by expanding and addressing the limitations. 357 

We computationally balanced the datasets and further augmented them to combat our prior 358 

issues with imbalanced datasets. In our preliminary work, we also utilized γ correction for stain 359 

color normalization without an assessment of the method’s structure-preserving ability. We have 360 

now utilized a more robust stain color normalization method that preserves structure, confirmed 361 
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by a team of pathologists. We have also built upon the single model that we reported earlier to 362 

create a complex AI-based image analysis platform which utilizes multiple models to ensure a 363 

robust computational approach for histopathological image analysis. Lastly, our prior 364 

deconvolution-based approach to explaining the decision-making process of the preliminary 365 

model left much to be desired. Our current approach using Grad-CAMs to explain the models’ 366 

decision-making is a significant improvement, one more easily understood by the average medical 367 

professional.  368 

 369 

Major strengths of our secondary analysis study include the addition of data from 48 new patients 370 

(in addition to the data reported for preliminary results) which increased the data volume for patch-371 

level analysis. We also assessed the validity of our models with a wide variety of performance 372 

statistics (accuracy, sensitivity/ specificity, positive predictive value/ negative predictive value, 373 

precision, recall, and F1-score), many of which are often missing in the work done for deep 374 

learning in medicine. Our stain color normalization method for eliminating bias preserved tissue 375 

structure, an important quality for any successful normalization process. Our multi-zoom 376 

architecture emulating human pathologist biopsy assessment process, brings us one step closer 377 

to automated detection of biopsy disease features. Further, our use of Grad-CAMs for 378 

visualization of the models’ regions of interest will help both increase the confidence in AI-based 379 

decision making and also improve biopsy based small bowel enteropathy diagnosis. 380 

 381 

Despite these strengths, we experienced several limitations. Since the data was obtained for 382 

secondary analysis, we were limited in terms of improving data quality due to differences in the 383 

scanners used for digitization and staining methods. Due to this we were unable to further modify 384 

the EE dataset to account for high classification accuracies. Despite this, we utilized an approach 385 

to potentially eliminate stain color differences. We were also limited in our ability to benchmark 386 

our findings due to limited literature for the use of deep learning models for small bowel 387 
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architecture, especially the use of ResNet vs. custom deep learning approaches. To improve on 388 

our current efforts, more robust color normalization methods are underway. Finally, our 389 

techniques remain subject to the limitations inherent to tissue-based diagnostic and management 390 

approaches in clinical medicine, e.g., patchiness of findings and site specific workflows for tissue 391 

acquisition and processing. 392 

 393 

Conclusion 394 

Artificial Intelligence-based analytics provide an exciting opportunity for improving small bowel 395 

enteropathy diagnostics with histological overlap. Our work suggests that models incorporated in 396 

our image analysis platform are capable of identifying biologically relevant microscopic features, 397 

emulating human pathologist decision making process, performing in the case of suboptimal 398 

computational environment, and being modified for improving disease classification accuracy. 399 

This work was improved by structure-preserving stain color normalization of the image inputs 400 

along with visualizations of the model outputs, which are imperative for determining the tissue 401 

features used for decision making. Further work will advance the clinical use of deep learning 402 

models for enteropathies and other histopathology based diseases, improving the effectiveness 403 

and efficiency of clinical care in gastroenterology and beyond.  404 

 405 
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Figure Legends 566 

 567 

Figure 1: Stain Color Normalization – images in the top row highlight the differences in stain 568 

colors before normalization while the bottom row shows images post color normalization which 569 

was applied using the specified target image.  570 

 571 

Figure 2: Combined figure explaining the methods for development of an image analysis model 572 

for diagnosis of small bowel enteropathies and black box feature detection: (A) Digitized 573 

duodenal biopsy slides were obtained for secondary analysis; (B and C) dataset was pre-574 

processed by creation of biopsy image patches, sample size augmentation, and stain color 575 

normalization [shown in figure 1]; (D) development of the image analysis model with (D1) 576 

ResNet50, (D2) ResNet50 Multi-zoom Architecture, and (D3) custom Shallow Convolutional 577 

Neural Network (CNN); and, (E) visualization of model decision-making [explained in detail in 578 

Figure 4] Frameworks. 579 

 580 

Figure 3: Accuracies of the deep learning models. A1, B1, and C1 show patch-level while A2, 581 

B2, and C2 show biopsy level accuracies of ResNet50, ResNet50 Multi-zoom Architecture, and 582 

Shallow CNN, respectively. 583 

 584 

Figure 4: Confusion matrices for patch-level disease classification models (top left: ResNet50; 585 

top right: ResNet50 multi-zoom architecture; bottom left: Shallow Convolutional Neural Network 586 

(CNN); bottom right: ensemble. The numbers within the matrices represent normalized data in 587 

the form of percentages and darker colors indicate higher percentages. 588 

 589 

Figure 5: Gradient-weighted Class Activation Mappings for patches trained via modified 590 

ResNet50, ResNet50 Multi-zoom, and Shallow CNN are shown. Areas being highlighted are: A: 591 
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superficial epithelium with high number of intraepithelial lymphocytes (IELs) and mononuclear 592 

cells in the lamina propria (LP); B: areas of white slit-like spaces representing artefactual 593 

separation of tissue within the LP and ignoring areas of crypt cross sections; C: crypt cross 594 

sections; D: areas with cells consistent with mononuclear cellular infiltrate; E: telescoping crypt; 595 

F: lymphocytes stacked in a row simulating a linear epithelial architecture; G: superficial 596 

epithelium with tall columnar cells and a brush border; H: base of crypts resembling superficial 597 

epithelium; I: superficial epithelium with high number of IELs; J: several crypt cross sections 598 

rather than 1 to 2 crypts when compared with ReNet50 only; K: superficial epithelium with 599 

abundant cytoplasm; L: surface epithelium with IELs and goblet cells; M: inner lumen of crypt 600 

cross sections; N: mononuclear cells within the LP; O: surface epithelium with epithelial cells 601 

containing abundant cytoplasm and goblet cells. Key: EE: Environmental Enteropathy; CD: 602 

Celiac Disease; CNN: Convolutional Neural Network 603 

 604 
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Figure 1: Stain Color Normalization – images in the top row highlight the differences in 
stain colors before normalization while the bottom row shows images post color 
normalization which was applied using the specified target image.  
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Figure 2: Combined figure explaining the methods for development of an image analysis model for diagnosis of small 
bowel enteropathies and black box feature detection: (A) Digitized duodenal biopsy slides were obtained for secondary 
analysis; (B and C) dataset was pre-processed by creation of biopsy image patches, sample size augmentation, and 
stain color normalization [shown in figure 1]; (D) development of the image analysis model with (D1) ResNet50, (D2) 
ResNet50 Multi-zoom Architecture, and (D3) custom Shallow Convolutional Neural Network (CNN); and, (E) 
visualization of model decision-making [explained in detail in Figure 4] Frameworks.  
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Figure 3: Accuracies of the deep learning models. A1, B1, and C1 show patch-
level while A2, B2, and C2 show biopsy level accuracies of ResNet50, ResNet50 
Multi-zoom Architecture, and Shallow CNN, respectively. 
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All rights reserved. No reuse allowed without permission. 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.06.20159152doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.06.20159152


Figure 4: Confusion matrices for patch-level disease classification models (top left: 
ResNet50; top right: ResNet50 multi-zoom architecture; bottom left: Shallow Convolutional 
Neural Network (CNN); bottom right: ensemble. The numbers within the matrices 
represent normalized data in the form of percentages and darker colors indicate higher 
percentages.

Figure 4
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Figure 5: Gradient-weighted Class Activation Mappings for patches trained via modified ResNet50, 
ResNet50 Multi-zoom, and Shallow CNN are shown. Areas being highlighted are: A: superficial 
epithelium with high number of intraepithelial lymphocytes (IELs) and mononuclear cells in the lamina 
propria (LP); B: areas of white slit-like spaces representing artefactual separation of tissue within the LP 
and ignoring areas of crypt cross sections; C: crypt cross sections; D: areas with cells consistent with 
mononuclear cellular infiltrate; E: telescoping crypt; F: lymphocytes stacked in a row simulating a linear 
epithelial architecture; G: superficial epithelium with tall columnar cells and a brush border; H: base of 
crypts resembling superficial epithelium; I: superficial epithelium with high number of IELs; J: several 
crypt cross sections rather than 1 to 2 crypts when compared with ReNet50 only; K: superficial 
epithelium with abundant cytoplasm; L: surface epithelium with IELs and goblet cells; M: inner lumen of 
crypt cross sections; N: mononuclear cells within the LP; O: surface epithelium with epithelial cells 
containing abundant cytoplasm and goblet cells. 
 
Key: EE: Environmental Enteropathy; CD: Celiac Disease; CNN: Convolutional Neural Network 

Figure 5
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Tables 

Table 1: Population characteristics of the children from which biopsy images were 

obtained. 

Key: PK = Pakistan, Aga Khan University; Zambia = University of Zambia Medical Center, US = 

United States, University of Virginia; EE = Environmental Enteropathy; LAZ/HAZ = 

Length/Height-for-Age Z score; IQR = inter-quartile range (written as first quartile to third 

quartile) 

a – For some patients 2-3 biopsy images were available 

b – Height of 3 patients was not available for children with celiac disease (Z scores calculated 

for 60) 

 Total 

Population 

PK Zambia US 

 n = 150 EE (n = 10) EE (n = 16) Celiac (n = 63)b Normal (n = 61) 

Biopsy Imagesa 461 29 19 239 174 

Age, median 

(IQR),  months 

37.5  

(19.0 to 121.5) 

22.2  

(20.8 to 23.4) 

16.5  

(9.5 to 21.0) 

130.0  

(85.0 to 176.0) 

25.0  

(16.5 to 41.0) 

Gender; Male, n 

(%) 

77 (51.3) 5 (50.0) 10 (62.5) 29 (46.0) 33 (54.0) 

LAZ/ HAZ, 

median (IQR) 

-0.6 (-1.9 to 0.4) -2.8 (-3.6 to -

2.3) 

-3.1 (-4.1 to -

2.2) 

-0.3 (-0.8 to 

0.7) 

-0.2 (-1.3 to 

0.5) 
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