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Summary

Background No versatile web app exists that allows epidemiologists and managers around the world to

fully analyze the impacts of COVID-19 mitigation. The NMB-DASA web app presented here fills this gap.

Methods Our web app uses a model that explicitly identifies a contact class of individuals, symptomatic

and asymptomatic classes and a parallel set of response class, subject to lower contact pathogen contact

rates. The user inputs a CSV file containing incidence and mortality time series. A default set of parameters

is available that can be overwritten through input or online entry, and a subset of these can be fitted to

the model using an MLE algorithm. The end of model-fitting and forecasting intervals are specifiable and

changes to parameters allows counterfactual and forecasted scenarios to be explored.

Findings We illustrate the app in the context of the current COVID-19 outbreak in Israel, which can be

divided into four distinct phases: an initial outbreak; a social distancing, a social relaxation, and a second

wave mitigation phase. Our projections beyond the relaxation phase indicate that an 85% drop in social

relaxation rates are needed just to stabilize the current incidence rate and that at least a 95% drop is needed

to quell the outbreak.

Interpretation Our analysis uses only incidence and mortality rates. In the hands of policy makers and

health officers, we believe our web app provides an invaluable tool for evaluating the impacts of different

outbreak mitigation policies and measures.

Funding This research was funded by NSF Grant 2032264.
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Introduction

The COVID-19 outbreak that in February, 2020, threatened to overwhelm the healthcare system
of Wuhan, China, was brought under control in early March through a combination of social dis-
tancing, contact tracing and quarantine measures [1–4]. Since then, these measures have been used
by municipalities, counties, states and countries around the world to bring COVID-19 outbreaks
around the world under full or partial control. Many of the partially controlled cases have sub-
sequently experienced stronger breakouts than before, as control measures—which we refer to as
drivers—have been prematurely relaxed leading to a second wave of outbreaks, many larger than
the first.

As of late July, 2020, the pandemic state of COVID-19 was closing in on twenty million recorded
cases, two-thirds of a million record deaths, and surging or resurging outbreaks. In the US itself,
more than twenty states had experienced outbreaks of more then fifty thousand recorded cases.
Thus, healthcare officials and civic leaders at various administrative levels worldwide are in dire
need of quantitative tools to help formulate and implement policies designed to flatten and, ulti-
mately extinguish, COVID-19 outbreak curves. Such tools exist only in the hands of computational
epidemiological modeling and data analysis groups. These groups are insufficient to meet the pol-
icy design and implication needs of most communities around the world. Without such tools,
governors, mayors, and other civic leaders responsible for implementing healthcare policy are flying
blind when making critical decisions whether or not to open schools and various business sectors
of communities representing different levels of risk with regard to transmission of the SARS-CoV-2
pathogen.

Here we present a Web based analytical tool, COVID-19 NMB-DASA (Numerus Model Builder
Data and Simulation Analysis), that can be used to address questions regarding the impact of
social distancing, social relaxation, changes in surveillance, implementation of contact tracing with
quarantining, patient isolation, and vaccination (when widely available) on incidence and mortality
rates. NMB-DASA does not require the user to have a mathematical or epidemiological modeling
background or an understanding of the computational procedures needed to carry out deterministic
and stochastic simulations for model parameter estimation or epidemic forecasting. It only requires
users to provide a comma separated values file (CSV: a standard used by all common spreadsheet
applications and data management programs) that contains the incidence and mortality time series
of the particular outbreak to be analysed. The user is also able to use a set of default parameters
that come with our COVID-19 NMB-DASA, or the user can modify these by either entering new
values in data panels or manipulating sliders on web pages.

We illustrate the basic aspects of how NMB-DASA can be used to better understand dynamic
aspects of outbreaks, extract effects that implicit drivers, such as social distancing and social relax-
ation, have played in producing observed incidence and mortality patterns. We also demonstrate
how NMB-DASA can be used to forecast the impacts of changes to drivers that can then guide pol-
icy makers on the degree to which social distancing measures need to be implemented or hospitals
need to gear up [5]. We do this in the context of data available for the Israeli COVID-19 outbreak.
This outbreak is particularly suitable for investigating the impacts of social distancing in breaking
an epidemic under partial control, with subsequent social relaxing leading to an outbreak rebound
that is larger than the initial outbreak spike.
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Methods

Model

The epidemiological simulation and forecasting engine of our website is based on an extended SEIR
(Susceptible, Exposed, Infectious, Recovered) formulation called SCLAIV (Fig. 1), which expands
the E disease class into a contact class (C) and a latent class (L) [6]. Individuals in C, having made
contact with the pathogen responsible for the disease in questions (COVID-19 in this paper), can
either thwart a potential pathogen infection by returning to S or succumb to pathogen infection by
moving onto L. SCLAIV also adds an asymptomatic class (A) to the infectious component of an
SEIR process, where individuals in this class are assumed to be less infectious than in the class I
and can either move to I or directly to the naturally immunized (i.e., naturally vaccinated) class V.
A SCLAIV+D formulation also explicitly separates out the removed class R in the SEIR process
into V and the class D of individuals that have died.

Figure 1: A flow diagram of the SCLAIV+D+response model with its 8 flow parameters identified by
Roman numbers 1-8 plus an asymptotic infection parameter 9. The 8 drivers identified by lower case Roman
letters a-h are either zero (apart from surveillance), a positive constant or have the form of a switching
function, as described in the text. We have generalized the disease-induced natural mortality flow rate 8
from being a constant [6] to include the possibility of driving (h) the rate down to account for improvements
over time in treatment and therapeutics.

Basic epidemiological, whether SEIR or SCLAIV+D, need to be modified to include the driving
process used to “flatten the incidence and mortality curves” during outbreaks. A discrete time
deterministic/stochastic formulation of our SCLAIV+D+response model [6], at the computational
core of our web app, includes 7 response drivers (Fig. 1), each of which can either be specified as a
constant or time varying rate—the latter, specifically, as a five parameter switching function (e.g.,
see specific cases in Fig. 8. These driving rates are responsible for transferring individuals among
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basic SCLAIV and SCLAIV-response classes and monitoring the state of the outbreak. Specifically,
these drivers are a social distancing rate, which involves a possible dynamic change in a contact rate
reduction parameter, a social relaxation rate, a quarantining rate linked to contact tracing, case
isolation/treatment and vaccination rates, and the level of surveillance (i.e., proportion of cases
detected) implement to monitor the state of the outbreak.

Model parameters and data

Many, but not all, of the basic epidemiological parameters used to model COVID-19 and other
infectious disease outbreaks can be obtained independently from data on the case histories indi-
viduals infected with SARS-CoV-2 [3, 7–9]. These parameters include the latent, asymptomatic,
recovery (i.e., infectious), and immune periods (the latter can only be estimated from future data,
depending on the mean period of acquired immunity that will be realized over time).

The disease induced mortality rate can also be obtained directly from epidemiological data and
the average mortality rate over any period of time can be estimated from the number cases observed
and the ultimate fate of those cases: recovery or death. During the course of an outbreak, in the
context of COVID-19 however, the time between an individual being infected with SARS-Cov-2
and a definitive outcome could be several weeks. So this time lag has to be taken into account
when estimating mortality [9]. Further, during the course of an outbreak, provided the healthcare
system is not overwhelmed we might expect mortality rates to drop as hospitals learn how to take
care of the more serious cases admitted for treatment and care.

Parameters that are difficult to explicitly identify from case-history data are absolute contact
rates: how to define a viable or effective contact in terms of proximity, duration, and background
environmental conditions (e.g., humidity, temperature, air movement, fomite characteristics [10]
and so on). Also difficult to obtain is the state of the population at the time that the first few
cases are detected. The first cases are the first set of individuals identified in disease class I at the
nominal start of modeling the outbreak, which for convenience we denote as time t = 0. This point
in time, of course, we anchor to some suitable calendar day. The number of individuals assigned
the value I(0) (italic fonts are use to refer to the variables that represent the number of individuals
in roman font named classes—so I(t) is the number of individuals in class I at time t) depends on
the level of surveillance in effect at time t. In a well-developed health care system, depending on
the proportion of asymptomatic carriers and the severity of the disease, half the cases may easily
go undetected in the initial outbreak, though surveillance should improve during the course of the
outbreak. In a poorly-developed healthcare system, the proportion of cases detected during the
initial stage of an outbreak may be several fold lower.

Of course, only symptomatic cases will initially be detected: asymptomatic will require the
implementation of some sort of testing regime. Thus, at the start of an epidemic, the number of
individuals C(0), L(0) and A(0) is unknown and also needs to be estimated. The latter two can be
expressed in terms of the estimated I(0) if the initial growth rate of the epidemic can be reasonably
guessed at from past experience with similar epidemics, and thus may computed from the estimate
of I(0) [6] rather than having to be estimated as well. The initial value for C(0), however, also
needs to be estimate since its relationship to I(0) depends on the various other parameters, such
as the thwart and succumb periods, one of which also need to be estimated, while the other can be
set to 1: viz., as a first cut we recommend setting the thwart period to 1, if the units of t are days,
and relaxing this constraint later if needs be [6]. The initial value V0 for the number of individuals
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assumed to be immune to infection by SARS-Cov-2 at the start of the outbreak was assumed to be
0 because this virus is thought to be novel for humans. Of course, it may emerge that some cross
immunity exists for individuals that have previously been exposed to SARS-Cov-1 or other corona
viruses [11], and then either some suitable non-zero value for V (0) or we can think of the population
at risk, as discussed below, at some appropriately smaller value than the total population size.

Initially, two of the drivers—surveillance and patient isolation rates—can be set at positive
constant values, based on a crude expectation of the current level of efficiency of the healthcare
infrastructure. For a developed country, we may want to set initial surveillance levels at, say, 0.5
(50%) and hospitalization levels at, say, 0.35, or some other values that are more reflective of the
severity or mildness of the disease. For countries with poor health infrastructure, or diseases milder
than COVID-19 values of 0.1 for both this levels may be more suitable. These guesses can be
changed later, as the forensic analysis of the structure of the outbreak proceeds, and the sensitivity
of projected outcomes to these initial guesses are evaluated.

Another parameter that remains somewhat uncertain at the start of an outbreak is the size N
of the population at risk. In a isolated, spatially homogeneous population (e.g. an island where all
individuals regularly encounter others from different parts of the island—that is, the population is
well mixed at, say, a weekly scale), N should be the size of the population. In large metropolitan
areas where the boundaries separating the well-mixed portion of the population from outlying
areas we may want to set the value of N to some nominal value Nnom that is, say, 1 million or
even 10 million when the population size justifies this choice, since the initial outbreak dynamics
in the SCLAIV model is insensitive to the value of Nnom [12]. As the outbreak progresses and the
total number of infections approaches, say 10% of Nnom, then our choice for this value becomes
significant [6] since it determines the point at which the exponential phase of the basic outbreak
(i.e., the outbreak before social distancing and other mitigative measures are applied) starts to
flatten and, ultimately, crest and turn down. At this stage of the analysis, it may be useful to
replace Nnom with an “effective population size” Neff , which itself is estimated in the process of
fitting model output to incidence data [12].

Fitting the model to incidence data

NMB-DASA uses a maximum-likelihood estimation (MLE) method to fit selected parameters to the
incidence and simulteneously or separately to the mortality data. It also provides for parameter
values obtained from Bayesian Markov chain Monte Carlo (MCMC) methods [13, 14] generated
elsewhere to be used in forecasting simulations. We plan to include MCMC directly in future
versions of NMB-DASA

The following step-wise heuristic procedure finds excellent MLE fits to the Israeli COVID-19
case study considered in the next section.

Stepwise procedure for running and fitting the SCLAIV model

1. Load Data. Load the incidence and mortality data using a CSV (comma separated values)
file in which the first row is an incidence data time series and the second row is a mortality
time series of the same length as the first 2. Load the default set of epidemic and driver
parameters. If any of the default parameters require modification, these can be overwritten
by directly entering data into the appropriate window and then saved by selecting the SAVE

SETTINGS button for direct loading next time around.
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Figure 2: Incidence and Mortality time series are loaded by selecting a CSV file (our IsraelData.csv file
is listed in the Choose File window just above the data in the blue cells on the left). These data along
with Epidemic Parameters and Epidemic Drivers values can be loaded separately or default values can
be loaded (which are the values shown here), and values can then be modified by hand and saved under some
suitable name. Although the various types of data can be saved separately, they can all be saved together
as a single .dat file using the SAVE SETTINGS button at the top left and loaded later (after selecting CLEAR

SETTINGS using the LOAD SETTINGS button. The Fitting interval value has been set at 100, and the
Data size value 145 is automatically computed from the length of Incidence and Mortality time series.
Once all the parameter values have been set, the Opt Page button on the right can be selected to take the
user to the NMB-DASA optimization page. A forecasting simulation Finish time can be inserted, 200 as
shown here, or selected later on the Forecast Page.

2. Fit Initial Outbreak Phase. Fit those basic SCLAIV epidemic parameters that cannot be
independently estimated by checking them off on the optimization page (purple panel in
Fig. 3), setting Wt:incidence/deaths to 1, Fit Range to some desired value, such as 14 or
30, and then pressing the Opt button (pink panel in Fig. 3). These parameters are likely to
be the contact rate (κ in [6]), the succumb period (Psuc denoted by πsuc in [6]), the initial
value (C0) for the contact class, and the initial value (I0) for the symptomatic infectious class.
Note, since the ratio Psuc/Pthw is more salient that either parameter on its own, we normalize
Pthw by setting it to 1 (see [6]).
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Figure 3: A Upper left corner of the optimization page of the NMB-DASA web app. Leftmost purple panel
is where variables to be included in the optimization are checked. Next pink panel is where the details of
the optimization procedure are entered: in this case the Fit Range is 70 and Wt:Incidence/Deaths is zero,
implying that only the incidence curve is being fit. The mortality rate (i.e., virulence) for this fit has been
set to 0.001, which provides a good fit to the outbreak phase but does not account for improvements in
treatment that likely begin in early April (allowing for the estimated 16.5 delay between entering class I and
death for those dying from COVID-19 [15]). B. The switching function parameter value windows on the the
optimization page are arrayed along the bottom half of the page (not shown here). The social distancing
driver switching parameters have been checked in the purple panel on the left, so here we show a cutout of
the social distancing windows that contain the MLE values obtained during the optimization. In the pink
panel we see the MLE took 534 iterations to converge, and the absolute log-likelhood error value is provided
as well in the Error window.

After running optimization, the MLE values obtained can be saved using the SAVE SETTINGS

button. If desired, an MLE value for the mortality rate can be obtained by unchecking all the
variables use in the previous fitting, checking vir const, resetting Wt:incidence/deaths to
0: and then pressing the Opt button again. We note that fitting incidence and mortality are
not entirely independent processes, but they are are nearly so while the proportion dying is
just a few percent and the proportion of susceptibles remains greater than 90%. By selecting
Wt:incidence/deaths in between 0 and 1 we can fit both simultaneously, but are then faced
with obtaining different solutions for different values of the Wt:incidence/deaths setting on
(0, 1).

3. Fit Social Distancing Phase. When using the model to project the outbreak pattern beyond
the initial fit phase, a point will likely be reached where the model generated incidence time
series is clearly growing more rapidly than the empirical time series. If the reverse occurs,
then the Fit Initial Outbreak Phase step described above should be repeated using a longer
Fit Range value. The reason why over estimation begins to occur is either because the effects
of social distancing measure are beginning to take affect, or the effective population size is
considerably smaller than initially anticipated. If the latter case is suspected thenNnom should
be replaced by an Neff parameter whose size is estimated as part of the MLE process described
in the previous step and discussed in [12]. In the former case, however, the MLE parameters
estimated in the Fit Initial Phase step should be fixed by unchecking all variables fitted in the
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Fit Initial Phase optimization procedure, and the social relaxation driver variables checked
to carry out a new MLE fitting procedure with the Fit Range parameter now set beyond its
Fit Initial Outbreak Phase by a couple to several weeks, using the data as a rough guide to
where this phases seem to be occurring.

4. Fit Social Relaxation Phase. The model can now be used to project the outbreak pattern
beyond the Fit Social Distancing Phase. If the outbreak has been successfully quelled then the
fitting task is complete. In many cases, however, the outbreak may either not be dampened
sufficiently fast (as in the case of the COVID-19 in England [6]) or may begin to exhibit a
second growth phase. In either case, the MLE values obtained in the Fit Initial Outbreak Phase
and Fit Social Distancing Phase can be saved and a third round of MLE fitting executed, in
this case we may choose to check only the social distancing driver parameters and optimize
over a Fit Range that goes several weeks beyond the Fit Social Distancing Phase.

5. Scenario Projection and Counterfactual Assessments. We have considerable freedom to run
counterfactuals and forecasts, depending on what values we give to the Fitting Interval

and Finish Timing for simulation variables (Fig. 2), as illustrated in the Israel COVID-19
results reported next.

Results: COVID-19 in Israel

Figure 4: The daily incidence (new cases) time series (points connected by light brown lines) is plotted here
from March 1, 2020 to July, 29, 2020. The blue curve is a lagged 7-day moving average [6]. The different
phases of the outbreak analysed, indicated by broken range bars, are: 1. Initial outbreak phase, 2. Social
distancing phase, 3. Social relaxation phase, 4. Second wave mitigation phase.

Background

The first infection of COVID-19 in Israel was confirmed on 21 February 2020 [15, 16]. Only 5
more cases were recorded in February, but starting March 1, a steady stream of cases began to
be recorded. On March 9, a 14-day home isolation was imposed on all individuals arriving from
abroad and on March 11 and then 15, gatherings were limited to a maximum of 100 people and
then to 10 people. A national state of emergency was declared in the Israel and March 19 with the
first recorded COVID-19 death of an Israeli citizen occurring on March 20 [15,16].
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A plot of the COVID-19 incidence data in Israel reveals a rising initial outbreak phase in March,
followed by a steady drop during a social distancing phase to an average of fewer than 20 new cases
per day during the second and third weeks of May (Fig. 4). During the last week of May, incidence
began to rise steadily again during a social relaxation phase. A second wave mitigation phase set
in around mid July as the second wave was flattened in response to measures used to bring the
outbreak under control [17].

Fitting the first three phases of the outbreak

We begin by first using MLE to fit our basic free set of SCLAIV parameters (i.e., values for the
contact rate, succumb period and initial number of individuals in classes C and I, which were not
set a priori from literature data [6]) to the first 14 days of the initial outbreak data in March
2020. The fit was extremely tight, as shown in Fig. 5A, along with the four MLE values (Fig. 5B)
obtained from the optimization procedure. A subsequent fit to the first month of data indicated
that the effects of social distancing were already retarding the outbreak in the second half of March
(Fig. 5C), yielding a new set of four MLE values (Fig. 5D) applicable to fitting the model over the
first 31 days. The fit, however, was now quite poor, so we decided to added a social distancing
component to our fit of the initial outbreak phase.

Our fit of the first 31 days with the addition of social distancing switching function yielded the
fit depicted in Fig. 6A, where, though the fit only applies to the first 31 days, we simulated the
subsequent model prediction out to day 137. If we try to fit all phases at once using the 13 free
parameters in Fig. 6D, poorer fits may be obtained with the optimization procedure finding local
rather than global or close-to-global optima.

Thus far, we have set the disease-induced mortality rate (i.e., virulence parameter) to 0.001.
The fit obtained thereby appears reasonable for the initial phase of the outbreak, but not beyond
the third week of April (left panel in Fig. 7). In May and June the mortality rates are considerably
lower than this level, dropping from around 8-12 individuals per day in mid April to 0-2 individuals
per day in late May. Thus we decided to fit a switching curve to the mortality data, by fixing all
the values used to obtain the fit depicted in Fig. 6D, setting Wt: Incidence/Deaths to 1, and
allowing the parameters Vir init, Vir fnl, Vir switch, and Vir steep to vary in an MLE fit of
the model to the mortality data. The fit obtained is depicted in Fig. 7 (right panel). We note that
the value for Vir onset was a priori set at 0, since disease-induced mortality is always in effect
(Fig. 8).

Stochastic projections

The forecasting page of the web app is designed to permit the flexibility of working with two data
sets and two time windows: the first is to simulate the model in deterministic mode on an interval
[0, tfit] and second to allow one (in deterministic mode) or repeated runs (in stochastic mode) on
the interval [tfit, tfin] (Fig. 9). The latter can be either executed by incorporating demographic
stochasticity alone, or it can include a file of parameter values obtained from an MCMC fit of the
model to data.

In Fig. 9, we illustrate a stochastic forecast from day 130 until day 274, which is the last day of
November, 2020. The plotted standard deviations are based on 100 runs that use the MLE values
obtained from fitting the model to the first 137 data points, as depicted in Fig. 6D, but reducing
the SocRel fnl from 0.1 up to day 130 (Fig. 6E with fit up day 137) to 0.015 beyond day 130 (see
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Figure 5: A. An MLE fit of the basic SCLAIV model to the first 14 days of data. B. MLE values obtained
from the fit in A. C. An MLE fit of the basic SCLAIV model to the first 31 days of data. D. MLE values
obtained from the fit in C.

the SOF for the same simulation using MCMC generated parameter fits and note that the ± 2
standard deviation band is considerably broader now). This change represents an 85% reduction in
the final social relaxation rate. We see that this level of reduction steadies the outbreak at around
800 to 100 cases per day for the months of August to November. Other simulations (as depicted
in our supplementary material) indicate that at least a 95% reduction in the final social relaxation
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Figure 6: A. An MLE fit of the basic SCLAIV model to the first 31 days of incidence data, as in Fig. 5D,
except now social distancing parameters are estimated as well, apart from SocDist steep fixed at 3. The
model is simulated out to day 137, rather than stopping at day 31 (Fit Range value). B & C. MLE values
obtained from the fit in A. D. An MLE fit of the basic SCLAIV model to the first 137 days of data, with all
parameters fixed at the values used to obtain the fit depicted in A, apart from the Social relaxation driver
which has now been fit to the data. Note the value SocRel fnl is not fixed at 0.1, but the fit is constrained
by having set the lower bound on SocRel fnl to 0.1. E. The MLE values obtained from the fit in D.

rate is needed to quell the outbreak during this period, while anything less then an 80% reduction
is completely ineffective in containing the outbreak.
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Figure 7: In fitting the parameters in Fig. 6D, the disease induced mortality had been set to
Vir const=0.001. In the left panel, we see that this value provides a reasonable fit until around day
50 but over estimates after day 50. If the all the parameters values used to fit Fig. 6D are fixed, except for
letting four of the five virulence driver parameters vary (Vir on is fixed at 0), then a better fit, as depicted
in the right panel, is obtained, with four MLE switching values shown (note: Vir steep=1 is a boundary
constraint solution).

Figure 8: Social relaxation rate (applied only to class S), social distancing rate (applied only to class Sr, and
disease-induced natural mortality rate (applied only classes I and Sr, as depicted in Fig. 1) switching curves
have been fitted to the outbreak data, as illustrated in Fig. 6, using a progressive approach, as described in
the text. The onset values for these three curves are on days 31 (April 1, 2020), 6 (March 7,2020), and 0
(March 1, 2020) respectively. The switching points (half way between initial and final values) are on days
78 (May 18), 15 (March 16) and 8 (March 9) respectively. The range of initial to final values are indicated
by the values that scale the vertical axes of the three curves in question.
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Figure 9: A partial view of the Forecasting page show the Number of Runs to be performed, The number

of Days for the total simulations and the Forecast Onset day. The first part of the model projections of
incidence and mortality per unit time are in red in the two left most graphics panels, along with the data
plotted in blue. The green curves beyond the red are single stochastic simulations (since the Deter Stoc

switch is flipped to the Stoc). The two right side panels represent the mean plus/minus 2 standard deviations
generated from 100 runs, as specified in the Number of Runs window.

Discussion

Currently, web sites available for exploring COVID-19 policy implications are rather limited. The
most flexible of these is the COVID-19 Simulator, developed by a consortium that includes the
Massachusetts General Hospital, Harvard Medical School, Georgia Tech, and Boston Medical Cen-
ter. The COVID-19 Simulator provides “... a tool designed to help policymakers decide how to
respond to the novel coronavirus.” The tool can be used to explore the impact of social-distancing
interventions by selecting one of four intensity levels applied at a selected time. The simulator does
not allow the user to upload his or her own data and limits analyses to US National and State levels.
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The site claims that “The information presented can help policymakers understand consequences
such as the rate of new cases, potential strain on the healthcare system, and projected deaths.”

Our NMB-DASA is much more comprehensive in terms of allowing users to input their own
data, fit model parameters to data using maximum-likelihood methods, undertake scenario and
forecasting studies that include many more drivers than are available to users of the COVID-19
Simulator site, as well as extract the time varying forms of those driving (Fig. 8). Additionally,
the Israeli COVID-19 case study presented here provides a clear exemplar on how our NMB-DASA
Web App can be used to undertake a forensic analysis of the phases and drivers of a outbreak
in any region of the world for which incidence time series are available, as well as mortality time
series for those studies evaluating the impact of new therapeutics on reducing mortality. If other
healthcare and social media infrastructural data are obtainable that can be used to independently
specify or estimate surveillance [18, 19], social distancing and relaxation [20], quarantining [4] and
treatment advances, then further analyses can be undertaken to verify results and check predicted
proportions in the immune class using serology data [21], as discussed elsewhere [6].

Although our exemplar indicates that NMB-DASA can be used to perform analyses of disease
outbreaks caused by directly transmissible pathogens for which incidence data alone are available,
much deeper analyses can be undertaken. First, spatial structure can be taken into account [12,22–
24]. In, Israel, for example, the top 20 settlements in terms of cases per person are 16 ultra orthodox
and 4 Arab communities, which are relatively isolated from one another in socio-geographic terms.
Without including spatial structure, however, good fits may still be obtained (also see [12]). Second,
links between model output and data may be sought that pertain to individual and societal factors
influencing transmission. This can be done by making statistical links between model parameters
putative factors [25, 26]. This would require the dynamic analyses of the types demonstrated here
augmented with statistical models that linked dynamic measures (such as new cases growth rates
over initial and later phases of the outbreak) to key factors of interest.

COVID-19 is not an anomaly, but one event in series of expected future events that have a
past history in SARS, MERS, Ebola, not to mention avian influenza and other highly contagious
emerging infectious diseases of zoonotic origin [27–29]. Our current experience with COVID-19 will
help facilitate our response to these future outbreaks and potential pandemics. The availability of
computational tools, such as NMB-DASA, will enable policy makers and healthcare administrators
to be caught less flat-footed at the start of the next outbreak than has been the case for COVID-19
pandemic in terms of evaluating the effects of mitigating epidemic drivers that might be deployed
to manage local outbreaks.
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Supplementary Material

A supplementary file contain additional figures referred to in the text is provided. Three training videos
are available with links provided by selecting the instructional material button at the NMB-DASA Home
page. Direct links to these videos are: Training video 1, Introduction to the Numerus Data and Simulation
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Analyses (DASA) Website for Covid-19; Training video 2, Parameter Estimation Through Model Fitting;
Traning video 3, Deterministic and Stochastic Forecasting
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