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Abstract

In recent years, deep neural networks, especially those exhibiting synergistic

properties, have been at the cutting edge of image processing, producing very

good results. So far, they have been able to successfully address issues of clas-

sification and recognition of objects depicted on images. In this paper, a novel

idea is presented, where images of chemical structures are used as input infor-

mation in deep learning neural network architectures aiming at the generation

of Quantitative Structure Activity Relationship (QSAR) models, i.e. models

that predict properties, activities or adverse effects of chemicals. The proposed

method was applied to a case study of particular interest, which is the predic-
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tion of endocrine disrupting potential of chemicals. Two different deep learning

architectures were applied. The produced ImageNet model proved successful, in

terms of accuracy, performance and robustness on training and validation sets.

The new approach is proposed to the community as an alternative or comple-

mentary method to current practices in QSAR modelling, which can automate

and improve the creation of predictive models.

Keywords: deep learning, QSAR modelling, endocrine disruption, machine

learning, predictive modelling

1. Introduction

Recent years have seen considerable developments in the fields of machine

learning and neural networks in particular (Abiodun et al., 2018). New deep

learning architectures and methodologies allow for the use of big data, such as

sound and images, for developing models, taking decisions and drawing conclu-5

sions. Deep neural networks technologies enable us to successfully address issues

such as recognition, image categorization and recognition of objects depicted – in

certain instances more efficiently than a human agent could (Voulodimos et al.,

2018; Wang et al., 2020). Increased access to data combined with improved

computing power have enabled researchers and programmers to find new appli-10

cations for neural networks at a very rapid rate (Amodei et al.). Very recently,

deep learning methodologies have been used successfully in various problems

in life sciences like drug discovery and microscopic and medical scan analysis

(Ramsundar et al., 2019).

Chemometrics is the science of extracting information from chemical systems15

by data driven methodologies. Machine learning methods have been employed

extensively in this particular field, with neural networks playing a dominating

role(Marini et al., 2008). Various attempts have been made at devising systems

that can depict chemical structures (Guha & Willighagen, 2012); ‘SMILES’ is

one of these systems of depiction which is commonly accepted (G & KH., 2018).20

The Simplified Molecular-Input Line-Entry System (SMILES) is a standard no-
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tation which takes the form of a linear string describing chemical structures using

short ASCII strings. These descriptions are vital to modern chemical informa-

tion systems, but they do not necessarily allow computational techniques to be

directly applied to them. Specific software, like the Chemistry Development Kit25

(CDK) (Steinbeck et al., 2003) has been developed to calculate quantitative de-

scriptors that can form standard training data sets for training machine learning

models for predicting activities of molecules, known as Quantitative Structure

Activity Relationshiop Models (QSAR) models.

Deep learning methodologies have not yet used extensively in the field of30

chemometrics and many applications focus on the analysis of spectroscopical

data (Chatzidakis & Botton, 2019). Deep learning has also been used as an

alternative to other machine learning methodologies using standard descriptors

of chemicals (Simmons et al., 2008). In this paper we present a novel idea for

the application of deep learning in the field of chemometrics, which is based35

on the structural representation of chemical compounds as images and use of

only these images as input information in the training process. Many molecular

processors can automatically transform SMILES strings into 2D depictions or 3D

image representations (Weininger et al., 1989; Weininger, 1988). The method

is demonstrated on a specific case study, which is the prediction of Relative40

Binding Affinity (RBA) of potential endocrine disrupting chemicals. The results

are very promising, taking into account that the only input information to the

produced deep learning models is the image representations of the molecule and

there is no need for descriptor calculation and variable selection, which are time

consuming preprocessing steps, often involving a trial and error computational45

process.

2. Materials and methods

The endocrine system plays a central role in regulating metabolism, devel-

opment, reproduction and behavior in all vertebrates. The hypothesis advanced

concerning the presence of endocrine disruptors (Colborn et al., 1993) has led50

3
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to new studies expressing concerns about the effects of endocrine disruption

on health and the environment (Myers et al., 2004). Studies incorporate find-

ings and methodologies from different fields, including toxicology, endocrinol-

ogy, developmental biology, molecular biology, ecology, behavioral biology and

epidemiology (Myers et al., 2004). An endocrine disruptor is defined as “an ex-55

ogenous chemical substance or mixture that alters the structure or function(s)

of the endocrine system and causes adverse effects at the level of the organism,

its progeny, populations, or subpopulations of organisms, based on scientific

principles, data, weight-of-evidence, and the precautionary principle” (Zoeller

et al., 2012). Data collected from ecological studies, animal models, clinical ob-60

servation of human subjects and epidemiological studies indicate that endocrine

disrupting chemicals pose a significant risk to wild life and human health (Street

et al., 2018). It is therefore of particular importance to develop a data driven

model that predicts the endocrine disrupting potential of chemical compounds,

which is the objective of this study.65

The data set consists of 1,459 chemical structures. Based on experimen-

tal data, they have been labeled with values concerning their Relative Binding

Affinity on a logarithmized scale (logRBA). The data were gathered from the

EADB dataset (Estrogenic Activity Database) (Shen et al., 2013a; Ng et al.,

2014; Shen et al., 2013b). The data subset used involves only the endpoints for70

species (human) and for logRBA. Images of the chemicals were generated using

the chemistry development kit (CDK) (Willighagen et al., 2017) and the indigo

open source software (Indigo, 2020). An example is given in Fig. 1 which shows

the images generated for estradiol with SMILES

C[C@]12CC[C@H]3[C@@H](CCc4cc(O)ccc34)[C@@H]1CC[C@@H]2O75

and formula ”C18H24O2” by the two software platforms. The reason for gen-

erating images from two software sources was data set augmentation, since the

starting dataset is relatively small for deep neural network training. However,

this did not improve neural network learning but, on the contrary, it prevented

convergence. The model presented in the results sections used only the CDK80

generated images. In order to proceed with the development of the models, we

4
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Figure 1: Two smiles images generated using two different software. Left: CDK produced

SMILE image; Right: Indigo produced SMILES image.

classified the chemical structures into 3 classes according to their experimen-

tal response. The first class comprises structures which have response values

in the [−3.328,−0.26] range, the second class comprises response values in the

[−0.259, 0.824] range and the third comprises values in the [0.826, 2.857] range.85

The classes have been encoded as a One hot vector.

The deep learning architecture employed for developing the models was

AlexNet. AlexNet comprises eight layers; five of these are convolutional lay-

ers, some of which are followed by max pooling layers, and three are fully con-

nected layers (Alom et al., 2019). AlexNet is quite similar to the older LeNet-590

architecture with two important differences: AlexNet contains more layers and

employs the ReLU (Rectified Linear Unit) activation function that improves the

training performance compared to the tanh or sigmoid activation functions used

by LeNet-5. For the creation and the training of the models we used Tensorflow.

The models have been trained on a pc with linux, an i3 cpu 16 gb of RAM and95

an nvidia GeForce 1070 gnu with 8 GB of RAM capable of running and training

neural networks.

3. Results and discussion

The images were resized and pasted into white background so as to fit into

squares as the input to a neural network. The dimensions used in modelling100

are 128 * 128, 200 * 200 and 256 * 256. 128 and 256 sized pictures favour the

5
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pooling layers of a deep neural network that can downsample the images to 8

* 8 sized convolutional kernels, or even 4*4. This way we can add many layers

on the neural network if necessary. It should be noted that images have been

normalized. Their pixel values were scaled so as to have a mean value of 0 and105

a standard Deviation of 1.

In order to proceed with training, the data set was split into random batches

according to training needs. The memory capacity of the equipment available to

the user plays a crucial role. In our case we conducted random sampling from

batches of 42 images each. The batches were fed into the neural network to110

proceed with the training procedure. We proceeded employing two architectures

of neural networks, namely the AlexNet type, as previously described, and in

the second instance we used neural networks with Residual blocks.

The AlexNet network was constructed as follows: Three convolutional layers

were used after the network input layer. Each convolutional layer was followed115

by a 2 * 2 pooling layer created by downsampling of the network input. There-

fore, depending on the input, the final convolutional layer contained 16 * 16

filters times the filter depth for 128*128 sized images, 25 * 25 times the filter

depth for 200*200 sized images and, in the case of 256 *256 sized images, 32 *

32 times the filter depth. The two final fully connected network layers consisted120

of 1024 nodes. The network output layer contained the three classes we need

to predict. The activation function employed was ReLU, f(x) = max(0, x) as

mentioned before.

We used two optimization functions, the classic Gradient Descent method

and AdamOptimizer. The learning rate value was fixed to a relatively high value125

of 0.3, whereas typical learning rate values are in the range of 0.01 - 0.001. Lower

values of learning rates resulted to slower convergence and smaller accuracy on

the training data. On every network layer we used the dropout method to

avoid over fitting the model. The input image size was not significant, since

the accuracy of the model was affected by 1% at most, without exhibiting any130

patterns. The training accuracy graphs are presented below. The first graph

(Figure 2) shows the evolution of accuracy during training. As anticipated, from

6
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Figure 2: Evolution of accuracy on the training data for the AlexNet classification deep

learning model.

Figure 3: Evolution of accuracy on the test data for the AlexNet classification deep learning

model.

a certain step and on wards (i.e. after step 5000) accuracy approaches 1:

Figure 3 is the corresponding accuracy graph for the validation data, where

accuracy reaches a limit of 67%. Standard metrics in the field of machine learn-135

ing were used for evaluating further the performance of the models. In partic-

ular, the confusion matrix also known as an “error matrix” (Weininger, 1988),

refers to a certain matrix configuration which allows for visualizing the algorithm

performance, typically in cases of supervised learning in classification models.

Each row in the matrix represents occurrences in a predicted class, while each140

column represents occurrences in an actual class (or vice versa) (Voulodimos

et al., 2018). It is named after the fact that it facilitates determining whether

the system causes confusion in the various classes. The confusion matrix for the

validation data set is shown in Table 1.

Matthews Correlation Coefficient (MCC), introduced by biochemist Brian145

W. Matthews in 1975, is used in machine learning to measure the quality of

binary classifications (two categories). The coefficient takes into account both

7
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n=146 Number of images Predicted class 0 Predicted class 1 Predicted class 2

Actual class 0 53 34 (64%) 13 6

Actual class 1 39 6 26 (66%) 7

Actual class 2 54 4 12 38 (70%)

Table 1: Confusion Matrix (absolute numbers and % accuracy on test images available in each

class)

true and false positives and negatives and is generally considered as a balanced

measure which can be employed even if the classes differ greatly in size. In

essence, MCC is a correlation coefficient applied to observed and predicted bi-150

nary classifications. It yields a value between -1 and 1. A coefficient of 1 repre-

sents a perfect prediction, 0 is better than a random prediction and -1 indicates

complete disagreement between prediction and observation. The Matthews cor-

relation coefficient has been generalized to the multi class problem, which is the

case (Gorodkin, 2004) in our classification problem. Our value for the model’s155

predictions is MCC = 0.51.

For comparison purposes, we employed Residual nets as an alternative neural

networks architecture, which has produced very good results in a number of

modelling cases. Residual networks manages to go deeper than other networks

with the utilisation of skip connections. This way they avoid the problem of the160

vanishing gradient by adding the activations of previous layers (He et al., 2016).

They solve problem of CIFAR 10 (Krizhevsky, 2020) data set with an error rate

of 4% (Angelov et al., 2016) and has good generalization performance for the

data sets of PASCAL VOC 2007 and 2012 (Everingham et al., 2009) and COCO

(Lin et al., 2014). We tried various levels in the network. The models created165

had either 10 or 15 residual blocks with 2 or 3 strides respectively followed by a

fully connected layer with the outputs of the model. Again we used The Adam

Optimizer with the value of 0.3. In Figures 4 and 5 the evolution of accuracy on

the training and test sets is presented for a residual network of 10 residual blocks

with a stride of 2 and a learning rate with the value of 0.3 . The number of170

the parameters of the network proved computationally expensive. For the 8000

8
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Figure 4: Evolution of accuracy on the training data for the Residual Net classification deep

learning model.

Figure 5: Evolution of accuracy on the test data for the Residual Net classification deep

learning model.

training steps we needed around 8 hours and thus we did not further proceed

the training of the model.

We observe that the training procedure was not completed after 8000 itera-

tions, which took more than 6 hours of computational time and the accuracy did175

not reach the level that was achieved using the AlexNet architecture. Therefore

the AlexNet deep learning model was selected as the final classification model.

4. Conclusions

In this paper we demonstrated that 2D images of chemical structures could

be the sole input information used in QSAR modelling, where deep learning180

architectures are employed. We investigated on the most adequate architecture

that is capable of producing a reasonably accurate model. The accuracy and ro-

bustness of the model were evaluated on samples that were not used during the

training procedure. The statistical metrics indicate that the proposed approach

9
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is very promising. It is of particular importance the fact that the proposed185

method does not require the calculation and selection of the most important

molecular descriptors, which is the usual practice in QSAR modelling. Future

research will focus on the use of 3D images, which will give additional details on

the structures of chemicals. We will also investigate if combinations of images

with standard calculated descriptors may further improve the results. Appli-190

cations of the method on additional and possibly bigger data sets will further

evaluate its performance, accuracy and robustness.
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