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Abstract. Delay differential equations are set up for zeroth-order pandemic models in analogy 
with traditional SIR and SEIR models by specifying individual times of incubation and 
infectiousness prior to recovery.  Independent linear delay relations in addition to a nonlinear 
delay differential equation are found for characterizing time-dependent compartmental 
populations.  Asymptotic behavior allows a link between parameters of the delay and traditional 
models for their comparison.  In analogy with transformation of the traditional equations into 
linear form giving populations and time in parametric form, approximation of the delay 
equations results in a simple accurate finite recursive solution.  Otherwise, straightforward 
numerical solution is effected in terms of linearized boundary conditions specifying the 
distribution of instigators as to their initial infection progress—in contrast to traditional models 
specifying only initial average infectious and exposed populations.  Examples contrasting 
asymptotically-linked traditional and delay models are given.   
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Introduction 
 
The Covid-19 epidemic has aroused great interest in pandemic modelling.  This paper addresses 
two types of compartmental deterministic models.  Such models compute the evolution of 
various populational compartments following initial infection   Considered here are the classic 
SIR [7] and SEIR Models which address Susceptible, Exposed, Infectious, and Recovered 
(including deceased) populations.  For a summary and details of these models and their many 
variations, see [8] and references within.  Most [2, 6, 7, 8] of these models are expressed in terms 
of ordinary nonlinear differential equations local in the time.   
 
Less common are models [1, 5, 10, 11, 12] which specify the rates of change in the populations 
at a given time in terms of populations at an earlier time.  Specifically, this paper considers a 
pandemic model similar to the traditional SEIR Model (including SIR) constructed by specifying 
the incubation time 𝜏! (for example, 5 days) an individual spends prior to becoming infectious 
and the total time 𝜏" (e.g., 20 days) to recovery.  The traditional instantaneous differential 
equations of the SEIR Model are replaced by delay or functional nonlocal nonlinear differential 
equations [3] solvable numerically in terms of the prior history of the initially exposed or 
infectious.  Since in reality, both 𝜏! and 𝜏"  may vary widely between individuals, this type of 
model, together with the instantaneous or local models, must be considered 0-th order 
approximations. 
 
The plan for this paper is as follows.  First, the delay differential equations are presented, 
together with various simple relationships among the populations.  Asymptotic limits are given.  
Comparison of the instantaneous and delay models is possible by linking the parameters of the 
two types of models together requiring asymptotic coincidence. The models are also comparable 
through the finding of an accurate solution to the delay SIR model in analogy to solution of the 
usual instantaneous model with populations and time in parametric form from now linear 
equations, obviating addressing the differential equations numerically.  Boundary conditions for 
the delay models are established that permit specifying the initial distribution of the pandemic 
instigators in terms of their initial disease progress, unlike the instantaneous models.  Finally, 
several numerical comparisons are made. 
 
 
Equations of Motion 
 
As	with	the	instantaneous	SEIR	Model,	a	function	new[t]	approximates	the	rate	of	new	
infections	per	unit	time	by:	
	

𝑛𝑒𝑤[𝑡] = 	#
$
	𝑖[𝑡]𝑠[𝑡],	 	 	 	 	 	 	 	 	 (1)	

	
where	𝛽	is	a	rate	constant,		i[t]	is	the	number	of	infectious	individuals	at	t,	s[t]	is	the	
number	of	those	susceptible	to	infection,	and	n	is	the	total	number	of	individuals.		Following 
exposure, suppose that an incubation time 𝜏! 	is	required	until	an	individual	becomes	
infectious	and	that	a	further	time	interval	(𝜏"	–	𝜏!)	remains	until	the	individual	either	
recovers	or	dies.				
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Suppose	the	pandemic	begins	at	t	=	0	with	the	introduction	of	a	small	number	of	exposed	
or	infectious	individuals.		By	the	time	t	=	𝜏"	,	all	the	instigators	will	have	recovered	(or	
died),	after	which	the	following	conditions	hold.		The	s[t]	susceptible	individuals	at	time		
t	>		𝜏"	consist	in	all	present	(𝑛 − 𝑒[0] − 𝑖[0])	at	t	=	0+	minus	those	who	have	become	
infected	after	t	=	0.		Therefore,	
	
	 𝑠[𝑡] = (𝑛 − 𝑒[0] − 𝑖[0]) −		#

$ ∫ 𝑛𝑒𝑤[𝑡′]	𝑑𝑡′%
& .	

	
At	time	t,	the	e[t]	exposed	individuals	are	all	who	suffered	new	exposures	between	t	−	𝜏! 	
and	t.		Therefore,	
	
	 𝑒[𝑡] = 	#

$ ∫ 𝑛𝑒𝑤[𝑡]]	𝑑𝑡′	'
'()!

.	
	
Similarly,	the	i[t]	infectious	individuals	at	t	(>	𝜏")	consist	exactly	in	those	who	suffered	
new	exposures	between	t	−	𝜏"		and	t	–	𝜏! .		Therefore,	
	
	 𝑖[𝑡] = 	#

$ ∫ 𝑛𝑒𝑤[𝑡′]	𝑑𝑡′%	–	)!
%	(	)"

	.		 	 	 	 	 	 	 	 	
	
At	t	>	𝜏" ,	the	r[t]	recovered	or	deceased	individuals	at	t	are	those	who	suffered	new	
exposures	before	t	−	𝜏"		plus	the	(𝑒[0] + 𝑖[0])	initially	exposed	or	infectious.		Therefore,	
	
	 𝑟[𝑡] = (𝑒[0] + 𝑖[0]) +	#

$ ∫ 𝑛𝑒𝑤[𝑡′]	𝑑𝑡,%	–	)"
& 		.	

	
The	above	equations	imply,	of	course,	that:	
	
	 s[t]	+	𝑒[𝑡] + 𝑖[𝑡] + 𝑟[𝑡] = 𝑛	(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡).	 	 	 	 	 	 (2)	
	
Differentiating	the	above	equations	with	respect	to	time	t	results	in	an	equivalent	set	of	
non-local	non-linear	differential	equations:	
	
	 𝑠,[𝑡] = 	− #

$
𝑛𝑒𝑤[𝑡]	 	 	 	 	 	 	 	 	 (3)	

	
	 𝑒,[𝑡] = 	#

$
𝑛𝑒𝑤[𝑡] − #

$
𝑛𝑒𝑤[t	–	𝜏!]	 	 	 	 `	 `	 	 (4)					

	
	 𝑖,[𝑡] = 	#

$
𝑛𝑒𝑤[t	–	𝜏!] −

#
$
𝑛𝑒𝑤ct	–	𝜏"d			 	 	 	 	 	 (5)				

	
	 𝑟,[𝑡] = 	#

$
𝑛𝑒𝑤ct	–	𝜏"d						 	 	 	 	 	 	 	 (6)	

	
	 [⟹ -

-'
(𝑠[𝑡] + 𝑒[𝑡] + 𝑖[𝑡] + 𝑟[𝑡]) = 0].	 	 	 	 	 	 (2)	

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 7, 2020. ; https://doi.org/10.1101/2020.08.05.20162164doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.05.20162164
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
The	equations	are	valid	for	t	>	𝜏"	and	depend	for	solution	on	the	functions	i[t]	and	s[t]	
given	over	the	interval,	0	<	t	<	𝜏"	as	the	initial	values,	unlike	the	boundary	conditions	at	a	
single	point	with	ordinary	differential	equations,	hence	the	aptness	of	the	term,	functional	
differential	equation.		As	detailed	below,	the	boundary	conditions,	i[t]	and	s[t]	over	this	
early	interval,	are	determined	by	the	distribution	in	the	exposure	times	of	the	initially	
exposed	or	infected	who	trigger	the	pandemic.	
	
The	above	equations	are	analogous	to	the	local	SEIR	Model	in	widespread	use:	
	 	
	 𝑠,[𝑡] = 	− #

$
𝑛𝑒𝑤[𝑡]	 	 	 	 	 	 	 	 	 (3)	

	
	 𝑒,[𝑡] = 	#

$
𝑛𝑒𝑤[𝑡] − 𝛿	𝑒[𝑡]	 	 	 	 	 	 	 	 (4’)	

	
	 𝑖,[𝑡] = 	𝛿	𝑒[𝑡] − 𝛾	𝑖[𝑡]	 	 	 	 	 	 	 	 (5’)	
	
	 𝑟,[𝑡] = 	𝛾	𝑖[𝑡].		 	 	 	 	 	 	 	 	 (6’)	
	
	
Relationships	
	
Both	the	delay	and	instantaneous	models	are	characterized	as	above	by	actually	only	three	
equations	in	the	three	functions	s[t],	e[t],	and	i[t].		In	fact,	there	is	a	simple	relation	between	
s	and	r.			
	
SEIR:		
	
In	the	case	of	the	instantaneous	model,	Equations	(1	and	4’)	imply	that	
	
	 -.

-/
=	(#

$"
𝑠	 ⟹	

	
	 𝑠[𝑟] = 𝑛	𝑒(#/ $"⁄ ,	 	 	 	 	 	 	 	 	 (7)	
	
which	satisfies	s[0]	~	n	at	r	=	0	(at	t	=	0).		
	
Delay	SEIR:		
	
With	the	less	familiar	delay	model,	Equation	(7)	holds	only	asymptotically	(at	t → ∞	or	0).		
In	addition	to	
	
	 𝑠[𝑡] + 𝑒[𝑡] + 𝑖[𝑡] + 𝑟[𝑡]	=	n,		 	 	 	 	 	 	 (2)	
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there	are	two	independent	nonlocal	relations	among	s,	e,	i,	and	r.		At	t	>		𝜏" ,	new	infections	
created	at	t	result	in	new	recoveries	at	t	+	𝜏" ,	so	the	recovery	rate	must	lag	behind	the	
creation	rate	by	𝜏" .		Explicitly,	Equations	(3	and	6)	imply	that	
	
	 𝑠,[𝑡] + 𝑟′c𝑡 + 𝜏"d = 0		⟹	
	
	 𝑠[𝑡] + 𝑟c𝑡 + 𝜏"d = 𝑛,	 	 	 	 	 	 	
		
where	the	integration	constant	n	is	determined	by	the	𝑡 → ∞	limit.		Equations	(4	and	5)	
then	imply:	
	
	 𝑒[𝑡] + 𝑖[𝑡] = 	𝑟c𝑡 + 𝜏"d − 	𝑟[𝑡].	 	 	 	 		 	 	 (8)	
	
Similarly,	infectiousness	lags	infection	by	𝜏! 	,	and	Equations	(3	and	4)	give:	
	
	 𝑒,[𝑡] = 	 𝑠,[t	–	𝜏!] − 𝑠,[𝑡]	,	and	
	
	 𝑒[𝑡] = 	𝑠[t	–	𝜏!] − 𝑠[𝑡] ,        (9)	
	 	 	 	 	 	
as	the	𝑡 → ∞	limit	⟹	the	integration	constant	=	0.		As	easily	seen,	the	above	relations	hold	
for	the	simpler	SIR	Models	as	well	(setting	e[t]	and	𝜏! 	equal	to	zero).		Equations	(2,	3,	8,	and	
9)	together	with	boundary	conditions	are	then	sufficient	to	determine	the	evolution	of	the	
four	populations.	
	
Asymptotic	limits	
	
SEIR:	
	
Another	similarity	between	the	delay	and	instantaneous	model	is	found	in	the	asymptotic	
limits	(𝑡 → ∞)	of	s[t]	and	r[t].		As	𝑡 → ∞	,	i[t]	and	e[t]	⟶ 0,	and	so	
	
	 𝑟1 + 𝑠1 =	n.	
	
In	the	familiar	case	of	the	local	SEIR	model	[6,	9],	Equation	(7)	implies:	
	
	 𝑟1 + 𝑛	𝑒(#/# $"⁄ = 𝑛.		 	 	 	 	 	 	 	 (10)	
	
Solutions	𝑟1[n]	of	this	transcendental	equation	have	been	tabulated	as	the	Lambert	W	
function	or	the	ProductLog	in	Mathematica.	
	
Delay	SEIR:	
	
The	Delay	SEIR	Model	is	somewhat	more	complicated,	but	results	in	an	expression	of	the	
same	form	as	Equation	(10).			One	approach	is	to	expand	the	various	functions	in	𝜏"	and	𝜏! .		
Equation	(8)	implies:	
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	 𝑒[𝑡] + 𝑖[𝑡] = 		 𝜏"	𝑟′[𝑡] + 𝑂[𝜏"2].	
	
Equations	(9	and	6)	imply:	
	
	 𝑒[𝑡] = 	−𝜏! 	𝑠,[t] + O[𝜏!2]=	𝜏! 	𝑟,[t] + O[𝜏!2] + 𝑂[𝜏! 	𝜏"].	
	
Therefore,	keeping	only	terms	linear	in	𝜏!	or	𝜏" ,	
	
	 𝑖[𝑡]	~		(𝜏" − 𝜏!	)	𝑟′[𝑡].	
	
Equations	(1	and	3)	then	give	
	
	 𝑠,[𝑡]	~ 	− #

$
(𝜏" − 𝜏!	)	𝑟′[𝑡]	𝑠[𝑡],	

	
which	integrates	to:	
	

	 𝑠[𝑟] = 𝑠&	𝑒
($%3	)"()!4	/	5	…				,	

	
where	𝑠&	ensures	𝑠[0] = 𝑠&	.		Finally,	in	the	limit	t	→ ∞,	where	i	and	e	→ 0,	
	

	 𝑟1 + 𝑠&		𝑒
($%3	)"()!4/#			 = 	𝑛				 	 	 	 	 	 	 (10’)	

	
Again,	the	asymptotic	value	𝑟1	is	given	in	terms	of	the	Lambert	W	function.	
	
	
Asymptotic	linking	of	the	models	
	
In	the	sections	below,	the	delay	and	instantaneous	models	are	placed	on	an	equal	footing	
for	comparison	by	identifying	the	infectious-time	constant	𝛾(7	with	(𝜏"	–	𝜏!),	the	time	an	
individual	is	infectious,	and	the	exposed-time	constant	𝛿(7	with	𝜏! ,	i.e.,	with	the	means	of	
the	corresponding	exponential	distributions.			Also,	as	indicated	by	Equations	(10	and	10’),	
the	former	identification	forces	the	asymptotic	limits	to	be	identical.					
	
	
Partial	solutions	
	
SIR:	The	traditional	SIR	Model	is	easily	transformed	[4]	into	a	set	of	linear	equations	by	
replacing	the	independent	variable	t		by	an	alternative	variable	𝜂	via	𝑖[𝑡]𝑑𝑡 = 𝑑𝜂.		Then	𝑖[𝜂]	
and	𝑠[𝜂]	can	be	easily	expressed	in	closed	form,	and	𝑡[𝜂]	is	determined	by	evaluating	the	
integral	∫ 𝑖[𝜂](7𝑑𝜂	numerically.		The	resulting	parametric	representation	of	i,	s,	and	t	in	
terms	of	𝜂	replaces	numerical	solution	of	the	original	nonlinear	differential	equations.	
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Delay	SIR:	No	similar	transform	of	the	Delay	SIR	Model	is	known.		However,	the	following	
approximation	results	in	similar	partial	solution.		Equation	(8)	can	be	rewritten	as:	
	
	 𝑖[𝑡] = 	𝑠c𝑡 − 𝜏"d − 𝑠[𝑡].	 	 	 	 	 	 	 	 (8’)	
	
If	the	RHS	is	approximated	as	0th	order	𝑖&[𝑡]	as,	
	
	 𝑖&[𝑡] = 	−𝜏"	𝑠&′c𝑡 − 𝜏"/2d,	 	 	 	 	 	 	 	 (8’’)	
	
then	Equation	(3)	simplifies	to:	
	
	 𝑠&,[𝑡] = 	

#)"
$
𝑠&[𝑡]	𝑠8′c𝑡 − 𝜏"/2d.	 	 	 	 	 	 	 (3’)	

	
Equation	(3’)	is	a	neutral	delay	differential	equation	(i.e.,	with	delay	in	the	derivative	[3])	
which	integrates	to	
	

	 𝑠&[𝑡] = 𝑐	𝑒
$&"
% 	.'['(	)"/2]	 	 	 	 	 	 	 	 (11a)	

	
	 𝑠[𝑡] = 𝑠&[𝑡 + 𝜏"],	 	 	 	 	 	 	 	 	 (11b)	
	
where	the	constant	𝑐	is	determined	by	initial	conditions,	avoiding	discontinuities	[3]	in	the	
function	𝑠&[𝑡]	and	its	derivatives.	
	
Equation	(11a)	is	a	recurrence	relation	ending	after	a	finite	number	of	iterations	from	any	
time	𝑡 >	()𝜏"	(for	example)	down	to	within	a	boundary	interval	[𝜏" ,

(
)𝜏"],	where	the	initial	

𝑠&[𝑡]	is	defined	in	terms	of	the	pandemic	instigators.		Equation	(11a)	is	evaluated	for	𝑠&[𝑡]	
automatically	in	programs	such	as	Mathematica.			
	
Numerical	experimenting	indicates	that	the	global	approximation	given	in	(11a)	has	an	
O[𝜏"]	shift	from	s[t]	near	the	peak	in	i[t]	and	inflection	in	s[t].		This	shift	arises	from	the	
inaccuracy	of	the	approximation	(8’’):		Correction	of	Equation	(8’’)	by	simply	assuming	
increase	in	−𝑠,[𝑡]	of	the	order	of		𝑒#'shifts	the	argument	of	(8’’)	down	from	𝜏"/2	by	about	
0.1𝜏"	for	R[0]	(=	𝛽𝜏,	the	initial	individual	infectiousness)	between	2	and	3,	resulting	in	a	
negative	shift	of	the	maximum	in	𝑖[𝑡]	between	60%	and	80%	of	𝜏" .	
	
This	result	suggests	the	function	𝑠[𝑡]	(11𝑏),	shifting	𝑠&[𝑡]	by	𝜏" .		The	infectious	population	
𝑖[𝑡]	is	then	determined	directly	from	Equation	(8’).		The	accuracy	of	Equation	(11b)	(away	
from	the	boundary	conditions	near	t	=	0,	yet	retaining	their	causative	effect)	is	illustrated	
in	Fig.	1	by	comparison	to	the	exact	numerical	solution	of	the	original	nonlinear	equations	
for	two	values	of	the	infection	rate	𝛽.		Aside	from	𝛽,	the	assumed	conditions	are	as	in	Fig.	2	
below.		The	extreme	accuracy	of	this	approximation	with	R[0]	between	2	and	3	and	with	
𝜏"	at	least	as	large	as	30	is	as	yet	not	understood.	
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Figure	1.		Comparison	of	approximate	recursive	(dashed)	and	exact	numerical	(solid)	
solutions	of	the	delay	SIR	equations	at	𝜏"	=15	days	for	two	different	values	of	the	infection	
rate	𝛽.	
	
	
Linearized	Boundary	Conditions	
	
Although	the	above	delay	differential	equations	are	non-linear,	near	the	start	of	a	pandemic	
with	a	small	number	of	infected	individuals,	a	linearized	version	of	the	equations	is	
extremely	accurate.		The	corresponding	solutions	for	t	<	𝜏"	are	simple	and	transparent.		
Furthermore,	superposition	makes	possible	the	combination	of	the	initially	infected	as	
distributed	over	a	range	of	infection	stages.		Therefore,	the	boundary	conditions	(for	time	t	
<	𝜏")	that	reflect	the	history	of	the	initially	infected	are	easily	determined	and	permit	
solution	of	the	nonlinear	delay	equations	at	t	>	𝜏"	using	the	same	numerical	methods	as	
with	instantaneous	nonlinear	equations.								
	
	
Delay	SIR	Model:		
	
The	earliest	times	in	a	pandemic	are	special	in	that	only	the	initially	infected	can	recover	at		
t	<	𝜏" 	,	within	which	explicit	solution	of	s[t]	is	possible.		For	example,	with	the	Delayed	SIR	
Model,	as	long	as	no	recovery	occurs	by	time	t,	
	
						𝑖,[𝑡] = 	+ #

$
𝑖[𝑡]𝑠[𝑡]	

						𝑠,[𝑡] = − #
$
𝑖[𝑡]𝑠[𝑡].	

	
These	equations	are	easily	solved	in	terms	of	the	logistic	function,	since	i	+	s	+	r	=	n	(and	r	
=	0	and	n	are	constants).		However,	for	the	reasons	outlined	above,	at	t	<	𝜏"	the	linearized	
equation	is	adopted:	
	
						𝑖,[𝑡] = 	+ #

$
𝑖[𝑡]	𝑛.	
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Then	an	initially	infectious	component	𝑖&	with	time	tr	remaining	prior	to	recover	results	in	
infections	𝑖[𝑡]	expanding	exponentially	in	time	as:	
	
						𝑖[𝑡] = 	 𝑖&𝑒#'		(t	<	tr).	 	 	 	 	 	 	 	 	 	
	
Then	following	recovery	of	the	initial	infection	at	t	=	tr,	
	
						𝑖[𝑡] = (𝑖&𝑒#'* − 𝑖&)𝑒#('('*)				(t	>	tr).	
	
In	other	words,	
	
						𝑖[𝑡] = 𝑖&𝑒#'(1 − 𝜃[𝑡 − 𝑡/]𝑒(#'*)					(t	<	𝜏")	 	 	 	 	 	 (12)	
	
						𝑟[𝑡] = 𝑖&𝜃[𝑡 − 𝑡/]	
	
						𝑠[𝑡] = 	𝑛 − 𝑖[𝑡] − 𝑟[𝑡].	
	
Now	if	there	is	a	distribution	𝜌[𝑡/]	in	the	time	𝑡/ 	to	recovery	of	the	initially	infectious,	then	
superposition	implies	that	the	infectious	𝑖[𝑡],	recovered	𝑟[𝑡],	and	susceptible	𝑠[𝑡]	at	early	
times	are	given	by	
	
						t	≤	𝜏"	:	 	 	 	 	 	 	 	 	 	 	 (13)	
						𝑖[𝑡] = 𝑒#'(𝑖[0] − ∫ 𝜌['

& 𝑡/]𝑒(#'*𝑑𝑡/)			
						𝑟[𝑡] = ∫ 𝜌[%

& 𝑡/]	𝑑𝑡/ 								
						𝑠[𝑡] = 	𝑛 − 𝑖[𝑡] − 𝑟[𝑡]	.		
	
These	easily-coded	functions	of	t	supply	the	required	information	for	numerical	solution	of	
the	nonlinear	delay	differential	equations	for	later	time	t.		The	remarkable	feature	of	the	
delay	model	is	that	solutions	i[t],	r[t],	and	s[t]	depend	on	an	entire	initial	function,	𝜌[𝑡/].	
	
Incidentally,	the	density	𝜌[𝜏> , 𝑡]	at	later	times	(t	>	2𝜏")	of	the	infectious	vs	the	length	of	
time	𝜏> 	infectious	(i.e,	𝜏" 	−	𝜏> 	=	tr	is	the	time	to	recovery)	is	given	by:	
	
	 𝜌[𝜏> , 𝑡] =

#
$
𝑖[𝑡 − 𝜏> 	]𝑠[𝑡 − 𝜏> 	],	 	 	 	 	 	 	 (14)	

	
which	is	justified	by:	
	
	 ∫ 𝜌[𝜏> , 𝑡]	𝑑𝜏> =	−∫

#
$
𝑖[𝑡,]𝑠[𝑡,]	𝑑𝑡, = 𝑖[𝑡]'()"

'
)"
& .	 	 	 	 	 (15)	

	
	
Any	“old”	case	prior	to	𝑡 − 𝜏"	has	“recovered”	by	the	time	t;	Equation	(15)	expresses	the	
fact	that	only	the	new	infections	need	to	be	considered	for	the	density	at	time	t.		The	
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boundary	conditions	for	the	delayed	SEIR	Model	can	be	expressed	similarly	to	Equations	
(13),	but	are	somewhat	more	complicated	and	are	often	more	simply	determined	by	
numerical	solution.	
	
	
Numerical	Comparisons	
	
The	differences	between	the	delay	and	local	models	are	best	illustrated	by	means	of	
numerical	examples.		Parameters	for	the	above	models	were	selected	as	follows:	
	
	 𝛽 = 0.20	𝑑𝑎𝑦𝑠(7	
	 𝜏" = 20	𝑑𝑎𝑦𝑠	for	SEIR	models	
	 𝜏" = 15	𝑑𝑎𝑦𝑠	for	SIR	odels	
	 𝜏! = 5	𝑑𝑎𝑦𝑠,	SEIR	
	 𝜏! = 0	𝑑𝑎𝑦𝑠,	SIR		
	 𝛾 = 	 (𝜏" − 𝜏!)(7	
	 𝛿 = 𝜏!(7	
	 n		=	11.7	10?	
	
These	parameters	imply	the	infectiousicity	index	R[t]	is	equal	to	3	at	t	=	0	(i.e.,	at	the	start	
of	the	pandemic).		R[t]	is	the	mean	number	of	infections	caused	by	an	individual	infectious	
from	time	t	and	can	be	computed	in	terms	of	the	susceptible	population	s[t]	as:	
	
	 𝑅[𝑡] = ∫ #

$
'5)"
' 	s[t’]	dt’																					delay	SIR	

	 𝑅[𝑡] = ∫ 𝑒("('+(') 		#
$

1
' 	s[t’]	dt’							local	SIR	

	
R[0]	and	R[∞]	are	given	simply	in	terms	of	s[0]	and	s[∞],	in	regions	of	t	where	s[t]	hardly	
varies.	
	 	
Illustrating	Equations	(13),	an	even	initial	exposure	density	𝜌[𝑡/]	=	1/𝜏"	was	selected	for	
the	Delay	SIR	Model	and	instigating	population	=	1	for	the	corresponding	Local	SIR	Model.		
The	integral	in	Equation	(13)	then	easily	provides	sufficient	information	for	numerical	
solution	(using	Mathematica)	for	arbitrary	time.		The	results	(assuming	no	mitigation)	are	
illustrated	in	Figs.	2	and	3.	
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Figure	2.	Comparison	of	the	susceptible,	infectious,	and	recovered	(or	deceased)	
populations	from	asymptotically	identical	SIR	models,	local	(dashed)	and	delay	(solid)	with	
constant	distribution	of	initial	exposing	factor	at	infected	population	=	1	(other	parameters	
in	text).	
	
	

	
	
Figure	3.		Comparison	of	the	new	infections/day	and	recoveries/day	according	to	local	
(dashed)	and	(solid)	delay	SIR	models.	
	
	
Note	the	identical	asymptotic	behavior	of	the	populations	in	accordance	with		
Equations	(10	and	10’).		Also,	the	local	curves	lag	behind	those	of	the	delay	model,	by	1-2	
months.		The	curves	for	the	new	cases/day	attain	maxima	at	87	days	and	118	days	for	the	
delay	model	and	local	model,	respectively.			This	lag	is	not	surprising	as	the	probability	of	
continued	infectiousness	of	an	individual	falls	off	as	𝑒('/)" 	for	the	local	model,	whereas	the	
probability	remains	equal	to	1	from	t	=	0	until	recovery	at	t	=	𝜏" .		Also,	note	the	near-
symmetry	of	the	curves	from	the	delay	model	and	close	relation	to	the	logistic	function.	
	
At	the	opposite	extreme	from	an	even	density,	calculations	were	also	done	for	sharply	
peaked	densities	at	a	variety	of	initial	recovery	times	of	the	instigating	individuals.		The	
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results	for	the	SIR	models	are	shown	in	Fig.	4.		The	time	required	for	attaining	a	maximum	
(as	in	Fig.	3)	in	the	new	cases/day	was	determined	for	each	initial	recovery	time.		The	
curve	for	the	delay	model	is	remarkably	flat,	despite	upward	turning	for	the	nearly	
recovered	instigator,	and,	of	course,	the	approach	to	infinity	in	the	limit	of	an	initially	
recovered	individual.		The	difference	between	local	and	delay	models	is	close	to	that	of	the	
even	distribution	over	the	initial	recovery	times,	despite	the	nonlinearity	of	the	equations.	
	
	

	
	
Figure	4.		SIR:	time	to	maximum	new	cases/day	in	terms	of	state	of	health	of	the	initial	
exposing	population	=	1	at	t	=	0.	
	
	
A	similar	calculation	was	done	using	the	SEIR	models.		A	typical	result	is	shown	in	Fig.	5.	
	
	

	
	

Figure	5.		Typical	solution	for	inclusion	in	the	compilation	of	Figure	6.		Local	(dashed)	and	
(solid)	delay	SEIR	models.	
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Figure	6.		SEIR:	time	to	maximum	new	cases/day	in	terms	of	state	of	health	of	the	initial	
exposing	population	=	10	at	t	=	0	(other	parameters	in	text).		Dashed:	local,	Solid:	delay.	
	
	
In	this	case,	the	linearized	boundary	conditions	were	determined	numerically.		This	
required	attention	to	the	three	separate	situations:	tr	<	𝜏! ,	𝜏! 	<	tr	<	𝜏" − 𝜏! ,	and		
	𝜏" − 𝜏! 	<	tr		<	𝜏"	where	the	initial	instigators	were	only	exposed	prior	to	becoming	
infectious.		Again,	the	increase	in	the	time	to	maximum	in	the	new	cases/day	on	
approaching	nearly	recovered	instigators	is	apparent,	yet	is	limited	to	the	lowest	few	days	
prior	to	recovery.		The	difference	between	local	and	delay	models	is	similar	to	that	of	Fig.	4	
for	the	SIR	model,	although	time	from	pandemic	start	to	maximum	in	the	new	cases/day	is	
naturally	longer	for	the	SEIR	model	with	time	required	for	infectiousness	to	begin.	
	
	
Conclusions	
	
Similarities	and	differences	are	found	between	basic	simple	deterministic	pandemic	
models—instantaneous	vs	delay.		Both	types	of	models	expressed	in	terms	of	differential	
equations	are	readily	addressed	using	established	techniques	of	numerical	analysis.		
Interestingly,	though	nonlinear,	both	can	be	expressed	in	terms	of	accurate	closed-form	
solutions.		Just	as	the	instantaneous	equations	are	very	simply	linearized	in	terms	of	
population	compartments	and	time	in	parametric	form,	the	delay	equations	admit	a	
simply-evaluated	recursive	solution.		Further	research	into	this	solution	is	merited,	for	
example,	explaining	the	accuracy	attained	over	a	wide	range	of	model	parameter	values.	
	
Both	model	types	share	the	functional	form	of	asymptotic	values	relevant	to	the	pandemic	
winding	down.		This	allows	linkage	between	model	types	for	comparison.		Equivalently,	
parameters	can	be	chosen	to	equate	growth	at	the	pandemic	start.	
	
A	difference	between	the	models	exists	in	the	form	of	the	initial	boundary	conditions.		The	
delay	equations	depend	on	an	initial	function.		This	function	can	be	expressed	in	terms	of	
the	distribution	of	pandemic	instigators	as	to	initial	disease	progress.		This	expression	is	
facilitated	by	adopting	accurate	linear	boundary	conditions	permitting	superposition	even	
though	the	equations	valid	during	the	progress	of	the	pandemic	are	nonlinear.		
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The	results	of	this	work	show	significant	difference	between	the	usual	local	and	the	delay	
models	between	the	start	and	death	of	the	pandemic.		The	difference	no	doubt	relates	to	
the	individual’s	probability	of	remaining	infectious.		With	the	usual	local	model,	this	
probability	falls	rapidly	as	𝑒('/)" 	or	𝑒('/()"()!)		where	t	is	the	time	from	the	start	of	
infectiousness.		In	contrast,	with	the	delay	model	considered	here,	the	probability	of	
infectiousness	lasting	until	time	t	remains	high	at	1.00	until	the	time	𝜏"	or	𝜏" − 𝜏! 	is	
reached.	
	
This	difference	may	be	significant	to	the	progress	of	a	pandemic.		The	ultimate	result	as	the	
pandemic	winds	down	is	identical	for	the	two	types	of	models	considered	here.		Of	course,	
it	is	the	progress	up	to	the	time	of	the	maximum	in	the	new	cases/day	that	is	necessary	to	
understand	in	order	to	adopt	appropriate	mitigating	measures.	
	
These	results	may	provide	help	in	choosing	between	the	models.		From	the	point	of	view	of	
calculation,	the	delay	model	is	not	significantly	more	difficult	to	analyze.		Which	model	is	
appropriate	depends	on	the	details	of	recovery	or	death	of	the	individual	following	
infection.	
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