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Abstract  

Lockdown measures taken in response to the COVID-19 pandemic produced sudden social and 

economic changes. We examined the extent of air pollution reduction that was attained under these 

extreme circumstances, whether these reductions occurred everywhere in the US, and the local factors 

that drove them. Employing counterfactual time series analysis based on seasonal autoregressive 

integrated moving average models, we found that these extreme lockdown measures led to a reduction in 

the weekly PM2.5 average by up to 3.4 µg m-3 and the weekly NO2 average by up to 11 ppb. These values 

represent a substantial fraction of the annual mean NAAQS values of 12 µg m-3 and 53 ppb, respectively. 

We found evidence of a statistically significant decline in NO2 concentrations following the state-level 

emergency declaration in almost all states. However, statistically significant declines in PM2.5 occurred 

mostly in the West Coast and the Northeast. Certain states experienced a decline in NO2 but an increase 

in PM2.5 concentrations, indicating that these two pollutants arise from dissimilar sources in these states. 

Finally, we found evidence that states with a higher percentage of mobile source emissions prior to the 

emergency measures experienced a greater decline in NO2 levels during the pandemic. Although the 

current social and economic restrictions are not sustainable, our results provide a benchmark to estimate 

the extent to which air pollution reductions can be achieved. We also identify factors that contributed to 

the magnitude of pollutant reductions, which can help guide future state-level policies to sustainably 

reduce air pollution. 
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Significance statement  

We quantified the reduction in air pollution levels achieved under the extreme social and economic 

measures that were put into place as part of COVID-19 state-level emergency declarations. We found a 

reduction in the weekly average PM2.5 of up to 3.4 µg m-3 and the weekly average of NO2 of up to 11 ppb. 

These values represent a substantial fraction of the annual mean NAAQS values of 12 µg m-3 and 

53 ppb, respectively. States with a larger fraction of mobile source emissions (e.g., air and road traffic) 

prior to the pandemic experienced larger declines in NO2 emissions, whereas PM2.5 decline was seen in 

areas with a higher pre-pandemic proportion of emissions from mobile, stationary (e.g., industrial) and fire 

sources. 
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Introduction 

There is consistent evidence that short- and long-term exposure to fine particulate matter (PM2.5) and 

nitrogen dioxide (NO2) increases the risk of mortality, hospitalization, and other adverse health outcomes 

(1–6). Furthermore, several studies have provided preliminary evidence that long-term air pollution 

exposure increases the risk of hospitalization and death among individuals with COVID-19 (4, 7). Yet, 

despite the large body of evidence that indicates the current National Ambient Air Quality Standards 

(NAAQS) for PM2.5 may not sufficiently protect public health (8–11), the US Environmental Protection 

Agency (EPA) announced a sweeping relaxation of environmental rules in response to the COVID-19 

pandemic. 

The United States mitigates air pollution through a combination of federal, state, and local air pollution 

regulations (12). For example, the federal government sets emissions standards and the NAAQS. They 

also require states to prepare State Implementation Plans (SIPs) that detail emissions reductions strategies 

for areas that are not in compliance with the NAAQS (non-attainment areas). SIPs use air quality models 

to demonstrate how regulating local emissions sources helps a non-attainment area meet the NAAQS. The 

patchwork of regulations, emission sources, geographical variability, and meteorology, results in varying 

air pollution concentrations by location.  

Several studies have examined the impact of a sudden intervention on changes in air pollution (see (13) 

for a review). For example, researchers used interrupted time-series designs to quantify the impact of the 

1990 Dublin coal ban (14) and regression discontinuity to identify the arbitrary spatial impact of the China 

Huai River Policy (15).  An important feature of these studies is that they investigated abrupt and localized 

changes across a relatively short time span (Dublin coal ban) and spatial scale (Huai River policy) (16).  

Because of the abrupt nature of these interventions, defining a hypothetical experiment in these studies 

was straightforward. For example, in the Dublin study, the institution of the ban represented the intervention 

condition, with the control condition being no ban, and the effect of interest was that of instituting the ban 

versus not instituting the ban.  

Similarly, we examined the effect of the abrupt lockdown measures implemented in response to the COVID-

19 pandemic, which produced sudden and significant changes in how society functions, with decreases in 
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road traffic, air traffic, and economic activity (17). This provided us with an unprecedented opportunity to 

implement a quasi-experimental design with a well-defined control condition (no pandemic) to estimate the 

changes in air pollution as a result of the implementation of these extreme measures  (see (18) for a 

discussion of strengths and limitations of a quasi-experimental design). Furthermore, the spatial 

heterogeneity in the extent to which air pollution levels changed as a result of the lockdown measures 

allowed us to identify factors contributing to these changes.  

In this study, we had two main scientific objectives: 1) use state-of-the-art time series approaches for 

counterfactual forecasting to estimate the weekly state-level deviations between counterfactual (e.g., 

absent the pandemic) and observed levels of PM2.5 and NO2 from January 1, 2020 to April 23, 2020; and 

2) investigate which state-level characteristics, including emissions sources, contributed the most to these 

changes, while adjusting for geography and population density.  We decided to estimate counterfactual 

values starting in January 2020 to allow for the identification of the time point when these counterfactual 

predictions began deviating from observed concentrations. We then compared the onset of this deviation 

to the timing of different interventions, including declaration of a state of emergency, non-essential business 

closures, and shelter-in-place orders (see Figures S8 and S9 in the supplemental material). We chose the 

date of the state-level emergency declarations as the primary intervention for this analysis because it was 

the earliest intervention that most closely aligned with the decline in air pollution levels. We used April 23, 

2020 as the end date for our study because all state-level emergency declarations occurred at some point 

during this period, and the time range gave us more than four weeks of post-intervention follow-up time for 

each state. 

Results 

Short-term change in air pollution following the COVID-19 state of emergency 

To estimate the changes in air pollution levels (PM2.5 and NO2) affected by the COVID-19 state-level 

emergency declaration (denoted by ), we implemented Seasonal Autoregressive Integrated Moving 

Average (SARIMA) models for multivariate time series data (see Materials and Methods for details). More 

specifically, we trained SARIMA models on historical state-level data (January 1, 2015 to December 31, 

2019) to forecast the counterfactual (i.e., pandemic did not occur) weekly pollutant concentrations for a 16-
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week period (January 1, 2020 to April 23, 2020).  For each state, we estimated the weekly deviations of the 

observed pollutant concentrations from their counterfactual values (and associated statistical uncertainty 

using bootstrapping) for the same 16-week period (i.e., weekly observed values minus weekly predicted 

values for 16 weeks). Then, we estimated  by taking the difference Δ𝑏𝑒𝑓𝑜𝑟𝑒 − Δ𝑎𝑓𝑡𝑒𝑟, where Δ𝑏𝑒𝑓𝑜𝑟𝑒 is the 

median of these weekly deviations before the date of the declaration of the state emergency (denoted by 

T) and Δ𝑎𝑓𝑡𝑒𝑟  is the median of these weekly deviations after T. A negative estimated value of  indicates 

that air pollution levels declined as a result of the state-level emergency (e.g., the deviations are closer to 

zero before the intervention, but after the intervention, the weekly predictive values assuming that the 

pandemic did not occur are higher than the observed ones).  We assessed statistical uncertainty using 

bootstrap. This analysis was performed separately for PM2.5 and NO2 in each state. 

For most states, the differences between the SARIMA counterfactual predictions (i.e., assuming the 

pandemic did not occur) and the observed pollutant values were close to zero during the period before the 

state-level emergency declaration (Figures 1-2), but there were significant deviations following the 

intervention lockdown measures. 

We found evidence of a statistically significant decrease in NO2 concentrations following the declaration of 

a state of emergency in 34 of the 36 states that were investigated (Figure 1 and Table S3). However, we 

found evidence of a statistically significant decline in PM2.5 concentrations in only 16 of the 48 states that 

were studied, including New York and other states in the Northeast and West Coast (Figures 2-3 and Figure 

S7).  

Figure 4 shows ρ, defined as the ratio of the estimated  for NO2 divided by the estimated  for PM2.5. This 

ratio reflects the discrepancy in the magnitude and direction of change in the concentrations of NO2 and 

PM2.5 following state emergency declaration. More than one-third of the states had ρ < 0, i.e., these states 

experienced a decrease in NO2 and a simultaneous increase in PM2.5. The contrast between the pattern of 

change of NO2 and PM2.5 following state-level emergency declarations suggests that dominating sources 

of these two pollutants are different in those states.  

State-level factors may explain the heterogeneity in air pollution declines across states 
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To ascertain which state-level factors might explain the heterogeneity in the extent to which the air pollution 

declined across states, we fit weighted regression models with the estimated  as the dependent variable,  

and geography, population density and sources of emission as predictors. Details on the regression model 

can be found in the Materials and Methods. We found that the proportions of annual emissions from a 

state’s stationary (e.g., industrial processes), mobile (e.g., road and air traffic), and fire sources (e.g., 

agricultural field burning) have statistically significant and positive associations with the change in PM2.5 

concentration (Table 1). In contrast, only the proportion of annual emissions from state mobile sources was 

a statistically significant predictor of the change in NO2 concentration (Table 1). These results indicate that 

states with a higher fraction of annual emissions from mobile sources experienced a greater decline in NO2 

concentrations. For PM2.5, the higher the fraction of emissions from any of the three sources (stationary, 

mobile, or fire), the greater the decline in PM2.5.  

Discussion 

In this study, we found that, following the declaration of a state of emergency, NO2 concentrations showed 

a statistically significant decline in 34 of the 36 states included in this analysis. In contrast, PM2.5 

concentrations declined in only 16 of 48 states included in this analysis. These 16 states are located in the 

Northeast and on the West Coast. Furthermore, we found that the proportion of a state’s annual emissions 

from mobile sources is a statistically significant factor in NO2 changes in response to the state emergency 

declaration. For PM2.5 reductions, all three sources—mobile, stationary, and fire—were statistically 

significant predictors in driving this change. We concluded that state of emergency declarations 

implemented in response to the COVID-19 pandemic predominantly affected mobile sources (e.g., 

cancelled flights and reduced traffic) (19) and led to a decline in NO2. However, because the major sources 

of PM2.5 are stationary (e.g., industrial fuel combustion), these were less affected by state-level emergency 

declarations (Table S2).  

SARIMA models have some advantageous features compared to other statistical approaches. Recent 

studies have used t-tests (20), a robust difference approach (21), and linear regression (22) to study the 

changes in US air pollution attributable to the COVID-19 shutdown. Bekbulat et al. used temporal correction 

in their robust differences approach (21) (not peer-reviewed on August 03, 2020) and Venter et al. included 
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meteorological factors in their regression (22). The latter was a global study of air pollution changes during 

the pandemic, which found that a decline in NO2 in the United States occurred on a national level. However, 

these methods do not directly incorporate the correlations between observed pollutant concentrations, and 

trends and seasonality in the data. We accounted for both factors using SARIMA models. Any contribution 

to the data from generally decreasing air pollution trends and weather seasonality must be removed to best 

estimate the effect of pandemic-related extreme measures on air pollution. By further combining SARIMA 

with bootstrapping, we were able to quantify the uncertainty in the estimated mean predictions without any 

parametric assumptions. 

We note that our counterfactual predictions of pollutant concentrations assume that the trend and 

seasonality during the last five years (i.e., the training period for the model) persisted during the prediction 

period (January 1, 2020 to April 23, 2020). Another assumption was that the relationship between 

meteorological variables used in the SARIMA model (temperature, humidity, and precipitation) and the 

pollutant concentrations were the same in both the training and prediction periods (23, 24).  

In contrast to other studies, we did not a priori divide our data into pre- and post‒COVID-19 periods. We 

used January 1, 2015 to December 31, 2019 as historical data and then used the SARIMA model to predict 

the counterfactual pollutant levels during the 16-week period from January 1, 2020 to April 23, 2020, under 

the hypothesis that neither the pandemic nor the state emergency declaration occurred. In other words, 

first we estimated the changes between observed and counterfactual air pollution levels for the whole study 

period of 16 weeks. We then looked a posteriori to determine if the NO2 or PM2.5 declines coincided with 

state-level emergency declarations.  

We also explored other measures, and found that, in most states, the declines in NO2 or PM2.5 occurred 

even before shelter-in-place orders and non-essential business closures (Figures S8 and S9). This 

highlights that economic activity and mobility were reduced even before these state measures were 

implemented (17).  

By estimating the maximum decline in the median pollutant concentrations following state-level emergency 

declaration, we found that the extreme measures taken during the pandemic decreased the weekly PM2.5 

average by up to 3.4 µg m-3 and the weekly NO2 average by up to 11 ppb. These values represent a 
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substantial fraction of the annual mean NAAQS values of 12 µg m-3 and 53 ppb, respectively. This suggests 

the significant potential to reduce NO2 concentrations by reducing mobile NO2 emissions, and PM2.5 

concentrations by reducing mobile sources, stationary sources, and fire-related emissions. For comparison, 

a recent study investigated the effect of lockdown in urban China, using difference-in-difference approach; 

they found a decline of 14 µg m-3 in locked-down cities compared to cities that did not implement a lockdown 

(25). The cities in that study had baseline PM2.5 concentrations four times higher than the safe limits set by 

the World Health Organization, which may have been partly responsible for a larger decline after lockdown 

compared to what we observed in the United States. 

Our study results support the effectiveness of state-level actions to reduce ambient levels of PM2.5 and NO2, 

and specifically, that restrictions on mobile sources of air pollution could decrease NO2 emissions even 

further in states where mobile sources constitute a larger proportion of annual emissions. In contrast, PM2.5 

concentration reduction may not be as easily achieved through mobile source emission restrictions alone, 

especially in states where stationary sources contribute more to air pollution. In states where changes in 

PM2.5 and NO2 exhibited opposite trends (one increased while the other decreased), lowering the emission 

of NO2, by decreasing mobile source emissions for example, may not necessarily decrease PM2.5 

concentrations.  

Study Limitations. We relied on state-level concentration averages and the 2014 emissions inventory. 

While our study would benefit greatly from a more recent emissions inventory (or fine spatial emissions 

estimates during the interventions), to our knowledge, such data is not currently available publicly. Trading 

finer spatial resolution in the monitoring data—not averaging to the state level—may reveal important sub-

state variability in lockdown impacts. Our approach also does not consider the spatial correlations between 

pollutant concentrations, which may help explain concentration changes in non-local pollutants such as 

PM2.5. Finally, data were available for 36 states for NO2 and 48 states for PM2.5, which limited the number 

of observations in the weighted regression model. 

Materials and Methods 

Data Acquisition 
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We gathered and harmonized data from several databases (Table S1). We obtained historical daily monitor 

data of PM2.5 and NO2 concentrations for January 1, 2015 to August 31, 2019 from the US EPA Air Quality 

System (26). We obtained current levels of these air pollutants for August 31, 2019 to April 23, 2020 from 

the EPA AirNow application programming interface (27). We aggregated weekly monitor data within each 

state. These data were available for 48 states for PM2.5 and 36 states for NO2. We obtained daily 

temperature, humidity, and precipitation data from the University of Idaho’s GRIDMET project, which were 

then aggregated to the state level using Google Earth Engine (28).  

We obtained state-level source emissions totals from the National Emissions Inventory (29), and gathered 

information on population density and geographic region classification of the states from the United States 

Census Bureau (30, 31). Finally, we accessed the COVID-19 US State Policy Database (32) to extract 

information regarding the date of the COVID-19 state-level declaration of emergency, shelter-in-place 

orders and non-essential business closures for each state. 

Statistical Methods 

Counterfactual forecasting of air pollution levels starting January 1, 2020 

We conducted the following analyses separately for PM2.5 and NO2 for each state.  

1. We fitted SARIMA models (33–35) to the historical data on weekly state-level air pollution levels 

(from January 1, 2015 to December 31, 2019).  

2. We predicted the air pollution counterfactual levels (absent the pandemic) during a 16-week period 

from January 01, 2020 to April 23, 2020, and then took the average across bootstrap iteration (see 

point 4 below):  (𝐶𝑖
𝑝𝑟𝑒𝑑

,  i = 1,2, … ,16) 

3. We estimated the weekly difference between the predicted and the observed values for this 16-

week period: ( ∆i= 𝐶𝑖
𝑜𝑏𝑠 − 𝐶𝑖

𝑝𝑟𝑒𝑑
 , i = 1,2, … ,16) 

4. We quantified the statistical uncertainty of these estimated differences by bootstrap aggregating of 

SARIMA results (“bagged SARIMA”).  

SARIMA models are autoregressive models often used to forecast time series where future observations 

are correlated with past observations (34, 35). They have the advantage of accounting for the trend and 
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seasonality of the data. We also accounted for the effect of weather by including temperature, precipitation, 

and humidity as covariates in the SARIMA models. The basis of the SARIMA model is a linear regression 

of a response variable Y at time t against the past values (Yt-1, Yt-2, ….) of Y and the past forecast errors 

(ɛt, ɛt-1, …). A detailed example of this analysis for NO2 in California is provided in the supplementary 

materials. For each state, we created 1,000 time series bootstraps using Box-Cox and Loess-based 

decomposition (33). As shown in the supplementary materials, 1,000 bootstraps captured the original time 

series well (Figure S1) and allowed for reasonable computation time. We then fitted a new SARIMA model 

to each bootstrapped time series, providing new counterfactual predictions for the 16-week period. We 

averaged these predictions over the 1,000 bootstraps to generate a mean counterfactual prediction and 

confidence intervals for expected pollutant concentrations for each week (absent the pandemic). Finally, 

separately for each state, we calculated weekly deviations between the observed levels and the average 

of the counterfactual predictions (details in supplementary materials), as defined below. 

∆i= 𝐶𝑖
𝑜𝑏𝑠 − 𝐶𝑖

𝑝𝑟𝑒𝑑
 i = 1,2, … ,16        (1) 

where, 𝐶𝑖
𝑜𝑏𝑠 and 𝐶𝑖

𝑝𝑟𝑒𝑑
 are the observed and the average of the counterfactual predictions for week i 

respectively. We used the R package auto.arima to select model coefficients with the best predictive 

capability based on bias-corrected Akaike Information Criterion (AIC) (36, 37) and then used the mean 

absolute scaled error (MASE) to evaluate the fit of the model.  

We decided to start the counterfactual forecasting in January 2020 to allow for the identification of the time 

point when these counterfactual predictions began deviating from observed concentrations. We then 

compared the onset of this deviation to the date of COVID-19 declaration of a state of emergency for each 

state. We took this approach because fitting the SARIMA model using data until the date of a specific state 

intervention and predicting for the period following the state intervention would not allow for the assessment 

of whether the discrepancy between predicted and observed air pollution concentrations was attributable 

to the state intervention or the model’s poor predictive capability. 

 

Model evaluation 
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In the supplementary material, we summarize information regarding the model evaluation. We found that 

MASE for the fitted models was less than 1 for each pollutant in each state, indicating that the SARIMA 

model outperformed one-step naïve forecasts (Figure S6).  

Regression modeling to identify state-level factors contributing to heterogeneity in the air pollution 

declines across states 

For each state and for each of the two pollutants (PM2.5 and NO2), we estimated the parameter Δ denoting 

the change in pollutant concentrations following the state intervention by calculating: 

Δ = Δbefore − Δ𝑎𝑓𝑡𝑒𝑟        (2) 

Where ∆𝑏𝑒𝑓𝑜𝑟𝑒  and ∆𝑎𝑓𝑡𝑒𝑟 denote the median of deviations between the weekly observed and 

counterfactuals before and after the date of the declaration of the state of emergency obtained from 

equation 1. We then fitted a weighted linear regression model with the estimated Δ as the outcome. We 

used the following independent variables: the proportion of emissions from fire sources, stationary sources, 

and mobile sources; population density; and region of the state.   

Metric for comparison of pattern of change in NO2 and PM2.5 

To identify the states with the most pronounced discrepancy between the pattern of change in PM2.5 and 

NO2, we calculated the ratio (ρ), defined as:  

ρ = Δ𝑁𝑂2
/Δ𝑃𝑀2.5

         (3) 

If ρ < 0, it implies that the two pollutants changed in opposite directions (i.e., one increased while the other 

decreased), and the larger the magnitude of ρ, the larger the discrepancy between the pollutants’ patterns 

of change.   
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Figures and Tables 

 

 Figure 1. (a) Weekly deviations between observed NO2 concentrations and counterfactual predictions (e.g., 

absent the pandemic) for each state. The counterfactual predictions were made for 16 weeks from January 1 

to April 23, 2020. The blue vertical line marks the date of the declaration of a state of emergency in each 

state. (b) Boxplots of the weekly deviations for the weeks before (pink) and for the weeks after (blue) the 

date of the declaration of a state of emergency in each state.  

(a) 

(b) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.04.20168237doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.04.20168237
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

 

(a) 

(b) 

Figure 2.  (a) Weekly deviations between observed PM2.5 concentrations and counterfactual predictions (e.g., 

absent the pandemic) for each state. The predictions were made for 16 weeks from January 1 to April 23, 

2020. The blue vertical line marks the date of the declaration of a state of emergency in each state. (b) 

Boxplots of the weekly deviations for the weeks before (pink) and for the weeks after (blue) the date of the 

declaration of a state of emergency in each state.  

 

(a) Difference between observed PM2.5 concentrations and counterfactual concentrations predicted by 

SARIMA models for each state. The predictions were made for 16 weeks from January to April 2020. The blue 

vertical line marks the date of the declaration of a state of emergency in each state. (b) Boxplots of these 

weekly differences for the weeks before and for the weeks after the date of date of the declaration of a state 

of emergency in each state.  
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Figure 3. Median change in in PM2.5 following the state-level emergency declaration for each state ( ). A 

negative estimated value of  indicates that air pollution levels declined as a result of the state-level 

emergency declaration.   
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Figure 4. Ratio of the estimated   for NO2 divided by the estimated  for PM2.5 (ρ). A negative ratio implies that the 

change in NO2 following the declaration of the state of emergency was in the opposite direction of the corresponding 

changes for PM2.5 (i.e., one pollutant increased while the other decreased). For example, in KY, we found a decline in 

NO2 but an increase in PM2.5 following the state-level emergency declaration. 
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Table 1. Estimated coefficients, 95% confidence intervals (CI) and P-values for variables included in the 

weighted linear regression analysis. The categorical variable Region refers to the geographical regions of 

the United States and has four categories as defined by the US Census, Region 1: Northeast, Region 2: 

Midwest, Region 3: South and Region 4: West, and the corresponding coefficients are reported using 

Region 1 as reference. 

 

  

 NO2 change PM2.5 change 

β 95% CI P-value β 95% CI P-value 

Fire 1.089 (-0.903,3.082) 0.27 1.065 (0.030, 2.1) 0.04 

Mobile 1.655 (0.131, 3.178) 0.03 1.240 (0.29, 2.19) 0.01 

Stationary 1.063 (-0.469,2.596) 0.17 0.886 (0.012, 1.760) 0.05 

Population density 0.000 (-0.003,0.002) 0.72 -0.001 (-0.002,.0003) 0.18 

Region 2 -2.883 (-4.485, -1.282) 0.00 -1.147 (-1.933, -0.360) 0.01 

Region 3 -3.310 (-5.198, -1.423) 0.00 -2.248 (-2.907, -1.589) 0.00 

Region 4 -0.748 (-3.212, 1.716) 0.54 0.095 (-0.913, 1.103) 0.85 
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Supplementary Information 

Table S1. Publicly available data sources used in the analysis. 

 

 

 

Data  Source 

Daily monitor data for PM2.5 and NO2 emissions 
from January 1, 2015 to August 31, 2019 

US Environmental Protection Agency Air Quality 
System (26) 

County-level daily data for PM2.5 and NO2 
emissions after August 31, 2019 

EPA AirNow (27) 

Daily temperature, humidity, and precipitation 
for all states 

University of Idaho’s GRIDMET project (28) 
aggregated to county from 4km x 4km rasters 

State-level source emissions totals  National emissions inventory (29) 

State population density and regions  2010 Census data (30, 31) 

Timing of state interventions COVID-19 US state policy database (32) 
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SARIMA analysis for NO2
 concentrations in California  

This section describes the step-by-step time series analysis for counterfactual prediction of NO2 in 

California to illustrate the details of our approach. 

Figure S1 (a) shows raw data for daily average NO2 levels for five years (January 1, 2015 to December 

12, 2019). For our model, we performed weekly averages resulting in 261 data points for the five-year 

period, one time point for each week (Figure S1 (b)). 

First, we created 1,000 bootstrapped time series from the weekly averaged training data using Box-Cox 

and Loess based decomposition.(33) Figure S2 shows a plot of 95% CI of these bootstraps. 

Next, we fit a SARIMA model to each of these bootstrapped time series, adjusting for meteorological factors, 

namely temperature, precipitation, and humidity. The average of the fitted values of the model is shown in 

Figure S3 along with 95% CI. We found that the model fits the data well with a mean absolute scaled error 

Figure S1. (a) Time series data for daily average NO2 levels for California for a five-year period. (b) 

Weekly averages of data in (a) used for training the SARIMA model. 
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(MASE) = 0.8. Subsequently, we used the 1,000 fitted models to make counterfactual forecasts of weekly 

averages for 16 weeks in 2020 (January to April). Figure S4 shows the average predictions from the 1,000 

models and the corresponding 95% CI. A comparison of the forecasts of the observed data shows that the 

NO2 levels begin to deviate from the predictions at about 10 weeks. 

Figure S2. Time series data of weekly averages of NO2 levels in California (black line) with the confidence 
intervals of the 1,000 generated bootstraps (shaded area). 

Figure S3. Average of the fitted values from 1,000 SARIMA models (red), corresponding 95% CI (shaded area), and 

observed data (black).  
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Finally, we calculated the difference between the average of the fitted predictions and the observed data 

(Figure S5). We found that the NO2 levels start deviating from our forecasts at the same time as the state 

of emergency was declared in California. The analysis described above was performed for each state and 

for PM2.5 and NO2. 

Figure S5. The weekly deviations between actual and predicted NO2 levels (ppb) for 16 weeks in 2020. The blue 

line corresponds to the day of declaration of a state of emergency in California. 

Figure S4. Average of predictions from 1,000 SARIMA models for 16 weeks in 2020 (red), corresponding 95% CI (shaded 

area), and observed data (black).  
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Model Evaluation 

Figure S6 shows the MASE distribution for all fitted models.  

 

 

  

(a) (b)

Figure S6. Mean absolute scaled error (MASE) for fitted models for all states for (a) NO2 and (b) PM2.5. 
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National level pollutant emissions 

 

 

  

Table S2. Annual PM2.5 and NO2 emissions (in tons) by emission source in the continental United States 
in 2014.(29) 

Sources 
Emission (Tons) 

NO2 PM2.5 

Stationary 4,649,676 (34.8%) 3,292,221 (61.4%) 

Mobile 7,513,708 (56.2%) 336,554 (6.3%) 

Fire 291,213 (2.2%) 1,730,360 (32.3%) 

Biogenics 903,124 (6.8%) 0 (0.0%) 
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Tests for statistical significance in decrease in pollutant levels 

Table S3. P-values obtained from Mann-Whitney test comparing the deviation from predicted values before 
versus after the declaration of a state of emergence in each state. 

State P-value  State P-value 

AZ < 0.001  KY 0.005 

CA < 0.001  MO 0.007 

CT < 0.001  OK 0.007 

MA < 0.001  WI 0.008 

NV < 0.001  IN 0.011 

NM < 0.001  IA 0.011 

PA < 0.001  SC 0.019 

RI < 0.001  MI 0.021 

UT < 0.001  OR 0.021 

VT < 0.001  KS 0.028 

VA < 0.001  OH 0.028 

NJ 0.001  MN 0.057 

MS 0.002  WA 0.071 

NC 0.002  CO 0.074 

ND 0.002  GA 0.09 

ID 0.003  WY 0.09 

ME 0.004  MT 0.356 

MD 0.004  FL 0.604 
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Figure S7. States with a statistically significant difference (P < 0.05) in deviations from predicted values 
before versus after the declaration of a state of emergency are highlighted in blue. 
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Figure S8. Weekly deviations between observed NO2 concentrations and counterfactual predictions (e.g., 
absent the pandemic) for each state. The predictions were made for 16 weeks from January 1 to April 23, 
2020. The blue, green, and grey vertical lines mark the dates corresponding to the declaration of a state of 
emergency, non-essential business closures, and shelter-in-place/stay-at-home orders in each state. 
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Figure S9. Weekly deviations between observed PM2.5 concentrations and counterfactual predictions (e.g., 
absent the pandemic) for each state. The predictions were made for 16 weeks from January 1 to April 23, 
2020. The blue, green, and grey vertical lines mark the dates corresponding to the declaration of a state of 
emergency, non-essential business closures, and shelter-in-place/stay-at-home orders in each state. 
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