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ABSTRACT 
 
Underreporting of COVID-19 cases and deaths is a hindrance to correctly modeling and 
monitoring the pandemic. This is primarily due to limited testing, lack of reporting infrastructure 
and a large number of asymptomatic infections. In addition, diagnostic tests (RT-PCR tests for 
detecting current infection) and serological antibody tests for IgG (to assess past infections) are 
imperfect. In particular, the diagnostic tests have a high false negative rate. Epidemiologic models 
with a latent compartment for unascertained infections like the Susceptible-Exposed-Infected-
Removed (SEIR) models can provide predictions for unreported cases and deaths under certain 
assumptions. Typically, the number of unascertained cases is unobserved and thus we cannot 
validate these estimates for a real study except for simulation studies. Population-based 
seroprevalence studies can provide a rough estimate of the total number of infections and help us 
check epidemiologic model projections.  In this paper, we develop a method to account for high 
false negative rates in RT-PCR in an extension to the classic SEIR model. We apply this method 
to Delhi, the national capital region of India, with a population of 19.8 million and a COVID-19 
hotspot of the country, obtaining estimates of underreporting factor for cases at 34-53 times and 
that for deaths at 8-13 times. Based on a recently released serological survey for Delhi with an 
estimated 22.86% seroprevalence, we compute adjusted estimates of the true number of infections 
reported by the survey (after accounting for misclassification of the antibody test results) which is 
largely consistent with the model outputs, yielding an underreporting factor for cases from 30-42. 
Together with the model and the serosurvey, this implies approximately 96-98% cases in Delhi 
remained unreported and whereas only 109,140 cases were reported on July 10, the true number 
of infections varied somewhere between 4.4-4.6 million across different estimates. While repeated 
serological monitoring is resource intensive, model-based adjustments, run with the most up to 
date data, can provide a viable option to keep track of the unreported cases and deaths and gauge 
the true extent of transmission of this insidious virus. 
 
INTRODUCTION 
 
COVID-19 was first diagnosed in Wuhan, China in December 2019 and was quickly declared a 
pandemic by the World Health Organization on March 111. The first case in India was declared on 
January 30, and as of July 28, there have been 1,531,783 cases and 34,224 deaths reported2. India 
responded quickly, instituting a nationwide lockdown on March 25, when there were only 657 
cases and 11 deaths2-3. However, given the high rate of asymptomatic individuals and limited and 
imperfect diagnostic testing, it is unclear how many people have actually been infected.  
 
Classical epidemiologic models, like a susceptible – exposed – infected – removed (SEIR) 
compartmental model, have been used to predict the growth of the COVID-19 pandemic. For 
example, a modification of the standard SEIR model – which accounts for pre-symptomatic 
infectiousness, time-varying ascertainment rates, transmission rates and population movements – 
applied on data from Wuhan, China, identified that the outbreak had high covertness and high 
transmissibility4. They estimated that 87% (with a lower bound of 53%) of the infections in Wuhan 
before March 8 were unascertained4. However, traditional models, including the one used in this 
paper, do not take into account the underreporting and potential misclassification via imperfect 
testing. 
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In the context of identification of cases, there are two classes of tests that are being discussed in 
the literature: diagnostic tests and antibody tests. A diagnostic test (typically an RT-PCR test) is 
used to identify the presence of SARS-CoV-2, indicating an active infection5. An antibody test, 
i.e., a serology test, looks for the presence of antibodies, the body’s immune response to fight off 
SARS-CoV-2, indicating a past infection6. Figure 1 exhibits a timeline in terms of when these tests 
are done during the time course of an infection. Due to a large number of asymptomatic cases and 
limited number of tests, many infections do not get detected. Population-based seroprevalence 
surveys, therefore, give us an idea about the “true number of infections” including reported and 
unreported cases, and consequently, the ascertainment rate6. Thus, adjusted estimates of total 
number of cases and ascertainment rates based on serological surveys when available provide an 
option to validate model-based estimates of unreported cases and underreporting factors, which 
would usually be impossible to validate (except for a simulation study) since these numbers are 
not observable the real data. 
 
In an attempt to understand the spread of the virus in Delhi, the national capital region of India and 
one of the hotspots of COVID-19 in the country, the National Centre for Disease Control (NCDC) 
in India performed a serological survey in Delhi. While limited on reported details, the Delhi 
Serology Study collected 21,387 random samples across 11 districts in Delhi between June 27 and 
July 10 and found COVID-19 antibodies present in 22.86% of samples7-9. A simple proportional 
estimate would tell us that Delhi, with approximately 19.8 million people, had a total number of 
cases standing somewhere around 4.6 Million by July 10. This contrasts sharply both with the 
109,140 cumulative cases (3,300 total deaths) reported in Delhi as of July 10, which represents 
roughly 0.55% of Delhi’s population, indicates that roughly, only 2.4% of cases are being detected 
(underreporting factor of about 42), and also implies that the infection fatality rate (IFR) for Delhi 
is of the order of 0.07% or 717 per million. This IFR seems low compared to estimates worldwide10 
and as such it may be reasonable to argue that COVID related deaths are also possibly unreported, 
or the cause of death misclassified. The doubt regarding death data is further substantiated as a 
very small fraction of deaths in India are medically reported11 and the IFR estimates for SARS-
CoV-2 from other studies in the world10 appear to be higher than influenza (infection fatality rate 
of influenza, as of 2018-19, is at 961 per million or around 0.1%)12 
 
Both diagnostic and antibody tests suffer from the issue of false negatives and false positives, and 
depending on which test is being talked about, one or the other of these errors are more crucial. 
For the RT-PCR test, false negatives are more worrisome since that means allowing an infected 
person to go about freely, potentially spreading the virus around. Similarly, we worry about the 
false positives of an antibody test more, since it gives the false impression that the person has been 
infected in the past, gained immunity, and is unlikely to be infected again. The RT-PCR test is 
quoted to have a high false negative rate, ranging from 15-30% (i.e., low sensitivity, 85-70%), and 
a low false positive rate around 1-4% (i.e., high specificity, 99-96%)13. The antibody test assays 
are more precise - the commercial assays have sensitivity around 97.6% and specificity of 99.3% 
(DiaSorin) at about 15 days after infection14. The ELISA assay used in the Delhi serosurvey is a 
customized assay, about which no official information was not publicly released, but some 
discussions on imperfections of the test are available in public media domain15. In light of these 
imperfections and the high rate of asymptomatic COVID-19 cases, we develop an extension of a 
standard SEIR model incorporating misclassification due to imperfect diagnostic testing to predict 
both the number of unreported cases and deaths and to estimate the rate at which COVID-19 cases 
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are being underreported. An alternative approach that has been discussed in contemporary 
literature is to model test activities in a way such that symptomatic individuals are identified and 
successfully isolated with a given average delay from the onset of symptoms16. This approach can 
handle both real-time RT-PCR tests and lab-based sero-surveillance. 
 
Because the Delhi Serology Study provides a seroprevalence estimate, this is a unique opportunity 
to help validate predictions for latent unreported infections for a SEIR model. We perform 
adjustments of the reported case counts (and hence corresponding metrics such as the 
underreporting factor, infection-fatality rate and case-fatality rate) under different sensitivity and 
specificity assumptions for the diagnostic and antibody tests and potential underreporting of the 
death counts, and validate the model-based estimates of the extent of underreporting to those 
obtained from the seroprevalence-based calculations. We apply this framework to Delhi, using 
reported COVID-19 data from covid19india.org2. This framework can be adapted to and applied 
outside of Delhi and in other contexts where imperfect and limited testing exists. 
 
RESULTS 
 
Extended SEIR Model Adjusted for Misclassification 
 
Under low (0.7), medium (0.85) and perfect (1) sensitivity, and perfect (1) specificity assumptions 
for the RT-PCR diagnostic test, we preform predictions of total (reported and unreported) cases 
and deaths for Delhi using the proposed extended SEIR model.  Using data till June 30, this model 
estimates 4.8 million cases and 33,165 deaths on July 10 if we assume the RT-PCR test has a 
sensitivity of 0.85, and those predicted counts become 4.2 million and 28,499, respectively, if the 
sensitivity is assumed to be 1.0. Compare to the observed case and death counts of 109,140 and 
3,300 reported in Delhi as of July 10.2 The model predictions under the different scenarios 
considered and the performances in terms of fitting the daily observed case and death counts are 
summarized in Figures 2-3. Looking at the ratio of predicted total number of cases and the 
predicted number of reported cases on July 10, it appears that the underreporting factor for cases 
reported by the model is within the range of 34-53 and the same for the deaths is between 8-13 
(Table 1 and Figure 4). This implies according to the model 97-98% Delhi’s cases remain 
undetected.  
 
Naïve Corrections to Reported Test Results using Known Misclassification Rates for Tests 
 
Since the unreported number of cases and subsequently, the underreporting factor, are not part of 
the observed data and therefore cannot directly be validated, we validate these estimates using 
adjustments regarding the imperfection of the tests and estimated number of true infections 
predicted by the serosurvey data. We also consider the hypothetical scenario considering 10-fold 
underreporting of deaths, as suggested by the model outputs. However, we are not able to perform 
any validation for the estimated underreporting factor for deaths as we do not have estimate of true 
death rates or excess deaths. 
 
Using varying (low to perfect) sensitivities and specificities for the diagnostic and antibody tests, 
we estimate that the true case count in Delhi as of July 10 lies between 4.4 and 4.6 million, which 
represents 30 to 42 times the number of reported cases (Table 2), these estimates being greatly in 
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agreement with the model outputs, as reported in the previous subsection. This indicates 96-97% 
cases in Delhi were underreported.  
 
Case fatality rate (CFR) and Infection fatality rate (IFR): The sensitivity and specificity of the 

diagnostic test impact our estimate of the case-fatality rate (
#"#$%&'

#(#)*(%#"	,$'#'
), but not the infection-

fatality rate (
#"#$%&'

#%(-#	./0#,%.*/'
). We estimate that the CFR lies between 2.24-3.02%. On the other 

hand, the sensitivity and specificity of the antibody test impact our estimates of the IFR. We 
estimate that the IFR lies between 0.07-0.08% based on the reported death counts. If we consider 
a 10-fold underreporting in death counts, the infection-fatality rate estimate increases to 0.7-0.8% 
(Table 2).  
 
DISCUSSION 
 
We  developed  an  extension  of  the  standard  SEIR  compartmental  model  to  adjust  for  the 
misclassifications due to imperfect diagnostic testing. Applying our model on publicly available 
infection and  death  data  for  Delhi,  we  estimated  the  underreporting  factor  for  cases  to  be 
somewhere between 34 and 53 and that for deaths to be somewhere between 8 and 13 on July 10. 
Further,  using  adjustments  under  different  imperfection  scenarios  for  the  diagnostic  and 
antibody tests, we came up with adjusted estimates of the underreporting factor which agreed 
greatly with and validated those estimated from the model. Having an accurate idea about  the 
underreporting  factor and the extent of spread is extremely  helpful  in  terms  of  tracking  the  
growth  of  the  pandemic and determining policies. Repeated  serological  surveys to  track  the  
ever-evolving  seroconversion  scenario are often not viable options due to being expensive both 
in terms of cost, resources and time, the model estimates, updated regularly with new incoming 
data, provide an option to keep track of the underreporting factor and unreported cases and deaths. 
 
The Delhi Serology Study is one of several COVID-19 serology studies that have been conducted 
across the world (for a summary of such studies, please refer to Table 3)8, 17-28. The seroprevalence 
found in the Delhi Serology Study (22.86%) is the highest among these studies but is similar to 
that found in New York City (22.70%), another large, densely populated area26. This indicates that 
Delhi is definitely on the higher side in terms of seroprevalence, even within worldwide epicenters 
and hotspots of COVID-19. Another serosurvey conducted in the city of Mumbai, India found 
strikingly different seroprevalences in slum (57.8%) vs non-slum areas (16%), the overall 
estimated seroprevalence also being staggeringly high (40.5%) compared to other studies across 
the world (Table 3)19. 
 
Extensive and long-drawn discussions have already taken place in relation to potential community 
transmission of COVID-19 in India. While even without a serological survey it is possible to 
comment on this based on other information available in terms of the number of tests and test 
positive rates, our results confirm that at least for Delhi, there is undoubtedly community 
transmission with regards to the classical definition of the term29. With more than 500,000 active 
cases in India and more than 10,000 active cases in Delhi as of July 28, many of the cases are 
potentially not being tracked to an identifiable source of infection. Along these lines, there have 
been debates about achieving herd immunity, and estimated range for the herd immunity threshold 
lies within 44-73% (based on worldwide estimated basic reproduction number of 1.8-3.8)30-31. 
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Both for Delhi and more so possibly for other parts of India, herd immunity will potentially take 
some time to be attained and is definitely not a panacea we can rely on. Even based on the IFR 
obtained without adjusting for potential death underreporting and trusting the reported death 
counts (Table 2), if 50% people in India, with a population of 1.38 billion, get infected (a concept 
that many proponents of herd immunity have suggested), it would imply an estimated 550,000 
deaths, which skyrockets to an estimate of a staggering 5.5 million deaths if we believe the 
estimated underreporting factor from death from our proposed model. 
 
There are several factors that we need to take into account about the Delhi Serological Study and 
consequently, these factors also shape the potential implications of our results. A large set of 
important information isn’t well-known or wasn’t publicly reported in the NCDC serology survey, 
such as the response and positivity rates stratified by age, sex, job type, district; sampling design; 
sensitivity or specificity of the customized assay – and so on. Releasing a single magic number 
without a complete report is definitely not the best practice for science and policy and is 
dissatisfying and potentially misleading. Further, we do not know if individuals with antibodies 
are protected from re-infection or how long this protection lasts32. We need to know more about 
the longevity of the antibody response and the levels of it needed to protect us from re-infections, 
and also about the contagiousness and potential clinical severity of a person with the antibody. 
 
Even though the appearance and spread of COVID-19 has taken the entire world by a storm, a 
large number of examples from all across the world clearly depict that with extensive testing, 
contact tracing, use of masks, hand hygiene and social distancing we can change the narrative and 
course of this virus. For example,  Delhi has seen tremendous success in turning the corner of the 
virus curve with the reproduction number at 0.74 (July 28) and the R staying below unity for about 
a month (Figures 5-6). Rapid and significant scientific advancements in both clinical and public 
health aspects of the disease have been made over the past few months33, and focused and cautious 
tracking of the pandemic with informed policy decisions are going to be as helpful as ever at this 
point. In that line, our analytical framework of integrating diagnostic testing imperfections in 
context of estimating unreported cases using the extended SEIR model and validating against 
seroprevalence estimates will hopefully prove to be useful for other case-studies. 
 
METHODS 
 
Extended SEIR Model Adjusted for Misclassification 
 
We developed an extension of a standard SEIR model. In this model, the susceptible individuals 
(S) become exposed (E) when they are infected, but they have not started infecting the other 
people. After a latency period, exposed individuals are able to infect other susceptible individuals 
and are either untested (U) with probability 1 or tested (T) with probability 1 − 1. Tested 
individuals enter either the false negative compartment (F) with probability 4 or the (true) positive 
compartment with probability 1 − 4. Individuals who are in the untested and the false negative 
compartments are considered unreported COVID-19 cases and enter either the recovered 
unreported (RU) or death unreported (DU) compartments. Similarly, those who tested positive 
move to either a recovered reported (RR) or death reported (DR) compartment. Figure 7 represents 
the SEIR model schematic. The corresponding system of differential equations are presented 
below. The parameters and their values used are described in Table 4. 
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Here, `(A) denotes the number of individuals in the compartment of interest ` at time A. In this 
setting, both 9 and 1 are time-varying parameters which are estimated using the Metropolis-
Hastings MCMC method34. To estimate the parameters, we first need to be able to solve the 
differential equations, which is difficult to perform in this continuous-time setting. It is also worth 
noting that we do not require the values of the variables for each time point, we only need their 
values at discrete time steps, i.e., for each day. Thus, we approximate the above set of differential 
equations by a set of recurrence relations. For any compartment ̀ , the instantaneous rate of change 

with respect to time A (given by 
6a

6%
) is approximated by the difference between the counts of that 

compartment on the (A + 1)%& day and the A%& day, that is `(A + 1) − `(A). Starting with an initial 
value for each of the compartments on the Day 1 and using the discrete-time recurrence relations, 
we can then obtain the solutions of our interest. Some examples of these discrete-time recurrence 
relations are presented below. 
 

1. N(A + 1) − N(A) = 9
7(%)

<
=>?@(A) + >CD(A) + E(A)F −

K(%)

LM
− HN(A), 
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−

C(%)

RSLT
− UPH,	D(A) − HD(A),	

3. @(A + 1) − @(A) = ((PQ0)K(%)
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−

?(%)

LT
− H,@(A) − H@(A), 

4. E(A + 1) − E(A) = (0K(%)

LM
−

RXW(%)

LT
−

YZ	W(%)

[X
− HE(A). 

 
The rest of the differential equations can be similarly approximated by a discrete-time recurrence 
relation. These parameters are estimated using training data from Delhi from March 15 to June 30. 
The training data to divided into 7 periods, in accordance with the lockdown and unlock procedures 
employed by the government of India, as described in Table 5. Using these, we performed our 
predictions for the dates ranging from June 1 through July 26. 
 
Naïve Corrections to Reported Test Results using Known Misclassification Rates 
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Let us set up a few notations first. Let N = population size, X = number of true cases in the 
population (hence N – X = number of non-cases in the population), T = number of people tested, 
S = number of true cases tested (hence T – S = number of non-cases tested, X – S = number of true 
cases not tested, N – X – T + S = number of non-cases not tested), P = number of positive tests 
(also, therefore, cumulative number of reported cases, hence T – P = number of negative tests). 
Note that X and S are the only two unknowns in this setting. Also, let us assume that the sensitivity 
of the test of interest is > and the specificity of the same is 9. With that, we can set up the following 
equation, because there are two ways a test can be positive, as can be seen in Figure 8. 
 

@ = I × > + (d − I) × (1 − 9) ⟹
@
d
=
I
d
× > + f1 −

I
d
g × (1 − 9). 

 
Adjusting the terms, we get the following expression for I. 
 

I = d ×

@
d + 9 − 1

> + 9 − 1
. 

 
Assuming that the proportion of cases among those tested stays the same as the original population 
(random and hence homogenous testing), we can replace I by 

ha

<
, which will lead to the following 

updated equation. 
 

@
d
=
`
i
× > + f1 −

`
i
g × (1 − 9). 

 
Solving this, we get the following expression for `. 
 

` = i ×

@
d + 9 − 1

> + 9 − 1
. 

 
Thus, these two expressions give us, for a given set of > and 9 regarding a test, the corrected 
number of reported cases (I), and also the estimated number of true (reported + unreported) cases 
(`). For the computation of I, we use 

?

h
=

Pjk,Plj

mlm,Pjk
≈ 0.146, the test positive rate of the RT-PCR 

tests in Delhi as of July 102. For the computation of `, we use 
?

h
=

l,qqk

rP,sqm
≈ 0.229, the positive 

rate reported by the Delhi serological survey7-9. Once we get these two estimates, we can compute 
the adjusted underreporting factor as D^E =

a

7
. Also,  assuming that u denotes the cumulative 

number of deaths till a date of interest, we can compute the corrected versions of case fatality rate 
and infection fatality rate as vE^ =

L

7
 and wE^ =

L

a
, respectively. Further, if we want to adjust for 

a potential scenario where for every M deaths due to COVID-19, we observe 1 death (M-fold 
underreporting for deaths), we can update these estimates as vE^ =

xL

7y(xQP)L
 and wE^ =

xL

a
. We 

computed our adjusted CFR and IFR estimates for z = 10. Based on the data till July 10 from 
Delhi, we use u = 3,3002. We also used a population size of i = 1.98 × 10m. 
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A critical question here is the choice of > and 9 for the two tests to ensure our computations reflect 
adjustments made based on sensible and realistic scenarios. Based on previously reported 
sensitivity and specificity levels for the diagnostic test13, we used the combinations > = 9 =
1	({|14|}A	A|~A), > = 0.85	�ÄÅ	9 = 0.99, �ÄÅ	> = 0.7	�ÄÅ	9 = 0.99. The serological assay 
used by NCDC is a customized assay, for which we could not find any officially reported numbers. 
Hence, we referred to existing literature on standard serological assays14 and publicly available 
discussions on the Delhi serosurvey15, and decided to use the combinations of > = 9 =
1	({|14|}A	A|~A), > = 0.976	�ÄÅ	9 = 0.993, �ÄÅ	> = 0.92	�ÄÅ	9 = 0.97. 
 
CODE AVAILABILITY 
 
All our computational codes are available at covind19.org. 
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TABLES 
 
Table 1. Summary of extended SIR model results for Delhi. Predicted cumulative case and 
death counts and corresponding underreporting factors with respect to the observed data are 
presented for July 10. The specificity of the  RT- PCR test is assumed to be 1. The observed number 
of cumulative cases and deaths in Delhi on July 10 were taken to be 109,140 and 3,300 
respectively, according to covid19india.org. 
 

Sensitivity 
of RT-

PCR Test 

Predicted 
Reported 

Cases 

Predicted 
Total 
Cases 

Under-
reporting 
Factor for 

Cases 

Predicted 
Reported 

Deaths 

Predicted 
Total 

Deaths 

Under-
reporting 
Factor for 

Deaths 
0.7 119,920 6,318,663 52.6 3,386 43,978 12.9 
0.85 119,879 4,780,982 39.8 3,384 33,165 9.8 

1 119,603 4,164,568 34.8 3,376 28,499 8.4 
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Table 2. Summary of corrected number of cases, estimated underreporting factor, case-
fatality rate based on reported cases and infection-fatality rate across different testing 
scenarios. Population size of Delhi is collected from https://censusindia.gov.in/, and the testing, 
infection, recovery and fatality data are taken from https://covid19india.org/. 
 

  Antibody test (past infection)  

Diagnostic test Serology test  

RT-PCR Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity  

Specificity Sensitivity 1 1 0.993 0.976 0.97 0.92  

1 1 

4,526,217 4,527,984 4,418,221 Est. # true infections 

109,140 109,140 109,140 Corrected # reported 
cases 

41.5x 41.5x 40.5x URF 
0.0302 0.0302 0.0302 CFR 

0.0007 (0.0073) 0.0007 (0.0073) 0.0007 (0.0075) IFR (10x adj.) 

0.99 0.85 

4,526,217 4,527,984 4,418,221 Est. # true cases 
121,034 121,034 121,034 Corrected # reported 
37.4x 37.4x 36.5x URF 
0.0273 0.0273 0.0273 CFR 

0.0007 (0.0073) 0.0007 (0.0073) 0.0007 (0.0075) IFR (10x adj.) 

0.99 0.7 

4,526,217 4,527,984 4,418,221 Est. # true cases 
147,346 147,346 147,346 Corrected # reported 
30.7x 30.7x 30.0x URF 
0.0224 0.0224 0.0224 CFR 

0.0007 (0.0073) 0.0007 (0.0073) 0.0007 (0.0075) IFR (10x adj.) 
Abbrev: adj., adjusted; CFR, case-fatality rate; est., estimated; IFR, infection-fatality rate; URF, underreporting factor. 

Notes: The URF is the ratio of the estimated number of true cases and the corrected number of reported cases. For the IFR, we report the 
estimate if we adjusted for 10x death underreporting (10x adj.). 
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Table 3. Summary of COVID-19 seroprevalence studies. 
 

Location Study Design Sample Size Estimated Seroprevalence % (95% CI) Reference 

Hubei and Guangdong 
Provinces 
China 

Cohort and location-specific surveys 
(Healthcare workers and their relatives, 
hospital outpatients, factory workers, 
hotel staff). 

6,919 (Hospital settings) 
10,449 (Community settings) 

3.8 (2.6, 5.4)  Healthcare workers, Wuhan 
3.8 (2.2, 6.3)  Hotel staff members, Wuhan 
3.2 (1.6, 6.4)  Family members, Wuhan 

Xu et al. (2020) 
Nature Medicine 
doi: 10.1038/s41591-020-0949-6 

Essen 
Germany 

Prospective cross-sectional monocentric 
study recruiting healthcare workers from 
University Hospital Essen. 

316 1.6 Korth et al. (2020) 
Journal of Clinical Virology 
doi: 10.1016/j.jcv.2020.104437 

India Pilot survey in 83 districts across 21 
states. 

Unknown 0.73 overall 
1.09 urban 

The Indian Express (2020) 
url: 
https://indianexpress.com/article/explained/delh
i-serological-survey-shows-antibodies-in-23-
participants-what-does-this-mean-6516512/ 

Mumbai 
India 

Consent-based survey across three wards 
with high COVID-19 growth and 
proximity to hotspots. 

6,936 (Out of 8,800 invited) 40.5 overall 
57.8 slum areas 
16.0 non-slum areas 
 

The Indian Express (2020) 
url: 
https://indianexpress.com/article/explained/mu
mbais-serosurvey-what-it-shows-about-gender-
differences-in-infection-mortality-and-herd-
immunity-6529186/ 

Guilan Province 
Iran 

Population-based cluster random 
sampling through phone call invitations. 

552 (196 households) 0.22 (0.19, 0.26)  unadjusted 
0.33 (0.28, 0.39)  adjusted for imperfect testing 
0.21 (0.14, 0.29)  adjusted by population weights 

Shakiba et al. (2020) 
medRxiv 
doi: 10.1101/2020.04.26.20079244 

Kobe City 
Japan 

Cross-sectional study on hospital 
outpatients. 

1,000 3.3 (2.3, 4.6) Doi et al. (2020) 
medRxiv 
doi: 10.1101/2020.04.26.20079822 

Spain Two-stage random sampling of 
households stratified by province and 
municipality size. 

61,075 (Point-of-care test) 
51,958 (Immunoassay)  
(35,883 households) 

5.0 (4.7, 5.4)  point-of-care test 
4.6 (4.3, 5.0)  immunoassay 

Pollán et al. (2020) 
The Lancet 
doi: 10.1016/S0140-6736(20)31483-5 

Sweden (9 Regions) Consecutive weekly region-specific 
surveys. 

1,200 (Per week). 7.3  Stockholm 
4.2  Skåne 
3.7  Västra Götaland 

Public Health Agency Sweden (2020) 
url: https://www.folkhalsomyndigheten.se/ 
nyheter-och-press/nyhetsarkiv/2020/maj/ forsta-
resultaten-fran-pagaende- undersokning-av-
antikroppar-for-covid-19-virus/ 

Geneva 
Switzerland 

Series of 5 consecutive weekly 
serosurveys among randomly selected 
participants from a previous population-
representative survey, and their 
household members aged 5 years and 
older. 

2,766 (1,339 households; 341, 
469, 577, 604 and 775 samples 
respectively in weeks 1-5.) 

4.8 (2.4, 8.0)  week 1 
8.5 (5.9, 11.4)  week 2 
10.9 (7.9, 14.4)  week 3 
6.6 (4.3, 9.4)  week 4 
10.8 (8.2, 13.9)  week 5 

Stringhini et al. (2020) 
The Lancet 
doi: 10.1016/S0140-6736(20)31304-0 

LA County, California 
USA 

Invited enrollment, based on 
demographic match and geographical 
proximity to the testing centers. 

863 (Out of 1952 invited) 4.06 (2.84, 5.60)  unadjusted 
4.34 (2.76, 6.07)  adjusted for imperfect testing 

Sood et al. (2020) 
JAMA 
doi: 10.1001/jama.2020.8279 
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New York State 
USA 

Convenience sampling of New Yorkers 
attending 99 grocery stores across 26 
counties, containing 87.3% of the state's 
population, located all across the state. 

15,101 14.0 (13.3, 14.7)  overall 
22.7 (21.5, 24.0)  New York City 

Rosenberg et al. (2020) 
Annals of Epidemiology 
doi: 10.1016/j.annepidem.2020.06.004 

San Francisco Bay Area 
USA 

Cohort-based recruitment of non-COVID 
patients and blood donors. 

387 (Non-COVID patients) 
1,000 (Blood donors) 

0.26 (0.00, 0.76)  non-COVID patients 
0.10 (0.00, 0.56)  blood donors 

Ng et al. (2020) 
medRxiv 
doi: 10.1101/2020.05.19.20107482 

Santa Clara County, 
California 
USA 

Ad-based recruitment, matched on 
geographic location and demographics. 

3,330 1.5 (1.1, 2.0)  unadjusted 
1.2 (0.7, 1.8)  adjusted for imperfect testing 
2.8 (1.3, 4.7)  adjusted for county demographics 

Bendavid et al. (2020) 
medRxiv 
doi: 10.1101/2020.04.14.20062463 
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Table 4. Description of extended SEIR model parameters. 
 
Parameter Value Description 

! Time-varying Rate of infectious transmission by infected, tested individuals with false 
negative results. 

"# 0.5 Ratio of rate of spread of infection by tested positive patients to that by false 
negatives. "# < 1 represents the scenario where individuals who test 
positive are infecting susceptible individuals are a lower rate than infected 
individuals with false negative test results. 

"$ 0.7 Scaling factor for the rate of spread of infection by untested individuals. "$ 
is assumed to be < 1 as U mostly consists of asymptomatic or mildly 
symptomatic cases who are known to spread the disease at a much lower 
rate than those with higher levels of symptoms. 

%& 5.2 Incubation period (in days). 
%' 17.8 Means number of days until recovery for infected individuals. 
%( 0 Mean number of days for the test result to come after a person is tested. 

Under the assumption of instantaneous test results, this is taken to be zero. 
)* 0.0562 Death rate attributable to COVID-19 which is equivalent to inverse of the 

average number of days for death starting from the onset of disease times 
the probability of death of an infected individual. 

+, ) 3.95x10-5 Natural birth and death rates (assumed to be equal). 
- Time-varying Probability of being tested for infectious individuals. 
. 0.3, 0.15, 0 Probability of a false negative RT-PCR diagnostic test result. 

!/,
1
!1

 
0.6 (!/) 
0.7 (!1) 

Scaling factors for rate of recovery for undetected and false negative 
individuals respectively. Both !/ and !1 are assumed to be less than 1. It is 
assumed that the recovery rate is slower than the detected ones for the False 
Negative ones because they are not getting any hospital treatments. The 
condition of Untested individuals is not so severe as they consist of mostly 
asymptomatic people. So, they are assumed to recover faster than the 
Current Positive Ones. 

2/,
1
21

 
0.3 (2/) 
0.7 (21) 

Scaling factors for death rate for undetected and false negative individuals 
respectively. Both 2/ and 21 are assumed to be less than 1. Same as before, 
the death rate for False Negative ones are assumed to be higher than the 
Current detected Positive as they are not receiving proper treatment. While, 
for the Untested ones, the death rate is taken to be lesser because they are 
mostly asymptomatic. So, their probability of dying is much less. 
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Table 5. Training data periods according to interventions. 
 
Pre-lockdown March 15 – March 24 
Lockdown 1.0 March 25 – April 14 
Lockdown 2.0 April 15 – May 3 
Lockdown 3.0 May 4 – May 17 
Lockdown 4.0 May 18 – May 31 
Unlock 1.0 June 1 – June 30 (This period is divided into two parts: June 1 – June 

19 and June 20 – June 30, since there was a high increase in the 
number of tests on June 20.) 
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FIGURES 
 
Figure 1. Timeline of COVID-19 diagnostic and antibody tests with respect to the infection 
and immune response time frame. 
 

 
 
  

Infected, but will not 
test positive on RT-

PCR test
-a few days1-

Infected with
SARS-CoV-2

Serology (antibody) test detects 
past infection

-assumed to be at least several months3-

Test positive on RT-PCR 
test, used to detect an 

active infection
-generally a few weeks2-

Possible to test positive on 
both tests for a short, 

overlapping period
1 https://www.npr.org/sections/goatsandsoda/2020/05/31/865932474/should-i-get-tested-for-coronavirus-just-for-the-heck-of-it
2 https://wlos.com/news/news-13-investigates/how-long-does-it-take-to-test-negative-after-testing-positive-for-covid-19
3 Long, Q., Tang, X., Shi, Q. et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med(2020). https://doi.org/10.1038/s41591-020-0965-6



Figure 2. Bar plots of predicted reported and unreported daily cases from June 1 to July 26. 
Panels A, B and C depict the predictions under assumed sensitivity of the diagnostic test at 0.7, 
0.85 and 1, respectively. Panel D shows the consistency of the predictions with the observed data. 
The specificity of the diagnostic test is assumed to be 1. 
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Figure 3. Bar plots of predicted reported and unreported daily deaths from June 1 to July 
26. Panels A, B and C depict the predictions under assumed sensitivity of the diagnostic test at 0.7, 
0.85 and 1, respectively. Panel D shows the consistency of the predictions with the observed data. 
The specificity of the diagnostic test is assumed to be 1. 
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Figure 4. Summary of cumulative total (reported and unreported) cases and deaths for three 
different assumed values of specificity for the diagnostic test: 0.7, 0.85, 1. Panel A and B 
respectively summarize the cases and deaths, along with their reported observed counterparts. The 
specificity of the diagnostic test is assumed to be 1. 
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Figure 5. Observed daily COVID-19 case, recovery and fatality counts for Delhi during May 
1 – July 28. 
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Figure 6. Estimated time-varying R (and 95% posterior credible interval) for COVID-19 in 
Delhi. Computations were performed using the R package EpiEstim. 
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Figure 7. Diagram of model compartments and transmissions for the extended SEIR model. 
 

 
 
  



Figure 8. Diagram of testing decisions. Dark lines indicate the break-up of the population in 
terms of true infection status; green and red lines indicate (correct and incorrect, respectively) 
decisions based on testing procedure. Here, we have referred to the diagnostic test, and hence, the 
active infection status. Similar framework applies to the antibody test and the past infection status. 
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