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Abstract

In the present work, we outline a set of coarse-grain analyti-
cal models that can be used by decision-makers to bound the
potential impact of the COVID-19 pandemic on specific commu-
nities with known or estimated social contact structure and to
assess the effects of various non-pharmaceutical interventions
on slowing the progression of disease spread. This work pro-
vides a multi-dimensional view of the problem by examining
steady-state and dynamic disease spread using a network-based
approach. In addition, Bayesian-based estimation procedures
are used to provide a realistic assessment of the severity of out-
breaks based on estimates of the average and instantaneous ba-
sic reproduction number R0.
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1. Introduction1

Network structure plays an important role in disease spread.2

Most network models assume full mixing where all individu-3

als are equally likely to become infected. However, most real-4

world networks have vertex degree distributions that are highly5

nonuniform. In the sections that follow, we derive a mathemat-6

ical framework for determining both the steady-state and dy-7

namic disease spread on complex networks using the concept of8

bond percolation. The analysis borrows liberally from the work9

of Pastor-Satorras and Vespignani [1] and Newman [2, 3, 4, 5].10

Percolation theory is easily explained through analogy. Con-11

sider an old fashion coffee percolator consisting of two glass12

flasks, the lower flask for heating the water and the upper flask13
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for holding the coffee grounds. As water is heated in the lower14

flask, it begins to ascend through the tube connected to the up-15

per flask. Initially, the water penetrates only a small portion of16

the coffee grounds. Upon further heating, the water penetrates17

more of the coffee grounds. At some point, there is an abrupt18

transition where all of the grounds are saturated and convec-19

tive mixing occurs. Percolation implies the existence of a long20

path connecting points separated by a distance on the order21

of the network size (in this case, the layer of coffee grounds).22

For a pandemic, this long path connects individuals together23

into a large cluster. It turns out that percolation is a critical24

phenomenon; that is, the onset of percolation occurs rapidly.25

Most networks of sufficient complexity undergo phase tran-26

sitions, where small components (outbreaks) suddenly coalesce27

into a giant component (pandemic) that extends across the en-28

tire network when one or more critical parameters, such as dis-29

ease transmissibility are exceeded. Mean-field theory, a branch30

of statistical mechanics used to analyze physical systems with31

multiple components, can be used to characterize these regions32

[6]. The main idea is to replace all interactions on a component33

with an average or effective interaction. Insights into the be-34

havior of a system can, therefore, be obtained at relatively low35

computational cost.36

The flow chart in Fig. 1 outlines two analytical models suit-37

able for describing the steady-state and time-dependent (dy-38

namic) properties of disease progression on a social network.39

We present a third model that is used for estimating critical40

parameters (such as the basic reproduction number R0) from41

empirical outbreak case data. The steady-state model uses the42

theory of bond percolation to predict the outbreak size distri-43

bution prior to a pandemic, the size of the pandemic in terms44

of the proportion of affected individuals, and the risk of indi-45

vidual infection based on an individual’s contact network. We46

consider two types of non-pharmaceutical Interventions (NPIs)47

– uniform social distancing where a randomly selected portion48

of the population is sequestered and directed social distancing49

where individuals with the largest number of contacts are se-50

questered (which effectively targets super-spreaders). The dy-51

namic model uses a degree-based approximation to the Suscepti-52

ble, Infectious, or Recovered (SIR) model based on an approach53

outlined by Barthélémy and Pastor-Satorras [7]. We generalized54

the model to examine the effects of uniform social distancing,55

testing, and contact tracing on the proportion of susceptible56

individuals, infected individuals, outbreak cases, and the basic57
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reproduction number (R0) as a function of time. In addition,58

assessments of various NPIs, testing, and contact tracing pro-59

cedures can be determined in near real-time for both analytical60

and empirical networks derived from census data.61

The third model uses the degree-based SIR model and Bayesian62

estimation procedures to determine the average basic reproduc-63

tion number (R0) from tabulated outbreak cases at a state,64

county, and city-wide level. Additionally, we use a particle-65

based filter to determine the instantaneous R0 over time. To-66

gether, these estimates can be used to predict the proportional67

number of infections and outbreak cases over time. The an-68

alytical models shown in Fig. 1 provide an overview of the69

mathematical framework derived in the present work. In the70

materials and methods section we first outline the steady-state71

disease spread on social contact networks as a function of the72

degree distribution of the community and the transmissibility of73

the disease. We then present the extension of the framework to74

capture the dynamic properties of disease spread and the imple-75

mentation and lifting of NPIs. Next we introduce the Baysian-76

based estimation procedure for inferring network structure from77

empirical case data. In the results section we present examples78

for three different degree distributions and illustrate the differ-79

ent risk measures that can be derived from the mathematical80

framework. We also show how the Bayesian-based model can81

be used to predict cases and R0 for New York state using cases82

data collected by Johns Hopkins University [8]. We close with83

a brief discussion of the results and potential application of the84

framework.

Figure 1. Process Flow Diagram Detailing the Three Analytical
Models Used in this Study
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2. Materials and methods85

Throughout this section we use precise definitions of certain86

properties of epidemiological models based on Meyers et al.,87

Bettencourt et al. and Chowell et al. [9, 10, 11].88

• Transmissibility T is the average probability that an89

infectious individual will transmit the disease to a suscep-90

tible individual with whom they have contact91

• Critical Transmissibility Tc is the minimum transmis-92

sibility required for an outbreak to become a pandemic.93

Tc = 〈k〉
(〈k2〉−〈k〉) where 〈k〉 and 〈k2〉 are the mean and vari-94

ance of the degree distribution of the contact network.95

• Basic Reproduction Number R0 is the expected num-96

ber of cases directly generated by one case in the popu-97

lation of susceptible individuals. It can be shown to be98

equal to the ratio of transmissibility to the critical trans-99

missibility R0 = T/Tc.100

• The Instantaneous Reproduction Number R(t) =101

R0s(t)/N(t) where s(t) is the number of susceptible indi-102

viduals at time t and N(t) is the total population.103

Note that some studies refer to an effective reproductive number104

Re. In the definitions above, R0 depends on the degree distri-105

bution so there is no need to make this distinction. R0 and Re106

can be thought of as interchangeable terms.107

2.1. Steady-State Disease Spread in Social Networks108

Here we outline the procedure for characterizing steady-state109

disease spread on complex networks using bond percolation.110

The analysis is based on the work of Pastor-Satorras and Vespig-111

nani [1] and Newman [2, 3, 4, 5]. Generalizations to the theory112

are made to include both uniform and directed social distancing.113

Given the transmission rate ri,j between node i and node j114

of a network graph and the infection time τ , the transmissibility115

is:116

T = 1− (1− ri,jδt)τ/δt → 1− e−ri,jτ , (1)

as δt → 0. Typically, ri,j = r, where r and τ are independent117

random variables. The average transmissibility is then:118

T = 1−
∫∫

e−rτPr(r)Pτ (τ)dr dτ, (2)
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where Pr(r) and Pτ (τ) are the respective probability density119

functions (pdfs). For simplicity, it is assumed that Pr(r) =120

δ(r − r0) and Pτ (τ) = δ(τ − τ0) so that T = 1− e−r0τ0 .121

For a randomly chosen vertex, let pk denote the probability122

that this vertex has k edges. Define G0(x) as the generating123

function for the degree distribution of this vertex:124

G0(x) =
∞∑
k=0

pkx
k. (3)

This function is similar to the characteristic function; that is,125

given a sum ofN independent and identically-distributed (i. i. d.)126

random variables, the generating function is GN
0 (x).127

Three types of social networks are examined. The Erdös-128

Renyi network has a Poisson degree distribution of the form:129

pk = λke−λ/k!, (4)

where λ is the mean. The exponential network is used as a130

proxy for an urban network and has a degree distribution of the131

form:132

pk = (1− e−β)e−βk, (5)

with parameter β. The power-law (Barabási-Albert) network133

has a majority of small degree links with a small minority of134

large degree links representing super-spreaders and a degree dis-135

tribution of the form:136

pk = e−k/κ/kαLiα(e−1/κ), (6)

where α and κ are parameters and Liα(x) =
∑∞

k=1 x
k/kα is the137

poly-logarithm function.138

An important result by Feld is that the degree distribution139

of the first neighbor of a vertex is not the same as the degree140

distribution of vertices as a whole [12]. There is a greater chance141

that an edge will be connected to a vertex of high degree, in142

fact, in direct proportion to its degree. Let qk denote the degree143

distribution of a vertex at the end of a randomly chosen edge.144

Then:145

qk−1 = kpk/z, (7)

excluding the randomly-chosen edge, where z =
∑

k kpk. The146

corresponding generating function for this distribution is:147

G1(x) =
∞∑
k=0

qkx
k = G

′

0(x)/z, (8)
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where G
′
0(x) is the derivative of G0(x).148

The transmissibility along each edge is taken into account149

by interpreting T in Eq. (2) as a probability (0 ≤ T ≤ 1).150

The probability that m out k edges is active is binomially dis-151

tributed, so:152

G0(x;T ) =
∞∑
k=0

pk(1− T + xT )k = G0(1− T + xT ), (9)

where, similarly, G1(x;T ) = G1(1− T + xT ).153

2.1.1. Bond Percolation154

Most complex networks experience phase transitions where155

small components suddenly coalesce into a giant component156

that extends across the entire network. The phase transitions of157

water as a function of temperature and pressure are examples.158

These regions can be described using mean-field theory and the159

generating functions G0(x) and G1(x). In order to apply mean160

field theory, it must be assumed that any finite component of161

connected vertices has no closed loops [5]. It can be shown that162

the probability of closed loops is on the order of O(1/n), where163

n is the network size. As n → ∞, this means that all finite164

components have a tree-like (branching) structure.165

Small outbreaks (percolation clusters) can be characterized166

as follows. Let H1(x) denote the generating function of the size167

distribution of the clusters at the end of the randomly chosen168

edge. Referring to the diagram in Fig. 2, the aggregate size of a169

cluster is the sum of all the clusters emanating from each vertex.170

This is a correct interpretation because there are no closed loops.171

For a vertex forming two clusters, the generating function of the172

size distribution is H2
1 (x), since two i. i. d. clusters are summed173

together.174

Similarly, for a vertex forming n clusters, the generating175

function of the size distribution is Hn
1 (x). Therefore, in the176

limit of large network size:177

H1(x) = x

∞∑
k=0

qkH
k
1 (x) = xG1(H1(x)), (10)

where x pre-multiplying the above expression is the originating178

vertex and G1(x) is as defined in Eq. (8) [3]. Similarly, defin-179

ing H0(x) as the generating function of the size distribution of180

clusters for a randomly chosen vertex, then:181

H0(x) = x
∞∑
k=0

pkH
k
1 (x) = xG0(H1(x)). (11)
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Figure 2. Computing the size of percolation clusters using
mean-field theory

Modifying the above equations to include the transmissibility182

T :183

H1(x;T ) = xG1(H1(x;T );T )

H0(x;T ) = xG0(H1(x;T );T ). (12)

Equation (12) defines the bond percolation process and the anal-184

yses to follow.185

2.1.2. Small Outbreaks186

The critical transmissibility Tc leading to a pandemic (giant187

component) can be determined by computing the average size188

of small outbreaks (small components not associated with the189

pandemic). Since H0(x;T ) =
∑

k p
s
kx

k, where psk is the cluster190

size probability, the average size of the cluster is 〈c〉 =
∑

k kp
s
k =191

H
′
0(1;T ) = H

′
0(1). Newman shows that [2]:192

〈c〉 = H
′

0(1) = 1 + TG
′

0(1)/(1− TG′1(1)); 0 ≤ T < Tc, (13)

where G0(1) = G1(1) = 1. A phase transition occurs when193

〈c〉 → ∞ or, from Eq. (13), when Tc = 1/G
′
1(1) which implies:194

Tc = 〈k〉 /
(〈
k2
〉
− 〈k〉

)
. (14)

The basic reproduction number R0 can then be defined as R0 =195

T/Tc, so R0 = 1 when T = Tc.196
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In addition to the average outbreak size 〈c〉, the distribu-197

tion of outbreak sizes can also be determined in a computa-198

tionally efficient manner. Recalling that H0(x;T ) =
∑

k p
s
kx

k
199

and letting x = e2πjm/M , the outbreak size distribution pk is200

equivalent to the inverse discrete Fourier Transform (IDFT) of201

H0(e2pijm/M ;T ).202

2.1.3. Pandemic Size203

The size of the pandemic above the critical threshold Tc can204

also be determined. However, the giant component spans the205

entire network, so there have to be closed loops. This invalidates206

the tree-like assumption that led to Eq. (12). As Newman points207

out, the problem can be approached indirectly [5]. Recall that208

H0(1;T ) =
∑

k p
s
k is the fraction of components not in the gi-209

ant component. This implies that P (T ) = 1 − H0(1;T ) is the210

probability of a pandemic forming. Defining v = H1(1;T ) and211

using Eq. (12):212

v = G1(v;T )

P = 1−G0(v;T ). (15)

This is a fixed point problem. The average outbreak size not as-213

sociated with the pandemic can also be determined. Repeating214

the derivation leading to Eq. (13) and noting that H0(1;T ) =215

1− P (T ), Newman shows that [3]:216

〈c〉 = 1 +
Tzv2(T )

(1− P (T ))(1− TG′1(v;T ))
; T > Tc. (16)

The risk of an individual infection is determined by not-217

ing that v in Eq. (15) is the probability that a node along a218

randomly chosen edge is not infected. For each edge, the prob-219

ability of not getting infected is either v (contact not infected)220

or (1− T )(1− v) (contact is infected but does not transmit the221

infection). Thus, p(T ) = v + (1 − T )(1 − v) = 1 − T − vT . If222

the individual has k contacts, then the risk of infection is [2]:223

Risk(k;T ) = 1− pk(T ). (17)

2.1.4. Inclusion of NPIs224

The known methodology outlined above is generalized to in-225

clude social distancing. Specific applications including uniform226

and directed social distancing are then discussed. Let bk denote227

the probability that a vertex of degree k is present. Define the228

generating function F0(x) as:229

F0(x) =
∞∑
k=0

bkpkx
k. (18)
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Similarly, F1(x) = F
′
0(x)/z. This is a generalization of the230

generating functions G0(x) and G1(x). Since F0(1) 6= 1 and231

F1(1) 6= 1, 1− F0(1) is the probability that a randomly chosen232

vertex has no active edges. From Eq. (12), it follow that [3]:233

H1(x;T ) = 1− F1(1) + xF1(H1(x;T );T )

H0(x;T ) = 1− F0(1) + xF0(H1(x;T );T ). (19)

The average outbreak size prior to a pandemic with social234

distancing is similar to Eq. (13):235

〈c〉 = 1 + TF
′

0(1)/(1− TF ′1(1)). (20)

A phase transition leading to a pandemic occurs at the criti-236

cal transmissibility Tc = 1/F
′
1(1), which follows directly from237

Eq. (20). Similarly, the outbreak size distribution follows di-238

rectly from H0(x;T ) by defining x = e2πjm/M and using the239

inverse Fourier Transform.240

The fraction of the population affected by the pandemic241

is similar to Eq. (15). Since H0(1;T ) = 1 − P (T ) and using242

Eq. (19):243

P = F0(1)− F0(v;T )

v = 1− F1(1) + F1(v;T ). (21)

The average outbreak size not associated with the pandemic is244

analogous to Eq. (16) with G0(x) and G1(x) replaced by F0(x)245

and F1(x), respectively. Noting that F0(v;T ) = F0(1) − P ,246

F
′
0(v;T ) = zF1(v;T ), and F1(v;T ) = v − 1 + F1(1):247

〈c〉 =
F0(1)− P (T )

1− P (T )
+

Tz(v − 1 + F1(1))2

(1− P (T ))(1− TF ′0(v;T ))
. (22)

The risk of an infection during a pandemic is identical to Eq. (17)248

with v given by Eq. (21).249

2.1.5. Uniform Social Distancing250

Let bk = b; 0 ≤ b ≤ 1, so the probability that a vertex of251

degree k is active is b. Basically, social distancing is applied252

to every individual regardless of the number of contacts an in-253

dividual may have. For this case, F0(x;T ) = bG0(x;T ) and254

F1(x;T ) = bG1(x;T ). The average outbreak size prior to a pan-255

demic is identical to Eq. (13) with T replaced by Teff = bT . This256

implies that the critical threshold with uniform social distancing257

is T
′
c = Tc/b. Since the basic reproduction number R0 = T/Tc,258
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the effective reproduction number is R
′
0 = T/T

′
c = bR0. This259

means that the effective reproduction number R
′
0 decreases with260

increased uniform social distancing. The outbreak size distri-261

bution similarly follows from Eq. (19).262

The fraction of the population affected by the pandemic fol-263

lows directly from Eq.(21). Letting v
′
= (v−1+b)/b and noting264

that G1(v;T ) = G1(1− bT + bTv
′
):265

P = b(1−G0(v
′
;T )) = bP (Teff)

v
′

= G1(v
′
;Teff), (23)

where Teff = bT . This is identical to Eq. (15) with no social266

distancing except that the onset of the pandemic is shifted in267

accordance with Teff and the affected population is reduced by a268

factor of b. Outbreaks not associated with the pandemic follow269

from Eq. (22). In particular:270

〈c〉 =
b(1− P (Teff))

1− bP (Teff)
+

Teffzbv
′2

(1− bP (Teff))(1− TeffG
′
0(v′ ;Teff))

, (24)

where v
′

= (v − 1 + b)/b. Additionally, the risk of individual271

infection is given by Eq. (17) with p = 1− Teff + Teffv
′
.272

2.1.6. Directed Social Distancing273

Here, it is assumed that:274

bk =

{
1; 0 ≤ k ≤ Kmax

0; k > Kmax,
(25)

where all individuals are distanced with contact degree greater275

than Kmax. This implies that:276

F0(x) =
Kmax∑
k=0

pkx
k, (26)

and F1(x) = F
′
0(x)/z. For a Poisson network:277

F0(x) = e−z
Kmax∑
k=0

(zx)k/k!

F1(x) = e−z
Kmax∑
k=0

(zx)k/k!. (27)

For an exponential network:278

F0(x) = (1− e−β)(1− (xe−β)Kmax+1)/(1− xe−β)

F1(x) = (1− e−β)2(Kmax(xe
−β)Kmax+1

+ 1− (Kmax + 1)(xe−β)Kmax)/(1− xe−β)2. (28)
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For a power-law network:279

F0(x) = Liα(Kmax, xe
−1/κ)/Liα(e−1/κ)

F1(x) = Liα−1(Kmax, xe
−1/κ)/xLiα−1(e−1/κ). (29)

The average outbreak size prior to a pandemic is given by280

Eq. (20), where F
′
0 and F

′
1 can be computed by taking respec-281

tive derivatives of Eqs. (27), (28), and (29). Additionally, the282

fraction of the population affected by the pandemic is given by283

Eq. (21) together with Eqs. (27)-(29). The fractional number284

(fc) of nodes removed due to directed social distancing is related285

to Kmax by:286

fc = 1−
Kmax∑
k=0

pk = 1− F0(1). (30)

It is interesting to note that for the power-law network, if a small287

fraction of nodes fc is removed, then the critical transmissibil-288

ity T
′
c � Tc, indicating a lack of phase transition or pandemic289

onset. This was discussed by Callaway and Newman in another290

context [4]. Both the average outbreak size not associated with291

the pandemic and the individual risk of infection are given by292

Eqs. (22) and (17), respectively.293

2.1.7. Calibration294

The degree distribution pk for each network is calibrated to295

have the same critical transmissibility Tc. Since Tc = 1/G
′
1(1)296

from Eq. (14), it follows that:297

Tc =


1/z; Poisson
(eβ − 1)/2; Exponential
Liα−1(e−1/κ)/(Liα−2(e−1/κ)− Liα−1(e−1/κ)); Power-Law.

(31)

2.2. Time-dependent Disease Spread in Social Networks298

In this section we expand the procedure to characterize time-299

dependent disease spread on complex networks using a stochas-300

tic SIR model. The analysis is based on the work of Barthélémy301

and Pastor-Satorras [7]. Generalizations to the theory are made302

to include social distancing, testing, and contact tracing.303

2.2.1. Introduction304

A stochastic treatment of the time-dependent properties of305

epidemic models involves determining the probabilities for ver-306

tices to be in specific disease states. This is typically a diffi-307

cult problem because it involves higher-order moments of prob-308

abilities that can only be approximated using moment-closure309
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techniques, where moments are factored into pairwise moment310

products [5]. An alternative approach is degree-based approxi-311

mation pioneered by Pastor-Satorras et al. This approximation312

assumes that all vertices of the same degree have the same prob-313

ability of infection at any given time.314

Consider the probability that vertexA becomes infected be-315

tween times t and t+ dt. To become infected, it must catch the316

disease from one of its neighbors, which requires that the neigh-317

bor be infected. The probability of a neighbor being infected is318

xk, where k is the excess degree of the neighbor (recall that the319

excess degree distribution is qk). So, the average probability of320

a neighbor being infected is v(t) =
∑∞

k=0 qkxk. The total prob-321

ability of transmission from a single neighbor is βv(t)dt, where322

β is the contact rate. The probability of transmission from any323

neighbor is βkv(t)dt, where k is the number of neighbors associ-324

ated with vertex A. Thus, the rate of change in the probability325

that a vertex with degree k is susceptible (sk) is simply:326

dsk/dt = −βkv(t)sk. (32)

Similarly, the probability that a vertex with degree k is infected327

(xk) is:328

dxk/dt = βkv(t)sk − γxk, (33)

where γ = 1/Tr is the recovery rate. Finally, the probability329

that a vertex of degree k has recovered (rk) is:330

drk/dt = γxk. (34)

A general solution to Eqs. (32)-(34) is of the form [5]:331

du/dt = −βuv(t)

v(t) = 1 + (γ/β) log(u)− s0G1(u), (35)

where s0 = sk(0). Given u(0) = 1, Eq. (35) can be numerically332

solved for u(t) and the average probability of infection v(t) can333

be determined. In addition, the average susceptibility proba-334

bility s(t) can be computed from the degree distribution of a335

randomly chosen vertex:336

s(t) =
∞∑
k=0

pksk = s0G0(u), (36)

where G0(x) is the moment generating function for pk.337

The function u(t) in Eq. (35) has a particularly interesting338

interpretation. A fixed point occurs when du/dt = 0 or when339

12



1 + (γ/β) log(u) − s0G1(u) = 0. If it is assumed that u ≈ 1,340

then:341

u = 1− T + TG1(u)

P = 1−G0(u), (37)

where the pandemic size P = w(∞) and w(t) =
∑∞

k=0 qkrk342

is the average recovery probability. Assuming β/γ � 1, the343

transmissibility is approximately T ≈ β/γ. If u = 1 − T +344

Tv, then Eq. (15) and Eq. (37) are identical under the above345

assumptions. Therefore, the dynamic SIR model is consistent346

with bond percolation results at steady state.347

2.2.2. Uniform Social Distancing348

It is assumed that no NPIs are active over a period 0 ≤349

t ≤ t1. Over a period t1 < t ≤ t2, uniform social distancing350

is implemented where a fraction (1 − b) of the population is351

sequestered. Over the period t2 < t ≤ t3, the NPI is lifted. The352

first period corresponds to the analysis outlined in the previous353

section.354

For the second period that includes social distancing, the355

stochastic SIR equations for the fraction of the population (b)356

not sequestered are:357

dsk/dt = −βkv′(t)sk
dxk/dt = βkv

′
(t)sk − γxk

drk/dt = γxk, (38)

where v
′
(t) =

∑
k q
′

kxk and q
′

k = bqk. Letting w
′
(t) =

∑
k q
′

krk,358

it follows that dw
′
/dt = γv

′
(t). Substituting this expression359

into Eq. (38) and simplifying:360

sk(t) = sk1u
k(t), (39)

where u(t) = exp(−β(w
′ − w

′
0)/γ) and sk1 are the fractional361

number of susceptible individuals with k contacts remaining at362

the end of the first period (t = t1). Since xk = 1 − sk − rk,363

v
′
(t) = b − b

∑
k qksk − b

∑
k qkrk. Now, sk1 = s0u

k
1, where364

u1 = u(t1), so
∑

k qksk = s0G1(u1u). Also, w
′
(t) = b

∑
k qkrk.365

Using the expression for u(t), w
′
(t) = w

′
0 − (γ/β) log(u), where366

w
′
0 = −b(γ/β) log(u1). Combining results:367

v
′
(t) = b− bs0G1(u1u) + b(γ/β) log(u1) + (γ/β) log(u). (40)

Finally, since dw
′
/dt = −(γ/βu)du/dt and dw

′
/dt = γv

′
(t):368

du/dt = −βuv′(t). (41)
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The total average infection probability vT (t) needs to include369

the sequestered fraction (1− b) of the population. However, the370

average infection probability among the sequestered population371

is v0
s = (1− b)v(t1), where v(t1) is determined from Eq. (35). In372

particular:373

v0
s = (1− b) (1 + (γ/β) log(u0)− s0G1(u1)) , (42)

where u1 = u(t1). These infected individuals recover at a rate374

γ since, by definition, they are not in contact with each other.375

So:376

vT (t) = v
′
(t) + v0

se
−γ(t−t1); t1 < t ≤ t2. (43)

Note that at t = t1, vT (t1) = v(t1), so continuity is maintained.377

Finally, the fractional number of susceptibles during the NPI378

period is the sum of the sequestered and non-sequestered frac-379

tion of the population:380

s(t) = bs0G0(uu1) + (1− b)s0G0(u1). (44)

For the third period when social distancing is lifted, the381

stochastic SIR equations are identical to Eqs. (32)-(34) except382

that the initial conditions are different. Let nk denote the frac-383

tion of the population with k contacts remaining. However,384

nk = b + (1 − b)sk1, i.e., the original non-sequestered fraction385

(b) and the sequestered fraction ((1− b)sk1), where sk1 = s0u
k
1.386

Let v′′(t) =
∑

k qkxk denote the average infection probabil-387

ity, where xk = nk − sk − rk. Now, sk has the form:388

sk = ŝk2u
k, (45)

where ŝk2 = bsk2 + (1− b)sk1, sk2 = sk1u
k
2, and u2 = u(t2). The389

various summations entering into the calculation of v
′′
(t) are of390

the form:391 ∑
k

qksk = bs0G1(u1u2u) + (1− b)s0G1(u1u)∑
k

qknk = b+ (1− b)s0G1(u1)∑
k

qkrk = w0 − (γ/β) log(u), (46)

where w0 = −(γ/β) log(u2)−b(γ/β) log(u1). Combining results:392

v
′′
(t) = b (1− s0G1(u1u2u)) + (1− b)s0 (G1(u1)−G1(u1u))

+ (γ/β) log(u2u) + b(γ/β) log(u1). (47)

Note that v
′′
(t2) = v

′
(t2), as required. The fractional number393

of susceptibles is given by:394

s(t) = bs0G0(u1u2u) + (1− b)s0G0(u1u). (48)
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2.2.3. Testing and Contact Tracing395

For periods t > t3, a fairly simple model is used to capture396

the relevant details of delayed testing and contact tracing based397

on a generalization of work by Young and Ruschel [13]. The398

modified stochastic SIR model is:399

dsk/dt = −βkv′′′(t)sk
dxk/dt = βkv

′′′
(t)sk − βkpe−γηv

′′′
(t− η)sk(t− η)− γxk(49)

drk/dt = γxk + βkpe−γηv
′′′

(t− η)sk(t− η), (50)

where η is the delay in testing after becoming infectious and,400

as before, v
′′′

(t) =
∑

k qkxk. Rather than assuming that infec-401

tious individuals are tested, tracked and sequestered immedi-402

ately with probability p, there is a delay η in their sequestration.403

Recovered individuals are not added back into the pool of sus-404

ceptible individuals since it is assumed that they have developed405

immunity to the disease.406

A general solution to Eq. (50) can be determined as follows.407

Integrating the first expression produces sk(t) = ŝk3u
k, where:408

u(t) = exp

(
−β
∫ t

t3

v
′′′

(s) ds

)
, (51)

ŝk3 = bsk3 + (1 − b)sk2, sk3 = sk2u
k
3, and u3 = u(t3). From409

Eq. (51), it follows that:410

du/dt = −βuv′′′(t). (52)

Averaging the second expression in Eq. (50):411

dv
′′′
/dt = βv

′′′
(t)
∑
k

qkksk(t)−βpe−γηv
′′′

(t−η)
∑
k

qkksk(t−η)−γv′′′(t).

(53)
Noting that G

′
1(x) =

∑
k qkkx

k−1:412 ∑
k

qkksk = u(t)
(
bG
′

1(u1u2u3u) + (1− b)G′1(u1u2u)
)
. (54)

Therefore, Eq. (53) can be rewritten as:413

dv
′′′
/dt = −γv′′′(t)+βs0v

′′′
(t)u(t)ζ(t)−βs0pe

−γηv
′′′

(t−η)u(t−η)ζ(t−η),
(55)

where ζ(t) = bG
′
1 (u1u2u3u(t)) + (1 − b)G

′
1 (u1u2u(t)). Equa-414

tions (52) and (55) describe a set of consistent equations for415

numerically computing v
′′′

(t) and s(t), where:416

s(t) = s0bG0 (u1u2u3u(t)) + s0(1− b)G0 (u1u2u(t)) . (56)

Note that Eq. (55) is initialized by setting v
′′′

(t3) = v
′′
(t3).417
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2.3. Bayesian-based Estimation of Contact Transmissibility418

We now outline methods for estimating the contact trans-419

missibility from outbreak case data using a stochastic SIR model420

and Bayesian estimation methods. The first approach estimates421

the average transmissibility T or basic reproduction number R0422

using either analytical or empirical networks where the degree423

distribution is known or estimated. The second approach esti-424

mates the instantaneous transmissibility T (t) or basic reproduc-425

tion number R0(t) using nonlinear tracking methods based on426

particle-based filtering where explicit network structure is not427

required.428

2.3.1. Average Transmissibility429

The probability that a vertex of degree k will experience430

an outbreak is the probability that it gets infected and then431

recovers. From Eq. (33):432

dck/t = dxk/dt+ drk/dt = βkv(t)sk. (57)

The average outbreak case probability C(t) is determined by433

averaging Eq. (57):434

dC(t)/dt = βv(t)u(t)G
′

0 (u(t)) , (58)

where u(t) is given by Eq. (35) and
∑

k pkks0u
k = s0u(t)G

′
0(u).435

Define ∆C(t+ ξ) = C(t+ ξ)−C(t) as the fractional change436

in outbreak cases in the interval [t, t+ ξ]. Then, from Eq. (58):437

∆C(t+ ξ) ≈ βξs0u(t)G
′

0 (u(t)) v(t+ ξ). (59)

Now, returning to Eq. (33), averaging, and integrating the re-438

sults from t to t+ ξ, assuming that ξ � 1:439

v(t+ ξ) ≈ v(t)bξ(t;T ), (60)

where bξ(t;T ) = exp
(
γξ(s0Tu(t)G

′
1(u(t))− 1)

)
and T = β/γ.440

Finally, substituting this expression into Eq. (59):441

∆C(t+ ξ) = ∆C(t)bξ(t;T ). (61)

This implies a linear relationship between the fractional change442

in outbreak cases between time steps ξ.443

The change in the number of outbreak cases ∆N(t) is ∆N(t) =444

NC(t), where N is the population size. Assume that ∆N(t) is445

integer-valued and let the measurements comprise the collection446
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{∆N1,∆N2, . . . ,∆NJ}, where ∆Ni = ∆N(ti). The resulting447

likelihood function can be factored as:448

p(∆N1,∆N2, . . . ,∆NJ |T ) =
J∏
n=1

p(∆Nn|∆N(n−1);T ), (62)

where ∆Nn = [∆N1,∆N2, . . . ,∆Nn]. This equation can be449

simplified by noting that ∆Ni+1 = bξ(ti;T )∆Ni, so ∆Ni defines450

a Markov process. Therefore:451

p(∆N1,∆N2, . . . ,∆NJ |T ) =
J∏
n=1

p(∆Nn|∆Nn−1;T ), (63)

where p(∆N1|∆N0;T ) = p(∆N1).452

In general, p(∆Nn|∆Nn−1;T ) is not known. Bettencourt453

points out that the maximum entropy density is the preferred454

density when only the mean is known [10]. This turns out to be455

the Poisson density:456

p(∆Nn|∆Nn−1;T ) = λ∆Nn
n−1 e

−λn−1/(∆Nn)!, (64)

where λn = bξ(tn;T )∆Nn. Taking the logarithm of Eq. (63), us-457

ing Eq. (64), and eliminating terms independent of T , − log p(∆Nn|∆Nn−1;T )458

is proportional to:459

Φ(∆N1,∆N2, . . . ,∆NJ |T ) =
J∑
n=2

λn−1(T )−
J∑
n=2

∆Nn log (λn−1(T )) .

(65)
A maximum likelihood estimate of the transmissibility T or ba-460

sic reproduction number R0 is equivalent to finding a T such461

that Φ(∆N1,∆N2, . . . ,∆NJ |T ) is minimized.462

Although a Poisson density is used in deriving the con-463

ditional likelihood function in Eq. (64), it has been observed464

that the number of differential outbreak cases ∆N(ti) is over-465

dispersive, i.e., the variances are larger than expected. It can be466

shown that Consul’s generalized Poisson distribution is a better467

match to the data. This density has the form [14]:468

p(n) = (1− ω)λ ((1− ω)λ+ ωn)n−1 exp (−(1− ω)λ− ωn) /n!,
(66)

where 0 ≤ ω < 1 is the dispersion parameter and λ is the mean.469

Euler’s difference formula can be used to show that p(n) is a470

valid density (
∑

n p(n) = 1).471
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2.3.2. Estimating Instantaneous Transmissibility472

Define the instantaneous basic reproduction number R0(t)473

as R0(t) = Tu(t)G
′
1(u(t)), which follows from Eq. (60), so that474

bξ(t;T ) = exp (γξ(R(t)− 1)). This equation has the advan-475

tage of being network independent. Now, consider the vector476

of estimates: RJ = [R(t1), R(t2), . . . , R(tJ)] and the vector of477

measurements ∆NJ , where ∆NJ = [∆N1,∆N2, . . . ,∆NJ ]. The478

goal is to estimate the posterior density p(RJ |∆NJ). Because479

the likelihood function is a nonlinear function of R0, a linear480

Kalman filter cannot be used. In fact, an extended Kalman481

filter is not robust enough to handle the rapid fluctuations in482

the differential outbreak case histories. Therefore, a Bayesian483

approach is used where the posterior probability density of the484

state is constructed from the data. However, this density may485

be difficult to evaluate using kernel or grid-based estimation pro-486

cedures. Therefore, the density is approximated using sampling487

procedures.488

In order to illustrate the procedure, the following simple489

problem is considered. Suppose one is required to evaluate the490

Nth moment of p(x|z):491 〈
xN |z

〉
=

∫
xNp(x|z) dx. (67)

Assume a proposal density q(x|z) that is relatively easy to sam-492

ple from. These samples are denoted by xi ∼ q(x|z) such that493

q(x|z) =
∑M

i=1 δ(x−x(i))/M , where δ(x) is the Dirac delta func-494

tion. Equation (67) can be rewritten as:495

〈
xN |z

〉
=

N∑
i=1

x(i)w̃i, (68)

where w̃i = wi/
∑

iwi and wi = p(x(i)|z)/q(x(i)|z). Therefore,496

the Nth moment can be approximated by weighting samples x(i)
497

from a proposal density q(x|z) by a set of importance weights498

w̃i.499

The same procedure can be used to estimate the posterior
density. In this case wi = p(RJ(i)|∆NJ)/q(RJ(i)|∆NJ) for a
suitably chosen proposal density q(RJ |∆NJ). Now, using Bayes
theorem:

p(RJ |∆NJ)= p(∆NJ |RJ)p(RJ)/p(∆NJ)

= p(∆NJ |∆NJ−1,RJ)p(∆NJ−1|RJ)p(RJ)/p(∆NJ)

= p(∆NJ |∆NJ−1, RJ)p(RJ |∆NJ−1)/p(∆NJ |∆NJ−1),
(69)
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where it is assumed that p(∆NJ |∆NJ−1,RJ) = p(∆NJ |∆NJ−1, RJ).500

In addition, assume that RJ is Markov so that p(RJ |∆NJ−1) =501

p(RJ |RJ−1)p(RJ−1|∆NJ−1). From Eq. (69):502

p(RJ |∆NJ) =
P (∆NJ |∆NJ−1, RJ)p(RJ |RJ−1)p(RJ−1|∆NJ−1)

p(∆NJ |∆NJ−1)
.

(70)
The proposal density can be factored into the following form503

using the product of conditional densities:504

q(RJ |∆NJ) = q(RJ |RJ−1,∆NJ)q(RJ−1|∆NJ).

Suppose that q(RJ |RJ−1,∆NJ) = q(RJ |RJ−1) and q(RJ−1|∆NJ) =505

q(RJ−1|∆NJ−1). Using the definition of wi above:506

wi =
p(∆NJ |∆NJ−1, R

(i)
J )p(R

(i)
J |R

(i)
J−1)

p(∆NJ |∆NJ−1)q(R
(i)
J |R

(i)
J−1)

wi−1. (71)

For a simple particle filter examined here, q(R
(i)
J |R

(i)
J−1) =507

p(R
(i)
J |R

(i)
J−1), so that:508

p(RJ |∆NJ ,∆NJ−1) =
∑
i

w̃iδ(RJ −R(i)
J ), (72)

where R
(i)
J ∼ p(RJ |RJ−1), wi = p(∆NJ |∆NJ−1, R

(i)
J )wi−1, and509

w̃i = wi/
∑

iwi. In order to prevent particle degeneracy (col-510

lapse to a few particles), the nonuniform measure in Eq. (72)511

is replaced by a uniform measure by computing the cumula-512

tive distribution function (cdf) of w̃i and uniformly sampling to513

produce R̃
(i)
J such that p(RJ |∆NJ ,∆NJ−1) =

∑
i δ(RJ − R̃(i)

J )514

[15].515

The state transition (sampling) density p(RJ |RJ−1) can be516

determined as follows. Augment the state RJ such that RJ =517

[RJ , ṘJ)]T and assume a linear projection of the form:518

RJ = FRJ−1 + wJ , (73)

where Ṙ = dR/dt and:519

F =

(
1 ξ
0 1

)
(74)

and wJ is a zero-mean Gaussian noise vector. Assume that520

R̈ = w(t), where w(t) is a zero-mean white Gaussian noise pro-521

cess and R̈ = d2w/dt2. This constitutes a random “accelera-522

tion” model. It can be shown that the corresponding covariance523

matrix associated with the state RJ in Eq. (73) is:524

Cov(R, Ṙ) = q

(
ξ3/3 ξ2/2
ξ2/2 ξ

)
, (75)
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where q is a variance-like term. It then follows that p(RJ |RJ−1)525

is a zero-mean Gaussian density with covariance Cov(R, Ṙ).526

The likelihood function is computed from Eq. (64).527

3. Results and Discussion528

3.1. Steady-State Disease Spread529

Some illustrative results using the steady-state disease spread530

model are described below for three types of contact networks:531

Poisson, Exponential, and Power-law. For these examples, the532

critical transmissibility is Tc = 0.049. This means that if the533

observed transmissibility T = Tc, then R0 = 1, i.e., Tc is the534

critical value above which the pandemic is self-sustaining. For535

comparative purposes, each contact network has the same crit-536

ical threshold Tc.537

Fig. 3 depicts the outbreak distribution size prior to a pan-538

demic when R0 = 0.8 with no NPIs. This is the predicted539

number of people infected by a small outbreak. Both the Pois-540

son and exponential (urban) contact networks have similar size541

distributions, where large outbreak sizes (> 20) are unlikely.542

The power-law contact network is highly peaked for small out-543

break sizes as expected. Although diminishingly small for larger544

outbreak sizes, it is not zero because there are a minority of545

super-spreaders with large contact degree. Fig. 4 depicts the546

fraction of the population affected by a pandemic as a func-547

tion of the basic reproduction number R0 when R0 > 1 with548

no NPIs. Communities have diverse experiences based on their549

contact patterns. The Poisson contact network has the great-550

est fraction of the population affected by a pandemic because551

individuals in a group are equally likely to become infected and552

to infect others. For an exponential (urban) contact network,553

there is a 50% reduction in the number of infected individu-554

als compared to a well-mixed population (40% versus 80%) for555

R0 = 2. For a power-law network, only 5% of the population is556

affected by the pandemic for R0 = 2. Therefore, outbreaks are557

consistently less likely to reach pandemic proportions.558

There are outbreaks that can occur outside the main pan-559

demic cluster, although they are relatively small. This is not560

predicted from SIR or Susceptible, Exposed, Infected, or Re-561

covered (SEIR) models. Fig. 5 shows the average number of562

people infected by outbreaks outside the main pandemic clus-563

ter. This average outbreak size can be determined as a function564

of R0 for the three contact networks. For R0 > 2 all three565

contact networks have low average outbreak sizes (less than 2)566
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Figure 3. Outbreak size distribution prior to a pandemic
(R0 = 0.8) for three types of contact networks

Figure 4. Pandemic size (or fraction of individuals affected) as a
function of R0 for three types of contact networks

outside the main pandemic cluster. As expected, there are more567

outbreaks near R0 = 1 because less of the population is affected568

by the main pandemic and there is more opportunity for infec-569

tions to spread outside the main pandemic cluster. Note that570

the power-law network has a larger outbreak size for larger R0571

because there are a minority of super-spreaders. Fig. 6 illus-572

trates the individual risk of infection when R0 = 2 based on573

the number of social contacts. The Poisson contact network574

shows the most risk of individual infection. For ten contacts,575

the risk of infection is approximately 55%. The exponential576

(urban) network shows an individual infection risk of approxi-577

mately 45% for ten contacts. The power-law contact network578

shows the smallest individual risk of infection, roughly 20% for579

ten contacts.580

For uniform social distancing, it is assumed that the prob-581
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Figure 5. Average outbreak size removed from the main
pandemic cluster for three types of contact networks

Figure 6. Individual risk of an infection during a pandemic
based on the number of contacts for three types of contact
networks

ability that a vertex of degree k is active is bk = b, where582

0 ≤ b ≤ 1, so p
′

k = bkpk. Basically, social distancing is ap-583

plied to every individual regardless of the number of contacts584

an individual may have. Fig. 7 depicts the fraction of the pop-585

ulation affected by a pandemic as a function of R0 for different586

degrees of uniform social distancing for three types of networks.587

Uniform social distancing has the effect of shifting the onset of a588

pandemic to larger effective R0 values. This is because the effec-589

tive critical transmissibility threshold Tceff is now greater than590

the baseline critical threshold Tc before intervention is imposed.591

Asymptotic results for the Poisson network are consistent with592

SIR/SEIR compartmental model results. In each case, the frac-593

tion of the affected population is reduced exactly by the amount594

of imposed social distancing. The exponential network shows595
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similar trends although its asymptotic values are smaller than596

the Poisson network because the population is not well-mixed.597

The power-law network shows little variation in its pandemic598

onset or its peak (at R0 = 6) for a 20% increase in social dis-599

tancing from the baseline. Even at 40% social distancing, the600

percent affected population is only somewhat reduced, although601

its pandemic onset is shifted to a larger R0 value. As explained602

previously, this is due to a minority of super-spreaders that add603

a degree of robustness to the network

Figure 7. Pandemic size as a function of R0 for three types of
contact networks assuming uniform social distancing

604

For directed social distancing, it is assumed that bk = 1 for605

0 ≤ k ≤ Kmax and bk = 0, otherwise. Basically, all individu-606

als with contact degree greater than Kmax are distanced. Note607

that Kmax is related to the fractional number fc of nodes re-608

moved, or fc = 1 −
∑Kmax

k=0 pk. Fig. 8 illustrates the fraction of609

the population affected by a pandemic as a function of R0 for610

different degrees of directed social distancing for three types of611

networks. Directed social distancing has a large effect on the612

onset of a pandemic for both the exponential and power-law613

contact networks. For a 10% reduction in social distancing for614
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high social contact individuals, the affected population is re-615

duced from 75% to 50% for an exponential network and 30%616

to zero for a power-law network when R0 = 6. The affected617

population for a Poisson network is reduced by only 10%. Al-618

though not depicted in this figure, it can be shown that for619

a 1.5% reduction in directed social distancing, there is a 25%620

reduction in the affected population for a power-law network621

when R0 = 6. For a 2% reduction in directed social distancing,622

none of the population is affected for R0 ≤ 6. However, the ex-623

ponential network shows only a 5% reduction and the Poisson624

network shows only a 2% reduction in the affected population,625

respectively. The power-law network is the least robust to the626

removal of high contact nodes. This is an important result that627

could impact the way contact tracing is performed.

Figure 8. Pandemic size as a function of R0 for three types of
contact networks assuming directed social distancing

628

3.2. Time-Dependent Disease Spread in Social Networks629

Some illustrative results using the time-dependent disease630

spread model are described below. Here, it is assumed that the631

critical transmissibility is Tc = 0.049, the observed transmissi-632

bility is T = 0.098 (implying R0 = 2 initially), the infectious633
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period Tr is 7 days, the inception and release of (uniform) social634

distancing starts at week 6 and ends at week 14, respectively,635

and testing and contact tracing begins at week 16. Additionally,636

80% of individuals are social distanced, the percent isolated per637

week is 20%, and the percent traced per week is 30% per week.638

Figures 9 and 10 depict the susceptible, infectious, and out-639

break case load probabilities for a Poisson and exponential net-640

work, respectively, for the example parameters outlined above.641

The pandemic begins to build after week 2 and is arrested start-642

ing at week 6 as a result of social distancing. Social distancing is643

relaxed at week 14 with a consequent buildup in infections un-644

til testing and contact tracing are initiated at week 16. There645

is a large decline in the susceptible probability due to contact646

tracing around week 20. Since testing and contract tracing is647

assumed to continue over the model run (50 weeks), the out-648

break case load reaches a steady state. Contrasting the dif-649

ferences between the Poisson and exponential networks, it is650

apparent that the number of outbreak cases is smaller for the651

exponential network and remediation strategies such as social652

distancing, testing, and contact tracing are more effective for653

the exponential network. Recall that this network does not as-654

sume a well-mixed population where all individuals are equally655

likely to become infected. The power-law network (not shown)656

has an even smaller number of outbreak cases.

Figure 9. Susceptible, infectious, and outbreak case load
probabilities as a function of time for a Poisson network based
on example parameters

657
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Figure 10. Susceptible, infectious, and outbreak case load
probabilities as a function of time for an exponential network
based on example parameters
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Fig. 11 depicts the instantaneous basic reproduction number658

R0 for three contact networks as a function of time for the NPI,659

testing, and contact tracing example outlined above. The incep-660

tion and lifting of social distancing protocols are clearly evident,661

where R0 is sizeably reduced over a period of 2 months. Note662

that for all three networks, 0.3 ≤ R0 ≤ 0.4 over this interval of663

time. When the NPI is lifted at week 14, sheltered individuals664

are added back into the reservoir with a subsequent increase in665

R0. This pool slowly attrits from infections until week 16 when666

testing and contact tracing is initiated. A combination of test-667

ing and contact tracing lowers R0 to below unity near week 20,668

at which point, the disease ceases to spread. It is interesting to669

note that the power-law network has consistently lower R0 val-670

ues except during testing and contact tracing. This is because671

the rather low rates of testing and tracking miss a number of672

super-spreaders that are more prevalent in a power-law network.673

Figure 11. Instantaneous basic reproduction number R0 as a
function time for three contact networks based on example
parameters

674

3.3. Bayesian-based Estimation of Contact Transmissibility675

Some illustrative results using the Bayesian-based estima-676

tion procedure for contact transmissibility are discussed below.677

Figures 12 and 13 illustrate particular examples of the approach678

for Massachusetts and New York given collected outbreak case679

histories from each state over a 2-3 month period starting in680

February 2020. It is assumed that the critical transmissibility681

Tc = 0.049 and the infection period Tr = 7 days. The mod-682

els that best fit the data are used for each state – a Poisson683
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network for Massachusetts and an exponential network for New684

York. The estimated transmissibility for Massachusetts is 0.089,685

which translates into a R0 value of 1.8. Similarly, the estimated686

transmissibility for New York is 0.185, which translates into a687

R0 value of 3.8. Both networks provide reasonable fits to their688

respective observed differential outbreak case histories ∆C(t)689

and reinforces the notion that the rapidity of disease spread in690

New York was much more severe.

Figure 12. Estimated and predicted change in outbreak cases
∆C(t) for a Poisson network based on Massachusetts State
outbreak data

Figure 13. Estimated and predicted change in outbreak cases
∆C(t) for an exponential network based on New York State
outbreak data

691

The instantaneous basic reproduction number R0(t) can also692

be estimated by tracking the differential outbreak cases over693

time using a particle filter. Figures 14 and 15 illustrate the694

estimation technique for New York given the collected outbreak695
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history. The fit to the observed differential outbreak case data696

∆C(t) is quite good. In addition, the instantaneous R0(t) values697

are consistent with the average R0 value using an exponential698

network model depicted in Fig. 13. However, Fig. 15 is more699

illustrative because it allows one to examine the trend in R0700

over the progression of the pandemic. In this case, there is701

a downward trend after reaching a peak of approximately 3.5.702

There is also an up tick in R0 at later times probability due to703

an increase in testing. Note that estimation errors may result704

in negative R(t) values that are not realistic.

Figure 14. Estimated and predicted change in outbreak cases
∆C(t) based on New York State outbreak data using a particle
filter

Figure 15. Estimated instantaneous basic reproduction number
R0 based on New York State outbreak data using a particle filter

705
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4. Conclusion706

In the present work, we developed and illustrated a coarse-707

grain analytic modeling procedure that can be used to assess708

alternative strategies of implementing and subsequently lifting709

non-pharmaceutical interventions in response to the COVID-710

19 pandemic. This work was based on developing a multi-711

dimensional view of the problem by examining steady-state and712

dynamic disease spread using a network-based approach. The713

steady-state models, based on percolation theory, highlighted714

the previously known result that social contact structure is a715

key factor in the size of an outbreak. In addition, it was shown716

that the social contact structure influences the types of social717

distancing protocols that are deemed most effective. The dy-718

namic models, based on a stochastic reformulation of the SIR719

equations, further extended the work to include the effects of720

lifting non-pharmaceutical interventions and the importance of721

testing and contact tracing in reducing the overall infection rate.722

Providing a realistic assessment of the basic reproduction num-723

ber R0 is also important in gauging the severity of the outbreak724

within a specific geographic area. A Bayesian-based estima-725

tion procedure was developed to estimate both the average and726

instantaneous basic reproduction number from outbreak case727

histories at a state and county-wide level. These estimates can728

be used to seed other models or analysis procedures.729

No single model is a panacea. Therefore, we advocate an730

ensemble modeling approach based on a combination of analytic731

and fine-grain agent-based models (ABMs). As outlined in a732

companion paper, this approach has the potential to provide733

valuable insights into disease spread and the effectiveness of non-734

pharmaceutical interventions. It could prove to be a valuable735

tool for decision-makers in conjunction with empirical analysis.736
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