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Abstract

We sought to identify optimal temporal windows for lockdown-based mitigation strate-
gies on infectious disease spreads. An age-structured multi-compartmental Susceptible-
Infected-Recovered (SIR) model was used to estimate infection spreads under parametric
variation of lockdown intensity and duration from the data of SARS-CoV2 cases in India
between January to July, 2020. The resulting parameter values were used to simulate
lockdown outcomes for a wide range of start times and durations. Lockdowns were simu-
lated as intervention strategies that modified weights assigned to social contact matrices
for work, school and other places. Lockdown efficacy was assessed by the maximum num-
ber of infections recorded during a simulation run. Our analysis shows that lockdown
outcomes depend sensitively on the timing of imposition and that it is possible to mini-
mize lockdown durations while limiting case loads to numbers below the hospitalization
thresholds. Such timing based effects arise naturally from the non-linear nature of SIR
dynamics.
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Notation

N Total Population
S Number of susceptible individuals
I Number of infected individuals
R Number of recovered/removed individuals
β Per-individual disease transmission rate
γ Recovery rate
τ Lockdown start-time
∆ Duration of lockdown
p Post-lockdown coefficient
h Total number of hospital beds
ξ Maximum fraction of infected individuals
ξ0 Hospitalization threshold
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Introduction

Understanding disease dynamics has assumed vital importance in the midst of the on-
going SARS-CoV2 pandemic. Decision-makers around the world are grappling with the
difficult task of weighing the need for lockdown interventions to mitigate disease spread
against the negative socioeconomic impact of prolonged disruptions to trade, business
and social interactions [Moser and Yared, 2020]. Nowhere else is this issue more criti-
cally important than in lower income countries (LICs) and lower middle income coun-
tries (LMICs), where policy-makers have to decide between imposing strict lockdowns,
which inevitably lead to massive financial difficulties for economically weaker sections
of the society[Singh and Neog, 2020], or allow the disease to run unchecked and cause
a high number of casualties[Lancet, 2020]. Therefore, modelling strategies that inform
decision-making about the optimum timing and duration of lockdown interventions are
the need of the hour. However, in order to be effective, models must possess realistic
features, which allow for relevant contingencies to be mapped onto model parameters
[Diekmann et al., 2000, Singh and Adhikari, 2020, Ray et al., 2020]. One promising ap-
proach in that direction is to use Susceptible-Infected-Recovered (SIR) model equations
[Hethcote, 2000] in conjunction with empirically obtained age-structured contact matrices
to model disease dynamics. Contact matrices may be regarded as the network scaffolding
on which SIR dynamics evolve; lockdowns are modelled as scaling operations on contact
matrices for home, workplaces, school etc.

Non-linear systems produce differing outputs depending on the timing of applica-
tion of perturbation[Shulgin et al., 1998, Nie et al., 2012]. For example, neurons in the
brain, conceptualized as oscillators that exhibit rhythmic electrical activity, are known
to be maximally sensitive to incoming spike currents at specific phases of on-going activ-
ity [Canavier, 2006] to generate new action potentials (spike). Similarly, cardiac beats are
susceptible to respiratory drive at precise phases of the trajectory [Kralemann et al., 2013].
Researchers use Phase Response Curves(PRCs) to characterize the effects of external per-
turbations on system dynamics as a function of the phases at which those perturbations
are applied [Schultheiss et al., 2011]. We conjecture that such insights can be extended to
study the effects of lockdown interventions (perturbations) on the on-going dynamics of
disease evolution. Specifically, we hypothesize that the timing of lockdown intervention
would considerably impact lockdown outcomes. This approach has the practical ben-
efit of informing public-health planning to best optimize mitigation strategies in order
to minimize lockdown durations while avoiding a catastrophic breakdown of healthcare
services like the availability of hospital beds for severe cases.

The goal of this article is to identify optimal windows for lockdown interventions
subject to a hospitalization threshold (HT) constraint through a numerical analysis of
disease dynamics and phase-space analysis. As a first step in that direction, we fit the
Covid-19 growth curve in India recorded between 30th January, 2020 to 14th July, 2020
using a SIR model with relevant model parameters. Next, we use the derived model
parameters to explore the parameter space of lockdown timing and duration and produce
phase-space trajectories that satisfy relevant criteria.
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Methods

Model Description

We employ an age-structured SIR model to fit the SARS-Cov2 infection spread on Indian
population that can be split into M = 16 age-groups ranging from 0-79 years [Desa, 2015].
The contacts among the age groups were classified into four sectors - home (H), school
(S), work (W), and other (O) [Singh and Adhikari, 2020]. Dynamics of each age-group
is captured by the state variables Si, Ii and Ri which correspond to the number of sus-
ceptible, infected and recovered individuals in the ith age-group (Figure 1). The model
makes no distinction between recovered or deceased individuals. The dynamics of each
age-group is mathematically described by the following ordinary differential equations
(ODEs):

Ṡi = −λiSi (1)

İi = λiSi − γIi (2)

Ṙi = γIi (3)

where the effective transmission rate, λi, is given by :

λi = β
M∑
j=1

Cij
Ij
Nj

. (4)

Cij is an element of the contact matrix derived through combination of census surveys
and Bayesian imputation [Prem et al., 2017]. Cij is computed as a linear sum of all
contact matrices for Home, School, work and other places-

Cij = CH
ij + CW

ij + CS
ij + CO

ij

The model ignores birth and death dynamics and therefore,

Si + Ii +Ri = Ni (5)

Lockdowns are modelled as interventions that alter the weights of contact matrices
for work, school and other places through coefficients UW , US and UO :

Cij(t) = CH
ij + UW (t)CW

ij + US(t)CS
ij + UO(t)CO

ij (6)

For simplicity we assume UW (t) = UO(t) throughout the article. The recovery time
is kept at 14 days, throughout (γ = 1/14). The simulation was initiated with 1 infected
individual in the age group 40-44. Euler method was used to integrate the system of 48
ordinary differential equations using an integration time step of 0.1 hr (6 minutes).

To obtain the parameter values to guide further simulations, we fit the simulation
against WHO data for the cumulative cases in India till 14th July. The start time for
the simulation was kept as 30th January, which also coincided with the start of recorded
data. Lockdown imposition was assumed to take place on the 55th day from the start of
recording. Lockdown was implemented by altering the weightage of contact matrices with
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time. Prior to lockdown imposition, lockdown parameter coefficients for the home, work,
school, and other connectivity matrix were set to 1. Lockdown was assumed to be lifted
on the 115th day from the start of the simulation (Figure 2). The lockdown state cor-
responded to reduced coefficients for work, school and other connectivity matrices(< 1).
Post-lockdown coefficients for work and other connectivity matrices were assumed to be
higher than their lockdown values, indicating post-lockdown social distancing measures.
The lockdown coefficient for school was maintained at 0. The lockdown coefficients and
per-individual transmission rate (β) were derived from fitting simulation runs to cumu-
lative infection cases recorded till 14th July, 2020 [WHO, 2020] (Figure 2).

A recent report by the Center for Disease Dynamics, Economics and Policy (CDDEP),
predicts that at its peak, the infection will affect 100 million people in India out of which
2-4 million (2 − 4%) people will require hospitalization [Klein et al., 2020]. We use this
figure of 2− 4% as an estimate of the maximum hospitalization capacity (ξ0).

The lockdown start time (τ) is varied from 1 to 200 days, and the duration of the
lockdown (∆) is varied from 5 to 200 days. For each simulation, the maximum fraction
of infected individuals is computed as :

ξ(τ,∆) =

max

(∑
i

Ii

)
∑
i

Ni

.

Assuming the hospitalization capacity to be 3% of the infected cases [Klein et al., 2020]
and that the number of hospital beds in India (public and private sector combined), h ≈
1.9 million [Kapoor et al., 2020], we determine the hospitalization threshold (HT) :

ξ0 =
h

0.03×
∑

iNi

≈ 0.0468

The aim of the study is to identify shortest possible lockdown duration that prevents
the number of active cases at any given time from exceeding this value. Formally, this
corresponds to the condition :

min
∆
{(τ,∆) ∈ Z|ξ(τ,∆) < ξ0) (7)

We approach this problem by running the model for
∑

iNi = 1353344709 individuals,
divided among the 16 age groups for a duration of 25000 hours to ensure that the disease
has run its course. The lockdown functions UW (t), UO(t), and US(t) are constructed such
that its minimum value is 0.3 for UW and UO, and 0 for US, consistent with the curve
fitting exercise (see Results). The non-zero minimum of the lockdown function captures a
leaky lockdown scenario, which accounts for sectors where activity cannot be completely
arrested, inspite of strict implementation. The lockdown functions are thus defined as :

UW (t) = UO(t) =


1 if t < τ

0.3 if t >= τ & t < τ + ∆

p if t >= τ + ∆

US(t) =

{
1 if t < τ

0 if t >= τ
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The ∆ satisfying (7) can be found by thresholding ξ at ξ0 (Figure 3.). In order to
illustrate the effect of the post-lockdown coefficients on optimal lockdown strategies, we
carry out this exercise for p = 0.75 and p = 1 (full reopening of the work and other
contact matrix) as well (Supplementary figures).
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Results

SIR dynamics and lockdown

We observe the characteristic features of the SIR dynamics from our model (Figure 2).
The number of active cases increase exponentially at first, peak and then fall off. The
point at which the unmitigated spread of infection reaches its peak is regarded as the
herd-immunity threshold (HIT). The number of recovered individuals increases over time
and saturates when the disease spread is terminated.

Lockdown scenarios are modelled by altering lockdown functions UW , US and UO

during and after the lockdown. Since schools were shut down during the lockdown and
remain shut even 2 months after the formal lifting of nation-wide lockdown, we assume
US = 0 for all times after lockdown start. We find the best fit to actual data by assuming
β = 0.013, and UW = UO = 0.3 during the lockdown and UW = UO = 0.45 after the lock-
down (Figure 2). According to the model, if the same values of disease infectiousness
and UW , UO and US persist as of July 14, the active cases will peak between Dec, 2020 -
Jan, 2021, 346 days from the start of the infection.

However, if different phased out lock-downs are performed, the proportion of infected
population reaching the hospitalization threshold (HT) can be managed (Figure 4c,d).
We systematically evaluate the parameter space for optimal lockdowns in the next section.

Optimal temporal windows for lockdown

Lockdown parameter space is explored by varying lockdown start time and durations
(Figure 3). The lockdown functions were assigned values derived from fitting the model
against actual data recorded from 30th January to 14th July [WHO, 2020] (Figure 2).

The maximum number of active cases computed for each lockdown parameter con-
figuration was compared to numbers that can be maximally catered by the hospital
infrastructure and used as a measure of the strain on hospital capacity. As the heatmaps
(Figure 3) clearly indicate, there exists considerable variability in lockdown outcomes
as a function of start times and durations. For example, case A (Figure 3) (τ = 81,
∆ = 65) results in the active infections surpassing the hospitalization threshold (HT).
Similarly, case C illustrates that late lockdowns (τ = 120, ∆ = 65) also result in a vi-
olation of the HT. However, same lockdown durations as A & C implemented around
the 101st day prevent the active cases from breaching the HT. This phenomenon, which
results from the non-linearity inherent in SIR dynamics, is easily visualized by plotting
disease trajectory in the phase space(S vs I) (Figure 3).

The optimal lockdown window that prevents a breach of the HT can also be found in
the cases where post-lockdown values of UW and UO are set to 0.75 or 1 (Supplementary
figures). However, in these cases, the minimum duration of a favourable lockdown strat-
egy is considerably greater (100 days and 135 days for UW = UO = 0.75 and 1 respec-
tively).

We also evaluate the outcomes of a possible successive lockdown to restrict ξ below ξ0

(Figure 4). Our results show that a second, 40 day nation-wide lockdown can potentially
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contain active cases below the HT, if executed around the 281st day (October, 2020)
(Figure 4). Figure 4e,f also show that it may be possible to distribute the ∼ 40 day
lockdown into 3 smaller sub-lockdowns, each 14 day long with 7 days relaxation between
each. Figure 4e shows that splitting the lockdown leads to a breach of HT, while
permitting week-long relaxation windows between the sub-lockdowns. We have explored
further by varying the inter-lockdown periods from 7 days to 35 days, all of which led to
crossing the HT by a considerable amount.
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Discussion

In response to the global SARS-CoV2 pandemic, the Government of India imposed a 4
phase nation-wide lockdown that lasted from 25th March, 2020 to 31st May, 2020. This
was followed by 2 phases of unlocks, with the second unlock phase still underway at the
time of writing. While being a necessary step to ensure disease mitigation, the lock-
down brought tremendous hardship to the economy, causing disruption in livelihoods,
supply-chains and stalling growth [Dev et al., 2020, Buheji et al., 2020]. These factors
ultimately led to calls for lifting of the lockdown.

The main focus of the article was to estimate optimal lockdown windows such that,
(i) the maximum number of active cases in the resulting dynamics remain lower than
the total hospitalization capacity, and (ii) condition (i) is satisfied for the smallest pos-
sible lockdown duration. As argued in the introduction, such a solution ensures medical
assistance to the most severe cases, while keeping the economic fallout of a protracted
lockdown to a minimum. Also it should be emphasized in this context that even though
we have used empirical data to tune our model parameters, our model by no means aim
to predict the exact unfolding of events in future. Rather, our study demonstrates that
the concept of optimal lockdowns exist because of the complex dynamical behavior of
the SARS-CoV2 infection spread. Subsequent studies are necessary to predict the na-
ture of lockdown functions that will work in a specific population, that will obviously be
dependent on the contact matrices. One clear departure from the Singh and Adhikari
[Singh and Adhikari, 2020] study on the Indian population is a clear demonstration that
an early lockdown doesn’t seem to have a very high success probability because the social
costs are too high, and premature withdrawal will lead to increase of infection again.
India is credited with imposing one of the most stringent lockdowns as measured by the
lockdown stringency index devised by the Oxford University [Hale et al., 2020]. Inspite
of this, the lockdown period coincided with an increase in overall case loads [Pulla, 2020]
(Figure 2). Therefore, we regarded lockdown intensity as an important criteria that
demands explicit factoring into any realistic model to assess lockdown scenarios.

In order to keep the model as simple as possible, we restricted ourselves to one-shot,
square-wave like lockdown functions, such that the only relevant lockdown parameters
were the start-time, duration and intensity of the lockdown. We use an age-structured
SIR model to fit actual data (cases and lockdown times) in order to estimate relevant
parameters— per-individual transmission rate(β) and lockdown intensity during and af-
ter the lockdown implementation (Figure 2). Even a simple SIR model with realistic
age-based compartmentalization gives rise to rich dynamics due to the non-linearity in-
herent in equations (1) and (2). This richness is manifested in the sensitive dependence
of outcomes of mitigation strategies on the timing and duration of the lockdown. This
effect can be intuitively understood as arising from the interaction of lockdown measures
and herd-immunity thresholds (HITs) (Figure 3). Early lockdowns doubtless lead to
immediate cessation of disease spread. However, early lockdowns make a second wave of
infection inevitable because the number of susceptible individuals in the population after
the lockdown remains comparable to the number of susceptible individuals at the start
of the pandemic, far from the HIT of the system. In this scenario, infections climb again
once the lockdown is lifted [Rachel, 2020, Malani et al., 2020]. Therefore, such lockdowns
do not lead to good long-term outcomes as the second wave of the infection easily takes
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the number of active cases past the hospitalization threshold (HT).

On the other extreme, late lockdowns do not help either as the worst phase of the
epidemic is already over at this point and the HTs have already been breached. There-
fore, it is evident that the most suitable solutions that prevent medical infrastructure
overload, while reducing the lockdown duration, lie somewhere in the middle. Successful
lockdown strategies leverage the mitigatory effects of lockdowns along with inherent HITs
(beyond which the number of infected individuals strictly decrease). As argued in the
introduction, such effects can be likened to phase resetting curves in neuroscience, where
this concept is used to estimate the probability of neural spiking as a function of the
timing of an external perturbation [Canavier, 2006, Schultheiss et al., 2011].

One strategy being increasingly administered by several local authorities is a short
lock-down, instead of a long one to avoid the economic costs. Our analysis based on the
SIR model reveals that such a step may require at least a minimum of 40 days of lockdown
(Figure 4). This estimate is undoubtedly achieved, taking into account the country-wide
contact matrices of the Indian population in picture. Nonetheless, a minimum lockdown
requirement can be worked out following our approach, if contact matrices are available
for any arbitrary population size for which lockdown is being implemented.

Assumptions and Limitations

We conclude by laying out the inherent assumptions and possible limitations of the model
presented here. Most importantly, our model falls in the class of conceptual models to
understand which broad lockdown strategy is effective, not necessarily a detailed plan
for implementing the lockdown across diverse socio-culturally bound populations. For
example, our model ignores temporal delays that are likely to exist between lockdown an-
nouncement and effective implementation. We think that such delays would not amount
to substantial differences in disease dynamics as it is possible that the effects of the delay
are offset by a gradual reduction in social mobility preceding the actual lockdown an-
nouncement. Additionally, this assumption simplifies the model considerably. Certainly
country specific delays would change the predictions from the model.

Second, by assuming a single value for ξ0, the model implicitly assumes spatial homo-
geneity in the distribution of medical infrastructure across the country. However, both
disease burden and medical infrastructure is known to be heterogeneously distributed
across the country [Klein et al., 2020]. Detailed modelling at the level of individual states
and districts could potentially solve the problem but at considerable computational costs.
We decided to favour model simplicity since our focus was on assessing optimal lockdown
scenarios.

Third, it is well-known that the number of reported cases is a function of the number
of tests conducted. Our model does not account for fluctuations in the rate of testing
that may influence the total number of infected individuals at any given time. Further we
don’t account for the inherent birth and death rates of the population during the course
of the infection.

Existence of optimal lockdown windows depends upon the choice of the quantity that
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we are aiming to optimize. The current analysis places a premium on the maximum
fraction of infected individuals (ξ) which serves as a measure of strain on the medi-
cal infrastructure at any given point of time. Indeed, recent events have demonstrated
the need for curve flattening in order to de-congest hospitals and reduce the burden on
health-care professionals. However, it may be useful to frame the problem within a formal
optimization framework to optimize quantities derived from other economic considera-
tions [Rachel, 2020].
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Figure Legends

Figure 1.

Contact structures and age-demographics of India: A) Model schematic, every
age group is modelled as a SIR population coupled through contact matrices for home,
work, school and other places. B) Population split into 16 age groups from 0-79. C)
contact matrices for Home, work, school and others respectively, plotted as heatmaps.
Normalized colorbar indicates magnitude of interaction between age-groups.

Figure 2.

Model fitting from empirical data: A) SIR dynamics for model with β = 0.013,UW =
UO = 0.3 during lockdown and UW = UO = 0.45 post lockdown. The number of active in-
fected cases peaks on the 346th day since the beginning of the lockdown. B) Inset:Model
fit to cumulative infected cases in India— red indicates WHO data, blue indicates model
fit. Lockdown is assumed to have started on 25th March and lifted on 31st May. Model
parameters were estimated with data collected till 14th July. Below) Model derived
lockdown functions for Work, School and Others. Lockdown function for home was con-
sidered to be 1 throughout.

Figure 3.

Characterizing lockdowns: Heatmap shows the maximum number of active cases as
fraction of total population for model runs with varying lockdown start time(τ , days
since start of spread) and duration(∆,in days). A-C) indicate the phase trajectories
for lockdown strategies marked in the heatmap, along with the corresponding lockdown
functions(right panel). The red horizontal broken lines(A-C) indicates the hospitaliza-
tion threshold. The blue vertical line marks the Herd-Immunity Threshold (HIT) beyond
which the number of active cases are assured to fall. B) shows that it is possible to re-
strict active cases below the hospitalization threshold for the given lockdown parameters.
The lockdown function is derived from fitting the model with WHO data.

Figure 4.

Successive lockdown: A second lockdown around the 281st day (τ ∗) for a duration
of 40 days(∆∗), prevents the number of active cases from breaching the hospitalization
threshold. A) Heatmap: x-axis indicates lockdown start times from unlock date(166th

day), y-axis corresponds to lockdown duration. B) Trajectory of active cases subject to
lockdown function shown in D). C) Phase-space evolution of disease spread. E)-F) The
lockdown is distributed into 3 smaller sub-lockdowns of 14 day each with 7 days between
each sub-lockdown.
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